Modeling sound localization circuits
We use anatomical, neurophysiological, and behavioral data to create functional models of the owl's sound localization pathway.Relevant Publications
Seattle University undergraduate
Wang, Y., Shanbhag, S.J., Fischer, B.J., Pena, J.L.
J Neurosci 32: 10470 - 10478, 2012.
Effect of instantaneous frequency glides on interaural time difference processing by auditory coincidence detectors.
Fischer, B.J., Steinberg, L.J., Fontaine, B. , Brette, R., Pena, J.L.
Proc. Natl. Acad. Sci. USA , 108(44): 18138 - 18143, 2011.
Estimated cochlear delays in low best-frequency neurons in the barn owl cannot explain coding of interaural time difference.
Singheiser, M., Fischer, B.J., Wagner, H.
J Neurophysiol 104: 1946-1954, 2010.
Multiplicative auditory spatial receptive fields created by a hierarchy of population codes.
Fischer, B.J., Anderson, C.H., Pena, J.L.
PLoS ONE, 4(11): e8015. doi:10.1371/journal.pone.0008015, 2009.
Bilateral matching of frequency tuning in the neural cross-correlators of the owl.
Fischer, B.J., Pena, J.L.
Biol Cybern, 100(6): 521-531, 2009.
Cross-correlation by coincidence detectors in the owl.
Fischer, B.J., Christianson, G.B., Pena, J.L.
J Neurosci, 28: 8107-8115, 2008.
Variability reduction in interaural time difference tuning in the barn owl.
Fischer, B.J., Konishi, M.
J Neurophysiol, 100: 708-715, 2008.
Emergence of multiplicative auditory responses in the midbrain of the barn owl.
Fischer, B.J., Pena, J.L., Konishi, M.
J Neurophysiol 98: 1181-1193, 2007.
Relevant Senior Synthesis Projects
Modeling Hebbian learning algorithms in the owl brainAllen Seydel, 2014.