Problem 1. Show that
\[E[Y] = \int_0^\infty P\{Y > y\}dy - \int_0^\infty P\{Y < -y\}dy. \]

Problem 2. Let \(X \) be a continuous random variable. Using the definition of expectation value for continuous random variables verify that:

(a) \(E[aX + b] = aE[X] + b \) for constants \(a, b \)

(b) \(\text{Var}(X) = E[X^2] - (E[X])^2 \)

Problem 3. Trains headed for destination A arrive at the train station at 15-minute intervals starting at 7 A.M., whereas trains headed for destination B arrive at 15-minute intervals starting at 7:05 A.M.

(a) If a certain passenger arrives at the station at a time uniformly distributed between 7 and 8 A.M. and then gets on the first train that arrives, what proportion of time does he or she go to destination A?

(b) What if the passenger arrives at a time uniformly distributed between 7:10 and 8:10 A.M.?

Problem 4. A point is chosen at random on a line segment of length \(L \). Interpret this statement and find the probability that the ratio of the shorter to the longer segment is less than \(\frac{1}{4} \).

Problem 5. The speed of a molecule in a uniform gas at equilibrium is a random variable whose probability density function is given by
\[
 f(x) = \begin{cases}
 a x^2 e^{-bx^2} & x \geq 0 \\
 0 & x < 0
\end{cases}
\]
where \(b = \frac{m}{2kT} \) and \(k, T, \) and \(m \) denote, respectively, Boltzmann’s constant, the absolute temperature, and the mass of the molecule. Evaluate \(a \) in terms of \(b \). And compute the expected value of \(X \) in terms of \(b \).
Problem 6. Let X be a random variable that takes on values between 0 and c. That is $P\{0 \leq X \leq c\} = 1$. Show that

$$Var(X) \leq \frac{c^2}{4}.$$

Problem 7. From a set of n elements a nonempty subset is chosen at random in the sense that all of the nonempty subsets are equally likely to be selected. Let X denote the number of elements in the chosen subset. Show that:

$$E[X] = \frac{n}{2 - \left(\frac{1}{2}\right)^{n-1}}$$

$$Var(X) = \frac{n \cdot 4^{n-1} - n(n+1)2^{n-2}}{(2^n - 1)^2}$$

Show also that for n large

$$Var(X) \approx \frac{n}{4}$$

in the sense that the ratio of $\frac{n}{4}$ and $Var(X)$ approaches 1 as $n \to \infty$.

Problem 8. An urn initially contains one red and one blue ball. At each stage a ball is randomly choosen and then replaced along with another of the same color. Let X denote the selection number of the first chosen ball that is blue. For instance, if the first selection is red and the second blue, then X is equal to 2.

(a) Find $P\{X > i\}$ for $i \geq 1$.

(b) Show that with probability 1, a blue ball is eventually chosen.

(c) Find $E[X]$.

Problem 9. An urn contains 4 white and 4 black balls. We randomly choose 4 balls. If 2 of them are white and two are black then we stop. If not, we replace the balls in the urn and again randomly select 4 balls. This continues until exactly 2 of the 4 chosen are white. What is the probability that we shall make exactly n selections? How many selections on average do we make?