
Ferry: A P2P-Based Architecture for Content-Based Publish/Subscribe Services ∗

Yingwu Zhu

Department of CSSE, Seattle University

zhuy@seattleu.edu

Yiming Hu

Department of ECECS, University of Cincinnati

yhu@ececs.uc.edu

Abstract

We propose Ferry, an architecture that extensively yet wisely exploits the underlying dis-

tributed hash table (DHT) overlay structures to build an efficient and scalable platform for

content-based publish/subscribe (pub/sub) services. Ferry aims to host any and many content-

based pub/sub services: any pub/sub service with a unique scheme can run on top of Ferry, and

multiple pub/sub services can coexist on top of Ferry. For each pub/sub service, Ferry does not

need to maintain or dynamically generate any dissemination tree. Instead, it exploits the em-

bedded trees in the underlying DHT to deliver events, thereby imposing little overhead. Ferry

can support a pub/sub scheme with a large number of event attributes. To deal with skewed

distribution of subscriptions and events, Ferry uses one-hop subscription push and attribute

partitioning to balance load.

Indexed Terms: DHT, subscription installation, subscription management, event delivery,

one-hop subscription push, content-based publish/subscribe.

1 Introduction

Content-based publish/subscribe (pub/sub) [1] is a powerful paradigm for information dissemina-

tion from publishers (data/event producers) to subscribers (data/event consumers) in large-scale

distributed networks. A data event specifies values of a set of attributes associated with the event.

Subscribers register their interests in future events through expressive subscriptions which specify

complex filtering criteria by using a set of predicates over event attributes. Upon receiving an event

∗Extended version of the work presented in Proceedings of ICPP’05. Nominated for Best Paper Award.
1

published by a publisher, the system matches the event to the subscriptions which serve as filters

and delivers the event to the matched subscribers. A content-based pub/sub system is required to

store the subscriptions installed by the users and upon an event, find all subscriptions matching the

event and deliver the event to the matched subscribers.

1.1 Content-based Pub/Sub Model

Fabret et al. [1] proposed a content-based pub/sub scheme defined as: S = {A1, A2, · · ·, An},

where each Ai corresponds to an attribute. Each attribute has a name, type, and domain, and can

be specified by a tuple [name, type,min,max]. The type could be integer, float, and string, etc.

The min and max define the range of domain values taken by the given attribute. An event is a

set of attributes ∈ S and it can be represented as e = {A1 = c1, A2 = c2, · · ·, An = cn}. A

predicate has a name, type, operator and value and is used to specify a constant value or range

for an attribute. A subscription is a conjunction of predicates over one or more attributes. If a

subscription needs to specify multiple predicates over the same attribute, it can be modeled as

a combination of multiple subscriptions, each of which specifies one value or continuous range

over the attribute. For simplicity of presentation, we assume each subscription specifies a value

or continuous range over an attribute. An example subscription is (A1 = v1)∧(v2≤A3≤v3). An

event e matches a subscription s if each predicate of s is satisfied by the value of the corresponding

attribute contained in e.

1.2 Motivation

Current content-based pub/sub systems are either centralized or distributed. One example of cen-

tralized systems is Elvin [2]. Elvin uses a central server that stores all the subscriptions, evaluates

the subscriptions upon events and delivers events to the matched subscribers. Centralized solu-

tions, while simple, have an inherent scalability problem as the number of events and subscriptions

in the system increases. Hence, Fabret et al. [1] proposed novel data structures and application-

specific caching policies and query processing to support high rates of subscriptions and events in

the system. However, restrictions have to be placed on subscriptions such that they must contain

at least one equality predicate, sacrificing flexibility and expressiveness of subscriptions.

Many distributed pub/sub systems [3, 4, 5, 6, 7, 8, 9] have been proposed by using routing trees

to perform event delivery based on multicast techniques. Siena [4] builds a symmetric spanning

2

tree and each pub/sub server can be a publisher or subscriber. Gryphon [9] organizes the pub/sub

network into a single-source tree and proposes a link matching algorithm to forward events towards

directions of matching subscriptions.

As distributed hash tables (DHTs) [10, 11, 12, 13] attract more and more interests from both

research and industrial communities due to their scalability, fault-tolerance and self-organization,

we have seen many attempts in building and designing DHT-based pub/sub systems [14, 15, 16,

17, 18, 19, 20, 21, 22]. In such systems, peers cooperate in storing subscriptions and routing events

to subscribers in a fully distributed manner.

However, all these distributed and DHT-based solutions suffer some or all of the following

limitations: (1) Using explicitly constructed multicast trees for event delivery, introduces non-

trivial cost (e.g., bandwidth consumption) in tree construction and maintenance, especially in dy-

namic peer-to-peer systems where nodes join or leave at will. (2) System such as Scribe [21] and

Bayeux [22] are essentially topic-based pub/sub systems. They do not directly support content-

based pub/sub services. (3) Some solutions (e.g., [18]) place some restrictions on subscriptions,

thus sacrificing expressiveness of subscriptions which however is one major feature distinguishing

content-based pub/sub from topic-based pub/sub [23, 24]. (4) With few exceptions [14], most of

them fail to address the load-balancing issue while subscription and event distributions in real-

world applications are highly non-uniform.

1.3 Goals

Challenges for content-based pub/sub systems include efficient subscription management and

event matching, load balancing, and efficient and scalable event delivery. In this paper, we propose

Ferry, a fully distributed, efficient and scalable architecture for content-based pub/sub services

built on top of DHTs. Ferry serves as a platform to host any and many content-based pub/sub

services. In particular, the goals of Ferry which make our contributions, are as follows:

1. Design novel subscription installation and management algorithms that facilitate aggre-

gation of event delivery messages, thereby minimizing the number of messages across the

system.

2. Propose one-hop subscription push and attribute partitioning to address the load balancing

issue in real-world pub/sub applications.

3

3. Propose an efficient and scalable event delivery algorithm that is virtually maintenance-free

by making wise use of embedded trees in the underlying DHT.

To the best of our knowledge, Ferry is the first solution that extensively yet smartly exploits

the DHT overlay links to manage subscriptions and disseminate events for content-based pub/sub

services. Its load-balancing technique, one-hop subscription push, also makes wise use of the

DHT links. By exploiting DHT links in its design, Ferry have numerous advantages: (1) The fault-

tolerance and self-organizing nature of DHT links makes Ferry resilient to node failures. (2) Ferry

does not construct or maintain multicast trees for event delivery, and it is virtually maintenance-

free. (3) Grouping subscriptions along DHT links in subscription management facilitates message

aggregation during event delivery, thus minimizing the number of messages across the system. (4)

The proximity neighbor selection (PNS) property of DHT links naturally enables proximity-aware

event delivery along the DHT links, yielding good delivery performance. (5) The DHT routing

table maintenance messages (sent periodically by the underlying DHT) could be piggybacked onto

the event delivery messages to reduce the DHT maintenance cost that is nontrivial in terms of

bandwidth.

We have built Ferry on top of p2psim, a discrete-event packet level simulator. Via detailed

simulations, we have evaluated Ferry extensively in terms of overlay hops, latency, overhead, and

bandwidth cost. We show that Ferry can deliver events to various numbers of subscribers under

different network sizes efficiently and timely. We have also compared performance of Ferry and

Meghdoot [14] in event delivery, showing Ferry has a better performance.

The rest of the paper is structured as follows. Section 2 provides a survey of related work.

Section 3 gives necessary background. We present the design of Ferry in Section 4. Section 5

discusses an alternative design and addresses its limitations. Section 6 presents experimental setup

and results. We conclude the paper in Section 7.

2 Related Work

Pub/sub systems are mainly categorized into topic-based and content-based. In topic-based sys-

tems, each publisher and subscriber join the groups containing the topics they are interested in and

events that belong to a topic are broadcasted to all subscribers of the corresponding group. The

4

example systems include ISIS [23] and iBus [24].

Content-based pub/sub systems are preferable as they allow subscribers to specify their inter-

ests in a fine-grained way, i.e., a subscriber can express his/her interests by a set of predicates over

event attributes. Many distributed content-based pub/sub systems [3, 4, 5, 6, 7, 8, 9] have been

proposed by using routing trees to deliver events to the subscribers based on multicast techniques.

Among them, Ferry is most similar to MEDYM [8]. In MEDYM, each node can be a matcher for

some subscriptions and events. Upon receiving an event, some matcher responsible for this event

matches the event to the subscriptions and obtains a destination list of the matched subscribers.

Then, the event delivery message containing the destination list is routed through a dynamically

generated dissemination tree with the help of topology knowledge. However, Ferry differs from

MEDYM in that it exploits the embedded trees inherent in the underlying DHT to deliver events,

thereby imposing little overhead.

Many attempts have been made in designing a P2P-based pub/sub system [14, 15, 16, 17, 18,

19, 20, 21, 22]. Scribe [21] and Bayeux [22] are essentially a topic-based pub/sub system built

on top of Pastry and Tapestry, respectively. They do not directly support content-based pub/sub

services. SplitStream [25] is an application-level multicast system built from Scribe for high-

bandwidth data dissemination, by splitting content into k stripes each of which corresponds to a

Scribe multicast tree. Recent work [26] has shown that the maintenance cost of multicast trees due

to non-DHT links (40% or more) in Scribe/SplitStream is non-trivial under node churn, while Ferry

does not impose any such maintenance cost by exploiting the embedded trees in DHTs. Tam et

al. [18] proposed a content-based pub/sub system built from Scribe. The problem with their system

is that it has some restrictions on the expression of subscriptions and thus sacrifices expressiveness

of subscriptions.

Terpstra et al. [17] proposed a content-based pub/sub system built on top of Chord. In this

system, both filter updates and event routing actually use a broadcasting algorithm. Triantafillou et

al. [16] also built their content-based pub/sub system on top of Chord. A subscription is stored in

nodes with the keys produced by hashing the attribute and its values. If the subscription specifies

a range over an attribute, the subscription would be stored on a number of nodes by hashing the

attribute and each of its possible values within this range. However, the main drawback is that

subscription installation and update are expensive due to the large number of nodes and messages
5

potentially involved.

Reach [19] maintains a semantic overlay network and uses a Hamming-distance based routing

scheme. Each node serves as a rendezvous point for those subscriptions with suffix matching

the node’s identifier. In the similar vein, HOMED [15] maintains a semantic overlay where each

node’s identifier is derived from its subscriptions. However, they have the following limitations.

First, they assume a globally-static attribute space. Second, they have a load balancing issue since

non-uniformly distributed subscriptions would cause unevenly distributed nodes on the overlay.

Finally, using a bit vector to express user’s interests in Reach is not fine-grained, while in HOMED,

it may be difficult to derive node IDs from their subscriptions while preserving high expressiveness

of subscriptions.

Meghdoot [14] is based on CAN [13]. Subscriptions are stored on a zone according to the

coordinate determined by event attribute values. Considering skewed distributions of both sub-

scriptions and events in a real application, Meghdoot addresses the load balancing issue by zone

splitting and zone replication. The major limitation of Meghdoot is that the overlay structure is

determined by the pub/sub scheme and the overlay dimensionality is proportional to the number of

event attributes.

3 Background: Chord

Chord [10], a representative DHT, basically supports one operation lookup(key) which maps a

160-bit key to a set of IP addresses of the nodes responsible for the key. In Chord, each node

has a 160-bit identifier, and the s nodes whose identifiers immediately follow a key are considered

responsible for that key: they are the key’s successors. To provide reliable lookup even if half of the

nodes fail in a 216-node network, the number of successors, s, is 16 in the Chord implementation.

The ID space in Chord wraps around such that zero immediately follows 216 − 1 [27].

The base Chord lookup algorithm works as follows. Each Chord node (say, i) maintains a rout-

ing table: namely a finger table and a successor list. The finger table consists of the IP addresses

and IDs of nodes which follow the Chord node i at power-of-two distances in the identifier space

(i.e.,1
2
,1
4
,1
8
, 1

16
, ...). The successor list refers to i’s s immediate successors. When a node issues

a lookup with a key k, it consults a sequence of other nodes, asking each in turn which node to

talk to next; each node in this sequence answers with the node from its finger table whose ID most

6

immediately precedes k. By O(log N) consultations, the originating node will find the key k’s

predecessor node, and then it request the predecessor node for its successor list, which is the result

of the lookup. Note that this style of lookup is called iterative since the originating node controls

each step of the lookup. Dabek et al. [27] have shown that recursive lookups have lower latencies

than iterative lookups. Hence, Ferry uses recursive lookups: each node in the lookup path directly

forwards the query to the next node.

4 System Design

In this section, we first present system overview in Section 4.1 and then detail Ferry’s design in

Section 4.2-4.5. Section 4.6 discusses load balancing issues and Section 4.7 addresses Ferry’s

scalability to the number of event attributes. We provide a discussion of Ferry in Section 4.8 and

demonstrate Ferry’s adaptability to other DHTs in Section 4.9.

4.1 Overview

We base the design of Ferry on Chord. However, the techniques discussed here are applicable or

easily adaptable to other DHTs such as Pastry [11] and Tapestry [12]. Ferry aims to serve as a

platform to host multiple pub/sub services with unique schemes. For ease of exposition, we base

our discussion on a pub/sub scheme S = {A1, A2, ..., An}.

Ferry is essentially a rendezvous network built on top of Chord to support content-based

pub/sub services. In Ferry, each node could serve as a rendezvous point (RP) for some subscrip-

tions and events, and as an intermediate node on the paths of event delivery. Given a pub/sub

scheme S = {A1, A2, ..., An}, the RP nodes for its subscriptions and events are the most immedi-

ate successors of ki = h(Ai), where ki is a key derived from an attribute Ai by using the consistent

hash function h() which is used in Chord to produce node IDs and data keys. Subscriptions and

events entering the system are routed to their corresponding RP nodes. A subscription in Ferry

is stored on a RP node in the form of a pair (sid, p), where sid is the subscriber’s node ID (sub-

scriber ID for short) and p is a conjunction of predicates specifying the subscriber’s interests (e.g.,

p = {(A1 = c1)∧(c2≤A3≤c3)}). When a node wants to publish an event, the event is first directed

to the RP nodes where the event is matched to the subscriptions. Once those subscriptions match-

ing the event are identified, the event is then delivered to the corresponding subscribers by using

Ferry’s novel event delivery algorithm.
7

Ferry is based on four key mechanisms: (1) Subscription Installation (Section 4.2), (2) Sub-

scription Management (Section 4.3), (3) Event Publication and Matching (Section 4.4) and (4)

Event Delivery (Section 4.5).

4.2 Subscription Installation

When a user wishes to subscribe for some events, the user first has to register his/her interests to a

RP node in the form of subscription s = (sid, p). Ferry explores two installation algorithms, called

RndRP and PredRP, respectively. As shown in Algorithm 1, the primary purpose of RndRP is to

uniformly at random distribute subscriptions over the RP nodes of the scheme S, even in the face

of skewed subscription distribution, i.e., some subscriptions are very popular. However, RndRP

could result in inefficient event delivery. Consequently, we propose a more efficient algorithm,

PredRP, for subscription installation in Ferry.

Algorithm 1 RndRP (Subscription s)
1: Ai ← randomly choose an attribute from S
2: k = h(Ai) //h is a consistent hash function used by Chord
3: store s in a RP node which is an immediate successor node of k

Algorithm 2 outlines the PredRP algorithm. The basic idea behind PredRP is that a subscription

s is stored in a RP node whose node ID is equal to or most immediately precedes s’s subscriber

ID among all the RP nodes of the scheme S. Figure 1 illustrates RndRP and PredRP. In RndRP,

the RP nodes r1 and r2 each may store the subscriptions from the subscribers distributed over

the whole Chord ring space and thus the event delivery messages may need to traverse the whole

Chord ring space. However, with PredRP, the event delivery messages from RP nodes r1 and r2

only need to traverse a fraction of the Chord ring space due to the fact that each RP node stores only

those subscriptions from a non-overlapped, contiguous region of the Chord ring space (e.g., r1 is

responsible for the subscriptions from the range [r1, r2), and r2 is responsible for the subscriptions

from the range [r2, r1)). As will be shown in Section 6, PredRP achieves better performance than

RndRP by avoiding sending the redundant messages across the Chord ring space and making the

messages to traverse shorter distance of the Chord ring.

Algorithm 2 PredRP (Subscription s)
1: choose an attribute Ai from S such that h(Ai) either is equal to or most immediately precedes s’s subscriber ID

among all attributes
2: k = h(Ai)
3: store s in a RP node which is an immediate successor node of k

8

(b)(a)

�

��

�

�

��

���

�

���

� �

�

��

�

����������	
��

�� �� �

����������	
��

�� �� �� �

����������	
��

�� �� �

����������	
��

�� �

Figure 1: Illustration of RndRP and PredRP. r1 and r2 are two RP nodes. a, b, c, d, e, f are subscribers. (a) RndRP
(b) PredRP.

However, PredRP may cause uneven subscription distribution across the RP nodes of the

scheme S. As shown in Figure 1(b), r1 stores less subscriptions than r2. To deal with the load

balancing issue, we propose a scheme, called one-hop subscription push (one-hop push for short)

which is discussed in next subsection.

When a subscriber wishes to unregister his/her subscriptions previously installed in the system

(e.g., due to changed interests), the subscriber can request the corresponding RP nodes to remove

his/her subscriptions. Otherwise, we may associate each subscription with a TTL (time-to-live).

However, the subscriber has to refresh his/her subscriptions periodically if he/she wants to continue

receiving future events relevant to the subscriptions.

4.3 Subscription Management

Recall that Chord nodes consult their successor lists and finger tables to route a message with a

key k to a destination node whose ID is the successor of k. Consider each subscriber with a unique

sid. The routing paths from a RP node r to all these sids (or subscribers) form a tree (formed by

DHT overlay links) rooted at the RP node r, say EmdTreer (an embedded tree rooted at r) 1. As

will be discussed in event delivery algorithm, the events will be disseminated along this tree from

the RP node to the subscribers. Note that this tree is formed by the underlying DHT links, thereby

imposing no additional construction or maintenance cost.

How does a RP node r manage the subscriptions installed by the subscribers? As outlined in

Algorithm 3, r manages the subscriptions in a manner that a subscription s is stored according to

the entry of a neighbor node (including successor nodes and finger table nodes) whose node ID

is equal to or most immediately precedes s’s sid 2. Put in another way, we store the subscription

1Other DHTs such as Pastry and Tapestry have similar embedded trees as well.
2This manner of subscription management is based on the observation that when routing a message from the RP

node r to node s, r will first forward the message to its neighbor node whose ID is equal to or most immediately
precedes s’s ID.

9

s in the entry of a neighbor node which is the ancestor node of the corresponding subscriber

in the embedded tree EmdTreer. Note that this does not necessarily suggest that we put the data

structure of subscriptions into r’s routing table. We may just keep the metadata of the subscriptions

into the entry of its routing table. However, how to associate subscriptions with routing table entries

is not focus of the paper.

Algorithm 3 manage subscriptions(Subscription s)
Require: vector<Subscription> store[1..k] //stores subscriptions in the RP node according to the entry of k neigh-

bor nodes
1: find the neighbor node nj whose ID is equal to or most immediately precedes s’s sid
2: store[j].push back(s) //store s into neighbor nj’s entry

Figure 2(a) illustrates a RP node r’s subscription management (for simplicity of presentation,

the subscriptions of subscribers s2, x, y, z, v and w in r are represented by their sids). Subscriber

s2’s subscription is stored corresponding to the entry of r’s successor node s2. The subscriptions

of subscribers x and y are stored corresponding to the entry of r’s finger table node f2, since f2

is the ancestor node in the embedded tree EmdTreer (i.e., the routing path from r to x and the

routing path from r to y will go through f2). The subscriptions of subscribers z, w and v are stored

corresponding to the entry of r’s finger table node f3 since f3 is the ancestor node of z, w and

v. As will be shown in Section 4.5, this novel subscription management can allow a RP node to

deliver events by aggregating messages along its DHT links (i.e., links to its successor nodes and

finger table nodes), thereby reducing the number of messages across the system.

RT entry subscriptions

Subscription Storage

�

��

��

��

��

��

�

�

�

�

�

��

��

��

��

��

��

�� �

�� �� �

(a)

RT entry

Stored subscriptions

Pushed
subscriptions

Pushed
subscriptions

subscriptions
r

s1

s2

f1

f2

w

s1

s2

f2

s2

f3

f1

sfilter{x,y}
sfilter{z,w,v}

x, y

z, w, v

x

y

z

f3

v

(b)

Figure 2: r is a RP node on the Chord ring. s1 and s2 are r’s successors. f1, f2 and f3 are r’s finger nodes. (a)
Illustration of RP node r’s subscription management. s2, x, y, z, w, and v are subscribers whose subscriptions are
stored in r. (b) One-hop subscription push. For simplicity, we use s2, x, y, z, w and v to represent their corresponding
subscriptions. sfilter represents the summary filter.

One-hop subscription push. The basic idea is that a RP node r pushes the subscriptions

corresponding to r’s finger node f to f . r then uses a summary filter 3 to represent the subscriptions

3A summary filter covers the subscriptions pushed away by exploiting covering relationships between subscrip-
tions [28].

10

pushed away. Upon an event e, r matches the event with the summary filter. If it is a match,

r delivers e to the corresponding finger node which in turn serves as a RP node agent for those

subscriptions pushed by r and starts delivering e to the matched subscribers. Figure 2(b) illustrates

one-hop subscription push. r pushes subscriptions {x, y} and {z, w, v} to r’s finger nodes f2 and

f3, respectively.

One-hop push serves two main purposes. The first purpose is to allow a RP node to move part of

its load (including subscriptions and event matching load) to some (or all) of its finger table nodes

for load balance. For example, if a RP node r is overloaded by subscriptions, it finds a finger table

node f is underloaded or willing to take some subscriptions through the load status piggybacked in

the finger table maintenance messages which are sent periodically by the underlying DHT routing

table maintenance process. Then, r could push those subscriptions corresponding to the entry

of f to f . Note that the subscriptions to be pushed could also be piggybacked onto the routing

table maintenance messages to reduce the number of messages involved. The second purpose is to

reduce the message size from a RP node to its finger table nodes (at this point, no subscriber ID

list is carried in the messages) during event delivery (see Section 4.5) and thus the bandwidth cost

(see Section 6.2).

One-hop push works even if a finger table node f (which hosts the subscriptions pushed from

a RP node r) leaves the system. This is because another finger table (say, g) will be picked by

the routing table maintenance process performed periodically. If the g happens to be f ’s successor

node, r does not need to push the subscriptions to g due to P2P data replication mechanism (i.e.,

g may already have one copy of the subscriptions). Otherwise, r needs to push the subscriptions

to g or have g go to f ’s successor nodes for the copy (we assume a data replication mechanism

for subscriptions). If there is a subscription s whose subscriber ID becomes not to follow g’s ID

anymore, the subscription s needs to be pushed back to r, which will assign s to the corresponding

entry of the routing table.

4.4 Event Publication and Matching

When a node wishes to publish an event, it first directs the event to all the RP nodes corresponding

to the scheme S. The RP nodes are responsible for matching the event to the subscriptions and

starting delivering the event to the matched subscribers. Algorithm 4 outlines the process of event

11

publication. It is worth pointing out that the event may be sent to the RP nodes either through

the underlying Chord routing protocol, or through the direct point-to-point communication if the

event publisher node has already cached the IP addresses of the RP nodes. The direct point-to-

point communication between the publisher node and the RP nodes is expected to achieve better

performance compared to the Chord routing protocol. However, if the number of the RP nodes

is large (proportional to the number of attributes in S), either the point-to-point communication

model may be inappropriate and impractical, or resorting to the Chord routing protocol may be

inefficient (in terms of bandwidth). We may need to use a more efficient mechanism to publish

the event to the RP nodes, e.g., multicast techniques. More discussion of this will be presented in

Section 4.7.

Algorithm 4 publish event(Event e)
1: for each Ai ∈ S do
2: ki = h(Ai)
3: send e to a RP node which is an immediate successor node of ki
4: end for

Upon receiving an event e, each RP node needs to match e with the subscriptions stored on

it. Algorithm 5 outlines the matching process which returns the matched subscriber ID lists with

respect to the entry of the RP node’s k neighbor nodes. Note that Algorithm 5 is a linear sub-

scription matching algorithm with respect to the number of subscriptions. The matching from an

event to a large number of subscriptions therefore could be very inefficient and the RP node may

be overburdened by the matching load. To overcome this linear matching inefficiency, we could

adopt sublinear matching algorithms based on building a subscription tree that collapses similar

subscriptions [29]. However, how to optimize the matching algorithm is not focus of this paper.

Algorithm 5 is primarily for illustration purpose.

Algorithm 5 match subscriptions(Event e)
Require: vector<Subscription> store[1..k] //stores subscriptions in the RP node according to the entry of k neigh-

bor nodes
Require: is match(e, p) returns TRUE if e satisfies p, FALSE otherwise
Ensure: vector<ID> matched set[1..k] //the matched subscribers’ IDs to be returned
1: for each neighbor node ni do
2: for each subscriptions sj = (sidj , pj) ∈ store[i] do
3: if is matched(e, pj) then
4: matched set[i].push back(sidj) //add the matched sid
5: end if
6: end for
7: end for
8: return matched set

To reduce the matching load on a RP node, one-hop subscription push allows the RP node to
12

split and distribute its matching load to its O(log N) neighbor nodes. Moreover, with attribute

partitioning (see Section 4.6) Ferry can distribute the matching load over more RP nodes.

4.5 Event Delivery

After event matching, how does a RP node r deliver the event to its subscribers by exploiting

the embedded tree EmdTreer? The basic idea behind Ferry’s event delivery algorithm is that

all the event delivery messages to those subscribers who share common ancestor nodes on the

tree EmdTreer are aggregated into one single message along the path from the root node r to

their lowest common ancestor node, thereby minimizing the number of messages. Algorithm 6

and Algorithm 7 outline the event delivery algorithm. The event delivery starts from the RP node

r which sends out an event delivery message carrying a corresponding subscriber ID list (e.g.,

matched set[i] in Algorithm 5) along its neighbor links (as shown in Figure 3). Upon receiving

the message, each neighbor node (e.g., node s2, f2, or f3 in Figure 3) executes route message():

if there is a subscriber ID matching its own ID, then it delivers the event to its local applica-

tions/users; it also partitions the remaining subscriber IDs (if any) in the message according to its

own neighbor nodes (i.e., for each subscriber ID, choose a neighbor node whose ID is equal to or

most immediately precedes the subscriber ID), and performs deliver event() to deliver the mes-

sages each of which may carry a corresponding list of subscriber IDs to the remaining subscribers.

Note that all RP nodes of the scheme S will perform this event delivery operation in parallel.

Algorithm 6 deliver event(Event e, vector<ID> matched set[1..k])
1: for i = 1 to k do
2: if matched set[i] is not empty then
3: Message M ← e + match set[i] //+ is a concatenation operator
4: send M to the neighbor node ni, which then calls route message(M) upon receiving M
5: end if
6: end for

Algorithm 7 route message(Message M)
1: vector<ID> matched set[1..k]
2: Event e ← extract the event from M
3: vector<ID> list ← extract the list of subscriber IDs from M
4: for each sidi ∈ list do
5: if sidi == this node’s ID then
6: deliver e to its local applications or users
7: else
8: find the neighbor node nj whose node ID is equal to or most immediately precedes sidi

9: matched set[j].push back(sidi)
10: end if
11: end for
12: if matched set is not empty then
13: deliver event(e,matched set)
14: end if

13

This event delivery algorithm is essentially a recursive process where each node along the dis-

semination paths of EmdTreer performs deliver event() until the event reaches all subscribers.

No event matching operation is performed along the dissemination path except the RP node, due

to the subscriber ID list contained in the message.

subscriptions
matched

RT entry
�

��

��

��

��

��

�

�

�

�

�

��

��

��

��

��

��

�� �

�� �� �

	� ��� �� ��

����� �� ����� 	

	� ��� ��

	� ����

Figure 3: Illustration of the delivery of an event e from a RP node r. s1 and s2 are r’s successors. f1, f2, and f3 are
members of r’s finger table. s2, x, y, z, w, and v are subscribers matching the event e.

4.6 Load Balancing

Note that for a pub/sub scheme S with n attributes, the maximum number of RP nodes is n.

All subscriptions of S will be stored on and all events will be routed to these RP nodes. If the

application/service corresponding to S is very popular, the subscriptions and events may overload

the RP nodes. Therefore, Ferry takes three steps to tackle the load balancing issue.

First, load balancing is based on the randomness guarantee of the consistent hash function used

for generating RP nodes for pub/sub services. Note that Ferry serves as a platform to host multiple

pub/sub services. Hence, in the presence of multiple pub/sub services running on top of Ferry,

Ferry distributes the onus of event publication, event matching, and subscriptions across all nodes:

each node could be a RP node for some applications/services, and serve as the intermediate node to

route events for other RP nodes. Second, one-hop push is used to reduce the load of a RP node by

moving part of its subscriptions and event matching load to its neighbor nodes. However, one-hop

push may not work if a RP node’s neighbor nodes are all overloaded or unwilling to take the load.

Third, Ferry adopts attribute partitioning [28] to deal with the load balancing issue, by dis-

tributing load over more RP nodes. For example, consider that a scheme S has an attribute

temperature and the value range for temperature is [0, 100]. Without partitioning, there is only

one RP node. If we partition temperature into several continuous ranges, [0, 25], (25, 50], (50, 75],

and (75, 100], we may create 4 RP nodes by hashing the attribute name with a range. Thus, the load

can be split by more RP nodes. Note that with attribute partitioning, we need to adapt the RndRP,

14

PredRP, and event publication algorithm accordingly. However, the adaptation is very straightfor-

ward and simple. Algorithm 8 illustrates PredRP’s subscription installation with attribute parti-

tioning. Lines 1-10 produce a set of IDs which are derived from either the attribute name or the

attribute name with a partition if the corresponding attribute has been partitioned. Note that the set

rp set is cached in memory for reuse to save computation cost. We put lines 1-10 in the algorithm

just for illustration purpose.

Algorithm 8 PredRP (Subscription s)
1: rp set ← ∅
2: for each attribute Ai ∈ S do
3: if Ai with attribute partitioning then
4: for each partition [Lk,Hk] ∈ Ai do
5: rp set = rp set ∪ {h(Ai + Lk + Hk)} //+ is a concatenation operator
6: end for
7: else
8: rp set = rp set ∪ {h(Ai)}
9: end if

10: end for
11: k ← choose a hi ∈ rp set such that hi is equal to or most immediately precedes s’s subscriber ID
12: store s in a RP node which is an immediate successor node of k

4.7 Scaling to Number of Event Attributes

In event publication, an event can be either directly sent or routed (by Chord routing protocol) to

the RP nodes of a scheme S. If the number of the RP nodes (which is determined by the number

of event attributes of the scheme S and also attribute partitioning if applied) is small, the event

publisher node can directly send the event to the RP nodes (by caching the IP addresses of the

RP nodes) for better performance. However, if the number of RP nodes is very large, say, tens or

even hundreds, using point-to-point communication would be impractical and inefficient. This is

actually a problem of how to efficiently deliver an event from the publisher node to a large number

of RP nodes. Fortunately, Ferry’s novel event delivery mechanism has already provided an elegant

solution to this problem, by envisioning the RP nodes as the subscribers of the event publisher

node. Hence, unlike Meghdoot [14] which is built on top of CAN with 2n dimensions (n is the

number of attributes), Ferry can support a pub/sub scheme with a large number of attributes.

4.8 Discussion

To the best of our knowledge, Ferry is the first solution that extensively yet smartly exploits the

DHT overlay links to manage subscriptions and disseminate events for content-based pub/sub ser-

vices. Its load-balancing technique, one-hop subscription push, also makes wise use of the DHT

15

links. By exploiting DHT links in its design, Ferry have numerous advantages: (1) The fault-

tolerance and self-organizing nature of DHT links makes Ferry resilient to node failures. (2) Ferry

does not construct or maintain multicast trees for event delivery, and it is virtually maintenance-

free. (3) Grouping subscriptions along DHT links in subscription management at the RP nodes

facilitates message aggregation during event delivery, thus minimizing the number of messages

across the system. (4) The PNS property of DHT links naturally enables proximity-aware event

delivery along the DHT links, yielding good delivery performance. (5) The DHT routing table

maintenance messages could be piggybacked onto the event delivery messages to reduce the DHT

maintenance cost that is nontrivial in terms of bandwidth.

Ferry’s event delivery algorithm is essentially a match-first approach: an event is first matched

against all subscriptions in a RP node, generating subscriber ID lists each of which corresponds to

a neighbor node (or DHT link). With the list contained in the event message, the event is routed to

all subscribers on this list. The subscriber ID list may be undesirably long in a large network with

thousands of subscribers and it may be infeasible to transmit and process large messages containing

a long subscribe ID list throughout the network. However, note that the subscriber ID list contained

in each event delivery message sent from a RP node is the split of the matched subscribers on the

RP node among its O(log N) neighbor nodes. Thus, the length of list contained in each event

delivery message from the RP node to its neighbor nodes would be reduced significantly, i.e., by

an expected factor of O(log N). Moreover, the subscriber ID list carried in each event delivery

message is split recursively by O(log N) nodes at each step along the event dissemination path

on the embedded tree. As a result, the size of the subscriber ID list is expected to be reduced

by a factor of O(log N) at each step along the dissemination path. In addition, our two load-

balancing techniques further make this a lesser issue. First, with attribute partitioning, Ferry can

significantly reduce the load on a RP node by distributing load over more RP nodes, resulting in

reduced size of the subscriber ID list to be contained in each event delivery message. Second, one-

hop subscription push eliminates the subscriber ID list from the RP node to its neighbor nodes.

Only the event delivery messages from the RP node’s neighbor nodes will contain a subscriber

ID list. As such, one-hop push can reduce the size of the subscriber ID list contained in each

event delivery message by a factor of O(log2 N). This is because, with one-hop push, the matched

subscriber IDs will be split first among a RP node’s O(log N) neighbor nodes and then each such
16

a neighbor node’s O(log N) neighbor nodes.

4.9 Adaptability to Other DHTs

Although we base Ferry’s design on Chord, the proposed techniques in Ferry are applicable or

easily adaptable to other DHTs such as Pastry, Tapestry and CAN. As discussed above, Ferry’s

subscription installation and management, event delivery and load balancing technique one-hop

subscription push, all extensively yet wisely exploit the embedded tree structures (or DHT links) in

the underlying DHT. In spite of different DHT geometries such as tree (e.g., Pastry and Tapestry),

ring (e.g., Chord) and hypercube (e.g., CAN), all these DHTs have embedded trees formed by

the DHT links. Thus, we believe that Ferry can be easily adapted to tree-like and hypercube-like

DHTs. We here take Pastry as an example and demonstrate how to extend Ferry into Pastry.

Pastry is essentially a prefix-based routing protocol: routing is achieved by successively “cor-

recting” the highest order bit on which the forwarding node differs from the destination node,

effectively increasing the length of the longest prefix match by one at each hop. In subscription

installation, PredRP stores a subscription into a RP node which shares the longest common prefix

with the subscriber node ID (if two or more RP nodes have same longest length of matching prefix

with the subscriber node ID, PredRP stores the subscription into the RP node whose ID is numeri-

cally closest to the subscriber ID). The intuition is that, in a tree geometry, node IDs constitute the

leaf nodes in a binary tree of depth log N , and the “distance” between any two nodes is the height

of their smallest common subtree. Thus, in tree-like DHTs such as Pastry, PredRP is able to mini-

mize overlay hops of event delivery and subscription installation, as each subscription is installed

on the “closest” RP node. Furthermore, when events are disseminated from the RP nodes, we

can avoid sending redundant messages across the Pastry overlay, thereby improving event delivery

performance. Event message delivery is constrained within the smallest common subtrees shared

by the subscribers and the RP nodes.

In subscription management, each RP node groups subscriptions stored on it to its neighbor

nodes (including routing table nodes and leafset nodes) which shares the longest common prefix

with their corresponding subscriber IDs; if two or more neighbor nodes have same longest length of

matching prefix with the subscriber node ID, the RP node puts the corresponding subscription(s)

into the entry of the neighbor node whose ID is numerically closest to the subscriber ID. This

17

manner of subscription grouping is based on the Pastry’s prefix-based routing protocol. By having

this subscription management, one-hop subscription push and event delivery in Ferry can be easily

extended into Pastry and the extension is very straightforward.

5 Alternative Design

One alternative design we have considered for Ferry and finally abandoned is to install the sub-

scriptions on all the peer nodes along the dissemination path from the RP node to their subscribers

(as shown in Figure 4(a)). Upon receiving an event, each RP node computes which subset of

its neighbors are to receive the event, i.e., it determines those DHT links along which it should

transmit the event message. Each neighbor node receiving the message in turn forwards the event

message downstream to the corresponding subset of its neighbors (through similar computation of

the subset of neighbors). This process continues until the event message reaches the destinations.

Note that there is no subscriber ID list carried in the event messages in this alternative design and

all the nodes along the dissemination path have to do event matching.

AfterBefore

x

{x, y, z}r

c y

b

{x, z}

{z}

z

g d

h

{y}

{x}

{x}

{x}

f

y

x z

a b

c

{x, y, z}

{x, y}

{x} {z}

r

{z}

d

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

x -hop subscription push

no
rm

al
iz

ed
 c

os
t

(b)

Figure 4: (a) Subscription installation and removal after node a’s departure. r is a RP node, while x, y and z are
subscriber nodes. For simplicity of presentation, x, y and z are also used to represent the corresponding subscriptions.
(b) Normalized cost of subscription installation and removal as nodes continuously join and leave in a 1024-node
network with node session times following a uniform distribution in which node session times are uniformly at random
chosen between 6 minutes and nearly 2 hours with an average of 1 hour.

Compared to the Ferry’s design, the alternative design however has the following limitations.

First, it requires O(log N) times more storage space by installing subscriptions on the O(log N)

nodes along the dissemination path and extra processing time for subscription matching during

event delivery at every peer node along the path. Second, both subscribing and un-subscribing

have to involve O(log N) more nodes and messages. A high rate of subscribing/un-subscribing

would result in heavy traffic of subscribing/un-subscribing across the system. Moreover, if the

subscriptions are associated with a TTL, the subscription refreshing traffic would be heavy.

Third, node churn may cause frequent subscription installation and removal along the paths.
18

The left graph in Figure 4(a) shows subscriptions of x, y and z are installed on the peer nodes

along the path from the RP node r to x, y and z, respectively. Assume b.ID < a.ID < x.ID

(x follows a and a follows b on the Chord ring clockwise). When r’s neighbor node a departed

from the system (as shown in the right graph of Figure 4(a)), r replaced it after repair with node

f whose ID follows x.ID clockwise on the Chord ring 4. As a result, x’s subscription needs to

be removed from node c (otherwise this may cause duplicated event messages delivered to x) and

to be re-installed on all the peer nodes along the new dissemination path from r to x via b, g and

h. Similarly, node joins could also cause subscription removal and installation along the paths.

Finally, data replication, which is used to improve data availability in DHTs, would incur more

overhead in storage and bandwidth dedicated to subscription installation and removal under node

churn.

Due to the aforementioned disadvantages, we do not adopt this alternative design. However, it

is worth pointing out that Ferry’s design with one-hop subscription push strikes a balance between

Ferry’s design without one-hop push and this alternative design. One-hop push, one the one hand,

aims to reduce the load on RP nodes and the event delivery message size; on the other hand, it

tries to avoid the drawbacks of the alternative design. If Ferry pushes the subscriptions on RP

nodes O(log N) hops away along their dissemination paths, then Ferry will degenerate into this

alternative design. Figure 4(b) shows the cost (number of subscription installation and removal)

incurred by x-hop subscription push normalized to this alternative design in the face of node churn.

As nodes join and leave continuously, one-hop subscription push introduces the least cost, only

about 0.3 of the cost incurred by the alternative design (4-hop subscription push represents the

alternative design in the 1024-node network). The results justify our design choice on Ferry.

6 Evaluation

6.1 Experimental Setup

We implemented Ferry on top of p2psim 5, a discrete-event packet level simulator. The p2psim

implementation includes a detailed Chord simulator, and it does not simulate link transmission rate

4After each node failure/departure, the underlying DHT routing table maintenance process will detect the failure
(e.g., node a) and fix it with new routing entry (e.g., node f). Thus, node churn will cause little overhead for event
delivery algorithms which rely on the embedded tree structure inherent in DHTs.

5http://pdos.lcs.mit.edu/p2psim

19

or queuing delay [30]. The number of successor nodes for each Chord node is 16 and the finger

table base is 2. We used the default values of the finger stabilization interval and successor stabi-

lization interval accompanied with p2psim. Chord has a configuration named proximity neighbor

selection (PNS) which allows each Chord node to choose physically close nodes as routing table

entries to reduce lookup latency [27]. The simulated network used in our simulations consists of

1024 nodes with inter-node latencies derived from measuring the pairwise latencies of 1024 DNS

servers on the Internet using King method [31]. The average round-trip time for the simulated

network is 198 milliseconds. Unless otherwise specified, our experimental results presented in this

paper are based on this network.

The simulations were initialized with one Chord node in the system. A new Chord node joins

the system at a randomly-chosen time, until the total number of nodes reaches the bound (e.g., 1024

nodes). After system stabilization, we scheduled subscription installation events into the system

to store the subscriptions. After subscription installation, the event publication was modeled as

exponential distribution with an average inter-arrival time of 116 seconds.

The scheme S used in our experiments was proposed in Meghdoot [14], and defined as S =

{[Date : string, 2/Jan/98, 31/Dec/02], [Symbol : string, “aaa”, “zzzzz”], [Open : float, 0, 500], [Close :

float, 0, 500], [High : float, 0, 500], [Low : float, 0, 500], [V olume : integer, 0, 310000000]}. Specifically,

Symbol is the stock name. Open and Close are the opening and closing prices for a stock on a

given day. High and Low are the highest and lowest prices for the stock on that day. Volume is the

total amount of trade in the stock on that day.

We generated subscriptions by using five template subscriptions suggested in Meghdoot with

different probabilities. The five templates are T1 = {(Symbol = P1)∧(P2 ≤ Open≤P3)} with probabil-

ity 20%, T2 = {(Symbol = P1)∧(Low≤P2)} with probability 35%, T3 = {(Symbol = P1)∧(High≥P2)}

with probability 35%, T4 = {(Symbol = P1)∧(V olume≥P2)} with probability 5%, and T5 =

{V olume≥P1} with probability 5%. The templates with general interests (e.g.,T4 and T5) are as-

signed low probabilities due to the fact that in a real application subscribers are usually interested

in specific events related to their narrow interests [14]. The number of stocks and subscriptions

used in simulations were 100 and 10, 000 respectively by default, unless otherwise specified. The

events were generated randomly from S and we used 100, 000 events in simulations.

We used a set of metrics to evaluate the performance and cost of Ferry: (1) hops: the average
20

number of overlay hops taken by Ferry to deliver an event to all of its subscribers; (2) latency: the

average time taken by Ferry to deliver an event to all of its subscribers; (3) overhead: it is defined

as the ratio of the number of intermediate nodes involved during the delivery of an event to the

number of subscribers for this event. The lower the overhead, the better performance of Ferry; (4)

bandwidth cost: it is defined as ratio of the total bandwidth cost incurred by an event delivery to

the number of nodes involved (including the intermediate nodes and subscriber nodes). The size

in bytes of each event delivery message is counted as 20 bytes for header, 33 bytes for the event,

and 4 bytes for each subscriber ID carried in the message.

It is worth pointing out that the results we present next do not include event publication and

we primarily focused our experiments on Ferry’s event delivery algorithm. Recall that, in event

publication, an event can be either sent directly or routed to the RP nodes from the event publisher

node. If the event is directly sent to the RP nodes, the average event publication latency would be

average latency between nodes. If the event chooses to be routed to the RP nodes, as discussed

in Section 4.7, it can use Ferry’s event delivery algorithm to publish the event to the RP nodes by

envisioning the RP nodes as the publisher node’s subscribers. In this case, the performance and

cost of event publication are similar to those of event delivery.

6.2 Experimental Results

In what follows, we first extensively investigate the performance of Ferry under various config-

urations and different network sizes. We then compare Ferry and Meghdoot in event delivery

performance.

6.2.1 Performance under Various Configurations

We first present the results for Ferry’s various configurations under 10, 000 subscriptions and

100, 000 events. The average number of subscribers per event is 25, about 2.4% of 1024 nodes.

Table 1 shows the performance of Ferry with different configurations. Note that PredRP outper-

forms RndRP significantly, and PredRP+PNS performs the best. Compared to RndRP, PredRP can

dramatically reduce hops, latency and overhead. This is because (1) the event delivery messages in

PredRP traverse shorter ranges of the Chord ring space (the range an event may traverse in PredRP

is bounded by the maximum Chord ring range between two contiguous RP nodes, while in RndRP

the range may cover the whole Chord ring space), and (2) PredRP can avoid sending redundant

21

messages across the Chord ring space.
Table 1. Comparison between different Ferry’s configurations

scheme hops latency(ms) bw cost(Bytes/node) overhead
RndRP 3.94 359.17 53.67 2.51
PredRP 2.64 235.28 52.41 1.20
RndRP+PNS 3.80 154.22 53.56 2.41
PredRP+PNS 2.57 144.34 52.16 1.18

Figure 5 plots the distribution of events for PredRP+PNS according to the range of hops, la-

tency, bandwidth cost, and overhead. Note that 94.22% of the events are delivered to all subscribers

within 2-3 hops. The average delivery hops for the events is 2.57. 59.2% of events are delivered

with latency between 100-150ms, and the average delivery latency is 144.34ms. The average band-

width cost and overhead are 52.16 Bytes/node and 1.18 per event, respectively.

0

10

20

30

40

50

60

70

(0,1.5] (1.5,2.0] (2.0,2.5] (2.5,3] >3

range of hops

pe
rc

en
ta

ge
 o

f e
ve

nt
s

0

10

20

30

40

50

60

70

(0,100] (100,150] (150,200] (200,250] (250,300] >300

range of latency

pe
rc

en
ta

ge
 o

f e
ve

nt
s

0

10

20

30

40

50

60

70

80

(0,35] (35,40] (40,45] (45,50] (50,55] >50

range of bandwidth cost (Bytes/node)

pe
rc

en
ta

ge
 o

f e
ve

nt
s

0

10

20

30

40

50

60

70

(0,1.0] (1.0,1.5] (1.5,2.0] (2.0,2.5] (2.5,3] >3

range of overhead

pe
rc

en
ta

ge
 o

f e
ve

nt
s

Figure 5: Distribution of events with respect to hops, latency, bandwidth cost, and overhead.
We present the event distribution with respect to the number of subscribers in Figure 6. Note

that about 60% of the events have 20-40 subscribers. Figure 7 shows the overhead with respect

to the number of subscribers. As the number of subscribers increases, the overhead decreases.

This shows that Ferry can deliver events to a larger number of subscribers at lower overhead. This

reduction in overhead mainly results from the synthesis of PredRP and message aggregation along

the dissemination paths during event delivery.

Figure 8 shows the subscription distribution on 7 RP nodes for RndRP and PredRP. Note that

RndRP evenly distributes subscriptions to the RP nodes while PredRP produces a skewed load dis-

tribution. This shows that it is very necessary for PredRP to apply one-hop subscription push for

load balance. We also investigated the impact of one-hop push on bandwidth cost for RndRP+PNS

22

0

5

10

15

20

25

30

35

(0,5] (5,10] (10,15] (15,20] (20,30] (30,40] (40,50] >50

number of subscribers

pe
rc

en
ta

ge
 o

f e
ve

nt
s

Figure 6: Event distribution by subscriber number range.

0

0.5

1

1.5

2

2.5

(0,5] (5,10] (10,15] (15,20] (20,30] (30,40] (40,50] >50

number of subscribers

ov
er

he
ad

Figure 7: Overhead by subscriber number range.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

RP nodes

pe
rc

en
ta

ge
 o

f s
ub

sc
ri

pt
io

ns

RndRP

PredRP

Figure 8: Subscription distribution in RndRP and PredRP.

20

25

30

35

40

45

50

55

60

65

2 5 10 20 30 40 50 60 70 80

percentage of nodes as subscribers

ba
nd

w
ith

 c
os

t(
B

yt
es

/n
od

e)

w/o one-hop push

w/ one-hop push

Figure 9: Bandwidth cost of PredRP+PNS with/without
one-hop push.

and PredRP+PNS. The results show that one-hop push reduces the bandwidth cost per event for Rn-

dRP+PNS from 53.56 to 52.39 Bytes/node, and for PredRP+PNS from 52.16 to 50.34 Bytes/node.

The bandwidth cost reduction results from the reduced message sizes from the RP nodes to their

neighbor nodes (at this point, no subscriber ID list is carried in the messages). Note that the

bandwidth cost reduction is per node/event, so a small reduction could result in huge reduction in

aggregated bandwidth cost across the system.

Table 2. Results of PredRP+PNS for various percentages of nodes as subscribers per event
metric 2% 5% 10% 20% 30% 40% 50% 60% 70% 80%
hops 2.58 2.59 2.58 2.58 2.59 2.59 2.58 2.58 2.58 2.58
latency(ms) 143.46 143.97 143.88 143.59 143.94 143.96 144.19 143.95 143.95 143.96
bw cost(Bytes/node) 50.99 54.85 57.40 59.65 60.78 61.46 61.91 62.24 62.49 62.69
overhead 1.36 0.86 0.53 0.28 0.18 0.12 0.08 0.05 0.03 0.02

The experimental results we present in the rest of the paper will focus on Ferry with the con-

figuration of PredRP+PNS unless otherwise noted. To explore Ferry’s performance with respect

to the number of subscribers, we each time ran Ferry by delivering 100, 000 events each of which

has a given number of subscribers randomly chosen from the system. Table 2 shows the results for

various percentages of nodes as subscribers for each event. As the number of subscribers increases,

the hops and latency almost keep constant at 2.6 and 144ms respectively, while the bandwidth cost
23

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 5000 10000

number of nodes

ho
ps

Figure 10: Overlay hops.

40

45

50

55

60

65

70

75

5 10 20 30 40 50 60 70 80

percentage of nodes as subscribers

ba
nd

w
ith

 c
os

t (
B

yt
es

/n
od

e)

1000
5000
10000

Figure 11: Bandwidth cost w/o one-hop push.

increases modestly. However, the overhead drops significantly. The results show that Ferry could

deliver events to a large number of subscribers at very low overhead, involving only a small number

of intermediate nodes by the synthesis of its message aggregation and the subscription installation

algorithm PredRP. Hence, Ferry is very efficient in delivering events to a large number of sub-

scribers. Figure 9 shows that one-hop push could effectively reduce the bandwidth cost due to the

reduced message size from the RP nodes to their neighbor nodes. Note that the bandwidth reduc-

tion is per node/event, so a small reduction could result in huge reduction in aggregated bandwidth

cost across the system.

6.2.2 Effect of Network Size

In this subsection we present the performance of Ferry in various network sizes of 1000, 5000,

and 10000 nodes. The simulated networks of 5000 and 10000 were derived from the 1024-DNS

server measurements. For a given network size, we ran simulations for various percentages (from

5% to 80%) of nodes randomly chosen as subscribers interested in an event and the total number

of events is 100, 000 for a given percentage. We found the overhead is almost constant under

various network sizes for a given percentage of node as subscribers; the overhead drops from 0.86

to 0.02 as the percentage of nodes as subscribers per event increases from 5% to 80%. Figure 10

shows the average number of hops taken by event delivery for network sizes of 1000, 5000, and

10000. Figure 11 shows the bandwidth cost (one-hop push was not used here). Note that as the

network size increases, the bandwidth cost and overlay hops incurred by event delivery increase

modestly. This shows that Ferry can scale to a large number of nodes. Moreover, with the number

of subscribers interested in an event increasing (from 5% to 80%), the bandwidth cost increases

slightly. This show that Ferry can scale to a large number of subscribers per event.

24

6.2.3 Impact of Attribute Partitioning

In this subsection, we present results of Ferry with attribute partitioning in a 5000-node system

where the average RTT is 200ms. We first provide the results of attribute partitioning on the load

of RP nodes, and then give the results of attribute partitioning on latency, overhead, overlay hops

and bandwidth cost.

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fr
a

ct
io

n

RP node ranking (by load)

load(default)
load(popular)

range
load(default+partition)

load(popular+partition)
range(partition)

(a)

 0.01

 0.1

 1

 10 20 30 40 50 60 70 80

o
ve

rh
e

a
d

percentage of nodes as subscribers (%)

partition
no-partition

(b)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 10 20 30 40 50 60 70 80

b
a

n
d

w
id

th
 c

o
st

 (
B

yt
e

s/
n

o
d

e
)

percentage of nodes as subscribers (%)

partition
no-partition

(c)

Figure 12: Results for PredRP+PNS where one-hop push is not applied. (a) Load and Chord ring range of RP nodes.
(b) Overhead. (c) Bandwidth cost.

Figure 12(a) plots both load and range of RP nodes. The x-axis represents the ranking of RP

nodes by their load and the y-axis is in log scale. load represents the fraction of subscriptions on a

RP node while range means the fraction of Chord ring from which a RP node stores subscriptions 6.

default refers to the five subscription templates (see Section 6.1) we used to generate subscriptions.

popular represents the revised five templates to reflect popular attributes, i.e., we assigned T2 with

probability 80% and other four templates each with probability 5%. Thus, Low is a very popular

attribute. partition represents the case where we partitioned the dimension of each three attributes

Open, Low and High into four equal parts. With attribute partitioning, we produced 15 RP nodes

(we found two hashing results mapped to one same RP node) and thereby could distribute the load

into more RP nodes.

Two important observations can be drawn from Figure 12(a): (1) With attribute partitioning,

we can reduce the load on RP nodes by distributing load over more RP nodes. Note that the load of

top ranking RP nodes is reduced significantly due to attribute partitioning; (2) the popularity of an

attribute and thus the skewed distribution of subscriptions have no impact on the load of RP nodes.

This is because in PredRP, each RP node only stores the subscriptions from the Chord ring range

6One distinction should be made between the Chord ring range a RP node charges and the Chord ring range a
Chord node is responsible for. The former range is the one from which the RP node stores the subscriptions while the
latter is the Chord ring range between the Chord node and its predecessor (i.e., the Chord node is responsible for the
IDs falling within this ring range).

25

between the RP node itself and the next immediately following RP node. Note that the load on a

RP node is proportional to the range it charges (the load curve closely matches the range curve

irrespective of attribute partitioning).

From the above observations, we can see that, in PredRP, a RP node takes load from the Chord

ring range it charges, irrespective of the popularity of attributes and thus skewed subscription

distribution. This feature is very desirable. However, unlike RndRP, PredRP introduces load

imbalance among RP nodes due to various sizes of the Chord ring ranges the RP nodes charge.

The various sizes of ring ranges result from the hashing process of producing RP nodes which are

just pseduo-uniform. To reduce the load imbalance among RP nodes. We may take the following

steps. First, with one-hop subscription push, the top ranking RP nodes may split some of their

load into their neighbor nodes. Second, we may distribute load into more RP nodes by finer-

grained partitioning of attributes. Finally, we can design algorithms which make RP nodes to

charge equal-size range of Chord ring (for example, the i-th RP node for a scheme S can be the

immediate successor node of k = h(S) + i
n+1

·|R|, where h(S) is the content hash of S, n is the

maximum number of RP nodes for S, and |R| is the address space of the Chord ring), and then the

load on RP nodes is expected to be equally distributed. However, this assumes that the number of

subscriptions from the Chord ring is uniformly distributed. We leave this to our future work.

Next, we present the results of attribute partitioning with respect to the number of subscribers

interested in an event. Several observations can be drawn from Figure 12(b) and (c): (1) As sub-

scribers interested in an event increases, the bandwidth cost increases modestly while the overhead

drops significantly; (2) attribute partitioning has little impact on overhead; (3) with attribute parti-

tioning, Ferry could reduce the bandwidth cost significantly, due to the reduced message size which

results from the reduced length of subscriber ID lists contained in the event delivery messages since

more RP nodes split the subscriptions. We also found that, with attribute partitioning, Ferry could

significantly decreases the latency by 9.75% (from 181.10ms to 163.45ms) and overlay hops by

12.84% (from 3.66 to 3.19) upon various numbers of subscribers per event. This is mainly because

with attribute partitioning, event messages traverse shorter range of Chord ring space (since more

RP nodes partitions the Chord ring space, as shown in Figure 12(a)).

26

6.2.4 Performance Comparison with Meghdoot

Ferry and Meghdoot have different design philosophies: Meghdoot builds a semantic CAN over-

lay for a content-based pub/sub scheme while Ferry serves as a platform to host multiple pub/sub

services with unique schemes. As discussed in Section 4.6, Ferry takes different approaches to

address the load balancing issue. It is unfair to compare the two systems on subscription distribu-

tion for a single pub/sub scheme. However, subscription installation in Ferry and Meghdoot takes

O(log N) and O(dN
1
d) hops respectively, where N is the number of nodes and d is the dimension-

ality of the CAN overlay space. If d = (log2N)/2, Ferry and Meghdoot achieve same subscription

installation performance. Note that d = 2n in Meghdoot where n is number of attributes in a

pub/sub scheme.

It is meaningful to compare Ferry and Meghdoot in terms of event delivery performance be-

cause event delivery is critical to a pub/sub system. We use two metrics: (1) CDF of event distri-

bution with respect to the percentage of nodes visited per event (which measures the cost of event

delivery), and (2) event delivery load, defined as the ratio of event messages a peer receives to the

total number of messages processed in the system (which measures event delivery load distribu-

tion). However, we admit the comparison is by no means complete. In our next step, we plan to

develop a more detailed Meghdoot simulator and compare the two systems more thoroughly.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

pe
rc

en
ta

ge
 o

f e
ve

nt
s

(%
)

percentage of nodes visited (%)

Ferry
Meghdoot

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f m
es

sa
ge

 re
ce

iv
ed

 (%
)

peer group ranked by message load

Ferry
Meghdoot

(b)

Figure 13: Comparisons in a 1024-node system. (a) CDF of event distribution with respect to the number of nodes
visited. (b) Distribution of event delivery load by peer group.

Figure 13(a) shows CDF of event distribution with respect to the number of nodes visited

during event delivery. The x-axis represents the percentage of nodes visited to deliver an event out

of the total number of nodes in the system. Ferry shows better performance than Meghdoot in that

all event deliveries end up with visiting at most 10% nodes. The is mainly due to the synthesis of

Ferry’s PredRP algorithm and message aggregation during event delivery.

Event delivery load measures message load imposed on a node during event delivery. We
27

sorted the peer nodes in decreasing order of the load and grouped them by their rank into group

size 10% each. Figure 13(b) shows the average load on each group. The load distribution among

peers is more balanced in Ferry than Meghdoot. For example, the maximum load on a node in

Ferry is about 0.3% of the total messages, which is very good. This shows that Ferry is able to

fairly distribute event delivery load among the nodes in the system.

7 Conclusions and Future Work

Ferry is the first design that extensively yet wisely exploits the underlying DHT overlay structures

to build an efficient and scalable platform for content-based pub/sub services. Its novel subscrip-

tion installation and management, event delivery and load balancing technique one-hop subscrip-

tion push all make wise use of the DHT links. Via detailed simulations, we show that Ferry can

deliver events to various numbers of subscribers under different network sizes efficiently in terms

of bandwidth and overhead and timely in terms of overlay hops and latency. Moreover, Ferry can

support a content-based pub/sub scheme with a large number of event attributes. Our preliminary

results show that Ferry has better performance than Meghdoot in event delivery. However, we

confess that the comparison between the two systems is by no means complete.

This paper constitutes an initial step to build an efficient and scalable platform for content-

based pub/sub. A number of issues need to be explored in our next steps. For instance, we will

investigate the reduction of the DHT maintenance cost in terms of bandwidth by piggybacking the

DHT link maintenance messages onto the event delivery messages. Another problem we will study

is how cooperative peer nodes have to be in Ferry. For example, if we are disseminating stock data,

there is inherent interest for an intermediate node to delay delivery until it can take advantage of

the data first. Thus, potential applications of Ferry for large-scale pub/sub have to consider this

issue, i.e., to provide incentives for nodes to cooperate in event delivery. We also plan to perform a

thorough comparison between Ferry and existing DHT-based content-based pub/sub systems such

as Meghdoot.

References
[1] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha, “Filtering al-

gorithms and implementation for very fast publish/subscribe systems,” in Proceedings of the
2001 ACM SIGMOD, vol. 30, (Santa Barbara,CA), pp. 115–126, 2001.

[2] B. Segall and D. Arnold, “Elvin has left the building: A publish/subscribe notification service
with quenching,” in Proceedings of AUUG, Sept. 1997.

28

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman, “An
efficient multicast protocol for content-based publish-subscribe systems,” in Proceedings of
the 19th IEEE ICDCS, pp. 262–272, 1999.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-area event
notification service,” ACM Transactions on Computer Systems, vol. 19, no. 3, pp. 332–383,
2001.

[5] P. Triantafillou and A. Economides, “Subscription summarization: A new paradigm for effi-
cient publish/subscribe systems,” in Proceedings of the 24th IEEE ICDCS, 2004.

[6] A. Carzaniga and A. L. Wolf, “Forwarding in a content-based network,” in Proceedings of
ACM SIGCOMM, (Karlsruhe, Germany), pp. 163–174, Aug. 2003.

[7] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A routing scheme for content-based net-
working,” in Proceedings of IEEE INFOCOM, (Hongkong, China), Mar. 2004.

[8] F. Cao and J. P. Singh, “MEDYM: An architecture for content-based publish-subscribe net-
works,” in Proceedings of ACM SIGCOMM, (Portland, OG), Aug. 2004.

[9] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman, “An
efficient multicast protocol for content-based publish-subscribe systems,” in Proceedings of
the 19th IEEE International Conference on Distributed Computing Systems(ICDCS), (Austin,
TX), pp. 262–272, May 1999.

[10] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-
to-peer lookup service for internet applications,” in Proceedings of ACM SIGCOMM, (San
Diego, CA), pp. 149–160, Aug. 2001.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems,” in Proceedings of the 18th IFIP/ACM International
Conference on Distributed System Platforms (Middleware), (Heidelberg, Germany), pp. 329–
350, Nov. 2001.

[12] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for fault-
tolerance wide-area location and routing,” Tech. Rep. UCB/CSD-01-1141, Computer Science
Division, University of California, Berkeley, Apr. 2001.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network,” in Proceedings of ACM SIGCOMM, (San Diego, CA), pp. 161–172,
Aug. 2001.

[14] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot: Content-based pub-
lish/subscribe over P2P networks,” in ACM/IFIP/USENIX 5th International Middleware Con-
ference, (Toronto, Ontario, Canada), Oct. 2004.

[15] Y. Choi, K. Park, and D. Park, “HOMED: A peer-to-peer overlay architecture for large-scale
content-based publish/subscribe systems,” in Proceedings of the third International Workshop
on Distributed Event-Based Systems (DEBS), (Edinburgh, Scotland, UK), pp. 20–25, May
2004.

[16] P. Triantafillou and I. Aekaterinidis, “Content-based publish-subscribe over structured P2P
networks,” in Proceedings of the third International Workshop on Distributed Event-Based
Systems (DEBS), (Edinburgh, Scotland, UK), pp. 104–109, May 2004.

[17] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann, “A peer-to-peer ap-
proach to content-based publish/subscribe,” in Proceedings of the Second International Work-
shop on Distributed Event-Based Systems (DEBS), (San Diego, CA), June 2003.

29

[18] D. Tam, R. Azimi, and H.-A. Jacobsen, “Building content-based publish/subscribe systems
with distributed hash tables,” in Proceedings of the International Workshop on Databases,
Information Systems and Peer-to-Peer Computing, (Berlin,Germany), Sept. 2003.

[19] G. Perng, C. Wang, and M. K. Reiter, “Providing content-based services in a peer-to-peer en-
vironment,” in Proceedings of the third International Workshop on Distributed Event-Based
Systems (DEBS), (Edinburgh, Scotland, UK), pp. 74–79, May 2004.

[20] P. R. Pietzuch and J. Bacon, “Peer-to-peer overlay broker networks in an event-based mid-
dleware.,” in Proceedings of the Second International Workshop on Distributed Event-Based
Systems (DEBS), (San Diego, CA), June 2003.

[21] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, “SCRIBE: The design
of a large-scale event notification infrastructure,” in Proceedings of the 3rd International
Networked Group Communication, pp. 30–43, 2001.

[22] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz, “Bayeux: An
architecture for scalable and fault-tolerant wide-area data dissemination,” in Proceedings of
the Eleventh International Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), June 2001.

[23] K. P. Birman, “The process group approach to reliable distributed computing,” Communica-
tions of the ACM, vol. 36, pp. 36–53, Dec. 1993.

[24] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen, “The information bus: an architecture for ex-
tensible distributed systems,” in Proceedings of the fourteenth ACM SOSP, (Asheville, NC),
pp. 58–68, Dec. 1993.

[25] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Split-
stream: High-bandwidth multicast in cooperative environments,” in Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP), (Bolton Landing, NY), Oct. 2003.

[26] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, and H. Zhang, “The impact of hetero-
geneous bandwidth constraints on dht-based multicast protocols,” in Proceedings of the 4th
International Workshop on Peer-to-Peer Systems(IPTPS), (Ithaca, NY), Feb. 2005.

[27] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris, “Designing a DHT
for low latency and high throughput,” in Proceeding of the First Symposium on Networked
Systems Design and Implementation (NSDI), (San Francisco, CA), pp. 85–98, Mar. 2004.

[28] Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J. Wang, “Subscription parti-
tioning and routing in content-based publish/subscribe systems,” in Proceedings of the 16th
International Symposium on Distributed Computing (DISC), (Toulouse, France), Oct. 2002.

[29] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra, “Matching
events in a content-based subscription system,” in Proceedings of the 8th ACM Symposium
on Principles of Distributed Computing (PODC), (Atlanta, GA), pp. 53–61, May 1999.

[30] J. Li, J. Stribling, T. M. G. andRobert Morris, and M. F. Kaashoek, “Comparing the per-
formance of distributed hash tables under churn,” in Proceedings of The 3rd International
Workshop on Peer-to-Peer Systems (IPTPS), (San Diego, CA), Mar. 2004.

[31] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency between arbitrary
internet end hosts,” in Proceedings of the 2002 SIGCOMM Internet Measurement Workshop,
(Marseille, France), Nov. 2002.

30

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

