Publications

Seattle University undergraduate

[30] Natural ITD statistics predict human auditory spatial perception
Pavao, R., Sussmann, E.S., Fischer, B.J., Pena, J.L.
eLife doi: 10.7554/eLife.51927, 2020.

[29] Effect of stimulus-dependent spiking timing on population coding of sound location in the owl's auditory midbrain
Beckert, M., Fischer, B.J., Pena, J.L.
eNeuro doi:10.1523/ENEURO.0244-19.2020, 2020.

[28] Synthesis of hemispheric ITD tuning from the readout of a neural map: commonalities of proposed coding schemes in birds and mammals
Pena, J.L., Cazettes, F., Beckert, M., Fischer, B.J.
J Neurosci 39: 9053-9061, 2019.

[27] Multidimensional stimulus encoding in the auditory nerve of the barn owl
Fischer, B.J., Wydick, J., Koppl, C., Pena, J.L.
J Acoust Soc Am 144, 2116, 2018

[26] Emergence of an adaptive command for orienting behavior in premotor brainstem neurons of barn owls
Cazettes, F., Fischer, B.J., Beckert, M., Pena, J.L.
J Neurosci 16: 0947-18, 2018.

[25] Neural computation with non-uniform population codes.
Fischer, B.J..
Proc. IEEE Int'l. Joint Conf. on Neural Networks. 2017.

[24] Optimal nonlinear cue integration for sound localization
Fischer, B.J., Pena, J.L.
J Comp Neurosci, 42: 37-52, 2017.

[23] Cue reliability represented in the shape of tuning curves in the owl's sound localization system
Cazettes, F., Fischer, B.J.#, Pena, J.L.#
J Neurosci 36: 2101-2110, 2016.
# Equal contribution

[22] Optimal prediction of moving sound source direction in the owl.
Cox, W., Fischer, B.J.
PLoS Comput Biol 11(7): e1004360. doi:10.1371/journal.pcbi.1004360, 2015.

[21] Neural representation of probabilities for Bayesian inference.
Rich, D., Cazettes, F., Wang, Y., Pena, J.L., Fischer, B.J.
J Comp Neurosci. doi: 10.1007/s10827-014-0545-1, 2015.

[20] Spatial cue reliability drives frequency tuning in the Barn Owl's midbrain.
Cazettes, F., Fischer, B.J.#, Pena, J.L.#
eLife doi: 10.7554/eLife.04854, 2014.
# Equal contribution

[19] Resolution of interaural time differences in the avian sound localization circuit: a modeling study.
Fischer, B.J., Seidl, A.H.
Frontiers in Computational Neuroscience. doi: 10.3389/fn- com.2014.00099, 2014.

[18] Forced desynchrony reveals independent contributions of suprachiasmatic oscillators to the daily plasma corticosterone rhythm in male rats.
Wotus, C., Lilley, T.R., Neal, A.S., Suleiman, N.L., Schmuck, S.C., Smarr, B.L., Fischer, B.J., de la Iglesia, H.O..
PLoS ONE 8(7): e68793. doi:10.1371/journal.pone.0068793, 2013.

[17] Binaural gain modulation of spectrotemporal tuning in the interaural level difference-coding pathway.
Steinberg, L.J., Fischer, B.J., Pena, J.L.
J Neurosci 33: 11089-99, 2013.

[16] Population-wide bias of surround suppression in auditory spatial receptive fields of the owl's midbrain.
Wang, Y., Shanbhag, S.J., Fischer, B.J., Pena, J.L.
J Neurosci 32: 10470 - 10478, 2012.

[15] Effect of instantaneous frequency glides on interaural time difference processing by auditory coincidence detectors.
Fischer, B.J., Steinberg, L.J., Fontaine, B. , Brette, R., Pena, J.L.
Proc. Natl. Acad. Sci. USA , 108(44): 18138 - 18143, 2011.

[14] Owl's behavior and neural representation predicted by Bayesian inference.
Fischer, B.J., Pena, J.L.
Nature Neurosci, 14: 1061-1066, 2011.

[13] Estimated cochlear delays in low best-frequency neurons in the barn owl cannot explain coding of interaural time difference.
Singheiser, M., Fischer, B.J., Wagner, H.
J Neurophysiol 104: 1946-1954, 2010.

[12] Contextual modulation of auditory responses predicted by statistical inference.
Fischer, B.J., Deneve, S.
Proc. Neurocomp'10. 2010.

[11] Bayesian estimates from heterogeneous population codes.
Fischer, B.J..
Proc. IEEE Int'l. Joint Conf. on Neural Networks. 2010.

[10] Multiplicative auditory spatial receptive fields created by a hierarchy of population codes.
Fischer, B.J., Anderson, C.H., Pena, J.L.
PLoS ONE, 4(11): e8015. doi:10.1371/journal.pone.0008015, 2009.

[9] Bilateral matching of frequency tuning in the neural cross-correlators of the owl.
Fischer, B.J., Pena, J.L.
Biol Cybern, 100(6): 521-531, 2009.

[8] Distinct sensory representations of wind and courtship song in the Drosophila brain.
Yorozu, S., Wong, A., Fischer, B.J., Dankert, H., Kernan, M.J., Kamikouchi, A., Ito, K., Anderson, D.J.
Nature, 458(7235): 201-205, 2009.

[7] Cross-correlation by coincidence detectors in the owl.
Fischer, B.J., Christianson, G.B., Pena, J.L.
J Neurosci, 28: 8107-8115, 2008.

[6] Variability reduction in interaural time difference tuning in the barn owl.
Fischer, B.J., Konishi, M.
J Neurophysiol, 100: 708-715, 2008.

[5] Optimal models of sound localization by barn owls.
Fischer, B.J..
Advances in Neural Information Processing Systems 20, Cambridge, MA: MIT Press, 2008.

[4] Emergence of multiplicative auditory responses in the midbrain of the barn owl.
Fischer, B.J., Pena, J.L., Konishi, M.
J Neurophysiol 98: 1181-1193, 2007.

[3] A probabilistic model of auditory space representation in the barn owl.
Fischer, B.J., Anderson, C.H.
In Thrun, S., Saul, L., and Scholkopf, B. (eds.), Advances in Neural Information Processing Systems 16, Cambridge, MA: MIT Press, 2004.

[2] A computational model of sound localization in the barn owl.
Fischer, B.J., Anderson, C.H.
Neurocomputing, 58-60: 1007-1012, 2004.

[1] The neural multiple access channel.
Fischer, B.J., Westover, M.B.
Neurocomputing, 52-54: 512-518, 2003.



Undergradute Student Conference Presentations

Modeling nonlinear dendritic integration in space-specific auditory neurons of barn owls
Gorman, J.C., Miller, A.V.R., Pena, J.L., Fischer, B.J.
Society for Neuroscience Meeting, Chicago, IL. 2019.

Optimal prediction of moving sound source direction in the owl
Cox, W., Fischer, B.J.
Association for Research in Otolaryngology Midwinter Meeting, San Diego, CA. 2014.

Sampling methods for the neural representation of priors
Fischer, B.J., Rich, D., Pena, J.L.
Society for Neuroscience Meeting, San Diego, CA. 2013.

This is a personal WEB site developed and maintained by an individual and not by Seattle University. The content and link(s) provided on this site do not represent or reflect the view(s) of Seattle University. The individual who authored this site is solely responsible for the site's content. This site and its author are subject to applicable University policies including the Computer Acceptable Use Policy (www.seattleu.edu/policies).