
Project 2 Implementing a Simple HTTP Web Proxy

Overview:
CPSC 460 students are allowed to form a group of up to 3 students. CPSC 560 students each must take it
as an individual project.

This project aims to implement a simple web proxy using HTTP 1.0, and it consists of two steps, each of
which has a submission deadline. The last step includes demonstration and presentation.

Background:

HTTP
The Hypertext Transfer Protocol or (HTTP) is the protocol used for communication on the web. That is, it
is the protocol which defines how your web browser requests resources from a web server and how the
server responds. For simplicity, in this project we will be dealing only with version 1.0 of the HTTP
protocol, defined in detail in RFC 1945. You should read through this RFC and refer back to it when
deciding on the behavior of your proxy.

HTTP communications happen in the form of transactions, a transaction consists of a client sending a
request to a server and then reading the response. Request and response messages share a common
basic format:

• An initial line (a request or response line, as defined below)
• Zero or more header lines
• A blank line (CRLF)
• An optional message body.

For most common HTTP transactions, the protocol boils down to a relatively simple series of steps
(important sections of RFC 1945 are in parenthesis):

1. A client creates a connection to the server.
2. The client issues a request by sending a line of text to the server. This request line consists of a

HTTP method (most often GET, but POST, PUT, and others are possible), a request URI (like a
URL), and the protocol version that the client wants to use (HTTP/1.0). The message body of the
initial request is typically empty. (5.1-5.2, 8.1-8.3, 10, D.1)

3. The server sends a response message, with its initial line consisting of a status line, indicating if
the request was successful. The status line consists of the HTTP version (HTTP/1.0), a response
status code (a numerical value that indicates whether or not the request was completed
successfully), and a reason phrase, an English-language message providing description of the
status code. Just as with the request message, there can be as many or as few header fields in
the response as the server wants to return. Following the CRLF field separator, the message
body contains the data requested by the client in the event of a successful request. (6.1-6.2, 9.1-
9.5, 10)

4. Once the server has returned the response to the client, it closes the connection. It's fairly easy
to see this process in action without using a web browser. From a Unix/LINUX prompt, type:

 telnet www.yahoo.com 80
 This opens a TCP connection to the server at www.yahoo.com listening on port 80- the default
 HTTP port. You should see something like this:

 Trying 209.131.36.158...
Connected to www.yahoo.com (209.131.36.158).
Escape character is '^]'.
type the following:
GET / HTTP/1.0
and hit enter twice. You should see something like the following:
HTTP/1.0 200 OK
Date: Fri, 10 Nov 2006 20:31:19 GMT
Connection: close
Content-Type: text/html; charset=utf-8
<html><head>
<title>Yahoo!</title>
(More HTML follows)

There may be some additional pieces of header information as well-setting cookies, instructions to the
browser or proxy on caching behavior, etc. What you are seeing is exactly what your web browser sees
when it goes to the Yahoo home page: the HTTP status line, the header fields, and finally the HTTP
message body- consisting of the HTML that your browser interprets to create a web page.

HTTP Proxy
Ordinarily, HTTP is a client-server protocol. The client (usually your web browser) communicates directly
with the server (the web server software). However, in some circumstances it may be useful to
introduce an intermediate entity called a proxy. Conceptually, the proxy sits between the client and the
server. In the simplest case, instead of sending requests directly to the server the client sends all its
requests to the proxy. The proxy then opens a connection to the server, and passes on the client's
request. The proxy receives the reply from the server, and then sends that reply back to the client.
Notice that the proxy is essentially acting like both a HTTP client (to the remote server) and a HTTP
server (to the initial client).

Why use a proxy? There are a few possible reasons:
• Performance: By saving a copy of the pages that it fetches, a proxy can reduce the need to create
connections to remote servers. This can reduce the overall delay involved in retrieving a page,
particularly if a server is remote or under heavy load.

• Content Filtering and Transformation: While in the simplest case the proxy merely fetches a resource
without inspecting it, there is nothing that says that a proxy is limited to blindly fetching and serving
files. The proxy can inspect the requested URL and selectively block access to certain domains, reformat
web pages (for instances, by stripping out images to make a page easier to display on a handheld or
other limited-resource client), or perform other transformations and filtering.

• Privacy: Normally, web servers log all incoming requests for resources. This information typically
includes at least the IP address of the client, the browser or their client program that they are using
(called the User-Agent), the date and time, and the requested file. If a client does not wish to have this
personally identifiable information recorded, routing HTTP requests through a proxy is one solution. All
requests coming from clients using the same proxy appear to come from the IP address and User-Agent
of the proxy itself, rather than the individual clients. If a number of clients use the same proxy (say, an
entire business or university), it becomes much harder to link a particular HTTP transaction to a single
computer or individual.

Step 1 – Making Your Proxy Work in a Linux Shell (5 points):

Requirements:

• You need to implement the proxy program called “proxy.c/cpp”. Assume the executable file for
this proxy program is “proxy”, then run your proxy with the following command:

 ./proxy hostname [port]

Where hostname is the web server name and port is the port number that the proxy listens on.
The behavior of your proxy should be like that of “telnet hostname [port]”, as demonstrated in
class. You proxy should display the following messaging (the IP address corresponds to the
hostname):

Trying 124.129.12.3...
Connected to 124.129.12.3.

 Ctrl-C to escape.

• And, the proxy waits for the HTTP request message(ending with a blank line, do not forget!), for
example:
GET /index.html HTTP/1.0

• If your proxy is working correctly, the headers and HTML of the requested object should be
displayed on your terminal screen.

Submisson:

• Due by 23:59, 02/04/2013 Monday
• Tar your files into a tar package, named project2_v1.tar, which includes Makefile, all source

files, README file.
• Run the submission command in cs1.seattleu.edu

/home/fac/zhuy/CPSC4560/submit p2 project2_v1.tar

Step 2 – Configuring a Web Browser to Use Your Proxy (15 points):

A Caveat

If you write a single-threaded proxy server, you will probably see some problems when you use your
proxy with a standard web browser. Because a web browser like Firefox or IE issues multiple HTTP
requests for each URL you request (for instance, to download images and other embedded content), a
single-threaded proxy will likely miss some requests, resulting in missing images or other minor errors.

Firefox
Version 2.0:

1. Select Tools->Options from the menu.
2. Click on the 'Advanced' icon in the Options dialog.
3. Select the 'Network' tab, and click on 'Settings' in the 'Connections' area.
4. Select 'Manual Proxy Configuration' from the options available. In the boxes, enter the
hostname and port where proxy program is running.

Earlier Versions:
1. Select Edit->Preferences from the menu.
2. On the 'General' tab, click 'Connection Settings'.
3. Select 'Manual Proxy Configuration' and enter the hostname and port where your proxy is
running.

To stop using the proxy server, select 'Direct connection to the Internet' in the connection settings
dialog.

Configuring Firefox to use HTTP/1.0
Because Firefox defaults to using HTTP/1.1 and your proxy speaks HTTP/1.0, there are a couple of minor
changes that need to be made to Firefox's configuration. Fortunately, Firefox is smart enough to know
when it is connecting through a proxy, and has a few special configuration keys that can be used to
tweak the browser's behavior.

1. Type 'about:config' in the title bar.
2. In the search/filter bar, type 'network.http.proxy'

3. You should see three keys: network.http.proxy.keepalive,

network.http.proxy.pipelining, and network.http.proxy.version.

4. Set keepalive to false. Set version to 1.0. Make sure that pipelining is set to false.

Internet Explorer
Take a look at http://support.microsoft.com/kb/135982 for complete instructions on enabling a proxy
for various versions in Internet Explorer.

You should also do the following to make Internet Explorer work in a HTTP 1.0 compatible mode with
your proxy:

1. Under Internet Options, select the 'Advanced' tab.
2. Scroll down to HTTP 1.1 Settings. Uncheck 'Use HTTP 1.1 through proxy connections'.

Requirements:

• You must make your proxy a multi-client program by using multi-threading (PThread). Thread
synchronization is needed. The max number of threads is capped at 50. Thread synchronization
is important to your proxy performance.

• Cache management at the proxy is required. You need to consider cache size, cache data
structure and cache replacement policy. You must provide the design of cache management in
your class presentation. Also, you need to check freshness of cached objects before returning to
the client.

• A brief class presentation (5-8 minutes) is required. All the teams need to talk about the system
architecture, main data structures, design issues & challenges, solutions, lessons learned, etc.

• Class demonstration (5 minutes) is required. Your proxy will be tested by all students.

Submisson:

• Due by 23:59 02/18/2013, Monday
• Tar your files into a tar package, named project2_v2.tar, which includes Makefile, all source

files, README file.
• Run the submission command in cs1.seattleu.edu

/home/fac/zhuy/CPSC4560/submit p2 project2_v2.tar

Grading:

 Failures in compilation and/or execution result in a score of zero point.
 Grading will be based on software, presentation & demo. Performance will be one of important

metrics to evaluate your project. E.g., how fast can your proxy relay the pages (in my
experience, this is directly related to your proxy design including thread synchronization)? How
well can your proxy handle a large number of requests sent by web browsers (user experience)?

