
CPSC 460/560  Computer Networks 

Project 1: Finger Client/Server 

 
Project Objectives: 

 Practice socket programming. 

 Understand the design of client-server model and multi-client servers. 
 
Project Description: 

In this project, you are required to develop one network finger client program and one 
network finger server program. 
 
In the client program, the client (i.e., the client executable file name is fingerclient) runs in 
command line like this: fingerclient username@hostname, which sends “username” to the 
network finger server (i.e., fingerserver) running on the host specified by hostname, receives 
the information from fingerserver, and prints out the received information. 
 
In the server program, fingerserver is a multi-client server which can accept multiple client 
connections. You use system call “fork()” to fork child processes which do the actual jobs such 
as information receiving and sending. Instead of developing a new finger service on your own, 
you need to use the finger service provided by Unix/Linux. In other words, in the server 
program, you use system call “execl()” or its variants to run the finger daemon. The output 
information by running the “finger username” is then sent back to the client. In order to direct 
the output messages by finger service through the socket connection, we need to use system 
call “dup2()” to redirect the standard output (file descriptor is 1) and error (file descriptor is 2) 
to the socket. Thus, the output information is naturally written to the socket and finally reaches 
the client. We assume that the fingerserver process takes up to 5 concurrent connections. 
 
 
Background -- Socket Programming: 

In order to complete this project you will need to learn and become comfortable with 
programming sockets. There are a number of functions that you may need to use for this 
project (some of the functions have been discussed in lectures): 
 
• Parsing addresses: 

inet_addr() 
   Convert a dotted quad IP address (such as 36.56.0.150) into a 32-bit address. 
gethostbyname() 
   Convert a hostname (such as cs1.seattleu.edu) into a 32-bit address. 
 

• Setting up a connection: 



socket() 
    Get a descriptor to a socket of the given type 
connect() 
    Connect to a peer on a given socket 
getsockname() 
    Get the local address of a socket 
 

• Creating a server socket: 
bind() 
   Assign an address to a socket 
listen() 
   Tell a socket to listen for incoming connections 
accept() 
   Accept an incoming connection 
 

• Communicating over the connection: 
read(), write() 
    Read and write data to a socket descriptor 
htons(), htonl(),  ntohs() , ntohl() 
    Convert between host and network byte orders (and vice versa) for 16 and 32-bit 
values 
 

You can find the details of these functions in the Unix/Linux man pages (most of them are in 
section 2) and in the Stevens Unix Network Programming book, particularly chapters 3 and 4. 
You also need to read the supplemental socket programming materials including the Socket 
Programming Tutor I compiled. 
 
 
Background – finger service: 

Linux/Unix provides the finger service.  
Run: finger username    
Example: finger zhuy 

[zhuy@cs1 ~]$ finger zhuy 
Login: zhuy                             Name: (null) 
Directory: /home/fac/zhuy               Shell: /bin/bash 
On since Wed Jan 14 12:52 (PST) on pts/1 from 10.126.68.31 
On since Wed Jan 14 12:41 (PST) on pts/2 from egrn530-1.seattleu.edu 
   11 minutes 22 seconds idle 
Mail last read Wed Sep 17 23:11 2008 (PDT) 
No Plan.  

 
If your fingersever process receives “zhuy” from the fingerclient process, the fingersever 
process needs send the above information back to the fingerclient by executing “finger zhuy”.  



 
“man finger” will give you detailed information about the finger service. 
 
 
Testing Environment: 

You have two Linux severs to test: the first is cs1.seattleu.edu, and the other is 
css2.seattleu.edu. The css2 server is sitting behind the firewall and cannot be accessed at home 
without running VPN. The department technician suggests you to run fingerserver at css2 and 
fingerclient at cs1 for this project.  Your accounts on both servers were created if you registered 
this class in the beginning of this quarter. You may need to make sure if your account has been 
created ASAP. If not, send a request email to Renny Philipose philipr@seattleu.edu and cc it to 
me.  
 
In fact, you can test both fingerclient and fingerserver in one single server by running them in 
two shell windows. 
 
Port numbers between 10000 and 20000 are open in both servers for your project use. In order 
to avoid port conflicting among your classmates, I suggest you send me an email requesting an 
ID. Then you can use the ports between 10000 + (ID-1)* 10 and 10000 + ID*10 – 1. 
 
Submission: 

 Deadline: 3:40PM Wednesday, January 23, 2013 

 Make your files into a tar package, named project1.tar, which includes Makefile, all source 
files, and a README file. 

 Run the command to submit: 
 
        /home/fac/testzhuy/CPSC4560/submit     p1     project1.tar 
 
        You can submit your project multiple times before the deadline. Only the most recent copy is saved 
for grading. 

 
 
Grading: 

 The full score for this project is 10 points. 

 Failure in compilation and execution will result in a zero point. 

 Collaboration results in a zero point in both parties. 

 You must have a Makefile in your submission. Otherwise, your submission will not be 
graded. 

 Make your socket programming code robust. Otherwise, you will lose points due to fragile 
socket programming code. 
 

mailto:philipr@seattleu.edu

