
Introduction to Classes
(Chapter 13.1 – 13.12)

Dr. Yingwu Zhu

13.1
Procedural and Object-Oriented Programming

13-3

Procedural and Object-Oriented
Programming

• Procedural programming focuses on the
process/actions that occur in a program

• Object-Oriented programming is based on the
data and the functions that operate on it.
Objects are instances of ADTs that represent
the data and its functions

13-4

Limitations of Procedural
Programming

• If the data structures change, many functions
must also be changed

• Programs that are based on complex function
hierarchies are:
– difficult to understand and maintain

– difficult to modify and extend

– easy to break

13-5

Object-Oriented Programming
Terminology

• class: like a struct (allows bundling of
related variables), but variables and functions
in the class can have different properties than
in a struct

• object: an instance of a class, in the same
way that a variable can be an instance of a
struct

13-6

Classes and Objects

• A Class is like a blueprint and objects are like
houses built from the blueprint

13-7

Object-Oriented Programming
Terminology

• attributes: members of a class

• methods or behaviors: member functions of a
class

13-8

More on Objects

• data hiding: restricting access to certain members of
an object

• public interface: members of an object that are
available outside of the object. This allows the
object to provide access to some data and functions
without sharing its internal details and design, and
provides some protection from data corruption

13.2
Introduction to Classes

13-10

Introduction to Classes

• Objects are created from a class

• Format:

 class ClassName

 {

 declaration;

 declaration;

 };

13-11

Class Example

13-12

Access Specifiers

• Used to control access to members of the class

• public: can be accessed by functions outside of
the class

• private: can only be called by or accessed by
functions that are members of the class

13-13

Class Example

Private Members

Public Members

13-14

More on Access Specifiers

• Can be listed in any order in a class

• Can appear multiple times in a class

• If not specified, the default is private

13-15

Using const With Member Functions

• const appearing after the parentheses in a
member function declaration specifies that
the function will not change any data in the
calling object.

13-16

Defining a Member Function

• When defining a member function:
– Put prototype in class declaration

– Define function using class name and scope
resolution operator (::)

 int Rectangle::setWidth(double w)

 {

 width = w;

 }

13-17

Accessors and Mutators

• Mutator: a member function that stores a
value in a private member variable, or
changes its value in some way

• Accessor: function that retrieves a value from
a private member variable. Accessors do not
change an object's data, so they should be
marked const.

13.3
Defining an Instance of a Class

13-19

Defining an Instance of a Class

• An object is an instance of a class

• Defined like structure variables:
 Rectangle r;

• Access members using dot operator:
 r.setWidth(5.2);

 cout << r.getWidth();

• Compiler error if attempt to access private
member using dot operator

13-20

13-21

Program 13-1 (Continued)

13-22

Program 13-1 (Continued)

13-23

Program 13-1 (Continued)

13-24

Avoiding Stale Data

• Some data is the result of a calculation.

• In the Rectangle class the area of a rectangle is calculated.
– length x width

• If we were to use an area variable here in the Rectangle
class, its value would be dependent on the length and the
width.

• If we change length or width without updating area,
then area would become stale.

• To avoid stale data, it is best to calculate the value of that data
within a member function rather than store it in a variable.

13-25

Pointer to an Object

• Can define a pointer to an object:
Rectangle *rPtr;

• Can access public members via pointer:
rPtr = &otherRectangle;

rPtr->setLength(12.5);

cout << rPtr->getLenght() << endl;

13-26

Dynamically Allocating an Object

• We can also use a pointer to dynamically
allocate an object.

13.4
Why Have Private Members?

13-28

Why Have Private Members?

• Making data members private provides
data protection

• Data can be accessed only through public
functions

• Public functions define the class’s public
interface

13-29

Code outside the class must use the class's public
member functions to interact with the object.

13.5
Separating Specification from Implementation

13-31

Separating Specification from
Implementation

– Place class declaration in a header file that serves as
the class specification file. Name the file
ClassName.h, for example, Rectangle.h

– Place member function definitions in
ClassName.cpp, for example, Rectangle.cpp
File should #include the class specification file

– Programs that use the class must #include the
class specification file, and be compiled and linked
with the member function definitions

13.6
Inline Member Functions

13-33

Inline Member Functions

• Member functions can be defined

– inline: in class declaration

– after the class declaration

• Inline appropriate for short function bodies:
 int getWidth() const

 { return width; }

13-34

Rectangle Class with Inline Member Functions
 1 // Specification file for the Rectangle class
 2 // This version uses some inline member functions.

 3 #ifndef RECTANGLE_H

 4 #define RECTANGLE_H

 5

 6 class Rectangle

 7 {

 8 private:

 9 double width;

10 double length;

11 public:

12 void setWidth(double);

13 void setLength(double);

14

15 double getWidth() const

16 { return width; }

17

18 double getLength() const

19 { return length; }

20

21 double getArea() const

22 { return width * length; }

23 };

24 #endif

13-35

Tradeoffs – Inline vs. Regular Member
Functions

• Regular functions – when called, compiler
stores return address of call, allocates
memory for local variables, etc.

• Code for an inline function is copied into
program in place of call – larger executable
program, but no function call overhead, hence
faster execution

Constructors

13.7

13-37

Constructors

• Member function that is automatically called when
an object is created

• Purpose is to construct an object

• Constructor function name is class name

• Has no return type

13-38

13-39

Continues...

13-40

Contents of Rectangle.ccp Version3
(continued)

13-41

13-42

Default Constructors

• A default constructor is a constructor that takes no
arguments.

• If you write a class with no constructor at all, C++ will write a
default constructor for you, one that does nothing.

• A simple instantiation of a class (with no arguments) calls the
default constructor:

 Rectangle r;

Passing Arguments to Constructors

13.8

13-44

Passing Arguments to Constructors

• To create a constructor that takes arguments:

– indicate parameters in prototype:

Rectangle(double, double);

– Use parameters in the definition:

Rectangle::Rectangle(double w, double len)
{
 width = w;
 length = len;
}

13-45

Passing Arguments to Constructors

• You can pass arguments to the constructor when
you create an object:

 Rectangle r(10, 5);

13-46

More About Default Constructors

• If all of a constructor's parameters have default
arguments, then it is a default constructor. For
example:

Rectangle(double = 0, double = 0);

• Creating an object and passing no arguments will
cause this constructor to execute:

Rectangle r;

13-47

Classes with No Default Constructor

• When all of a class's constructors require
arguments, then the class has NO default
constructor.

• When this is the case, you must pass the
required arguments to the constructor when
creating an object.

Destructors

13.9

13-49

Destructors

• Member function automatically called when an
object is destroyed

• Destructor name is ~classname, e.g., ~Rectangle

• Has no return type; takes no arguments

• Only one destructor per class, i.e., it cannot be
overloaded

• If constructor allocates dynamic memory, destructor
should release it

13-50

13-51

Contents of InventoryItem.h Version1
(Continued)

13-52

13-53

13-54

Constructors, Destructors, and
Dynamically Allocated Objects

• When an object is dynamically allocated with the new
operator, its constructor executes:

Rectangle *r = new Rectangle(10, 20);

• When the object is destroyed, its destructor executes:

delete r;

Overloading Constructors

13.10

13-56

Overloading Constructors

• A class can have more than one constructor

• Overloaded constructors in a class must have

different parameter lists:

 Rectangle();

Rectangle(double);

 Rectangle(double, double);

13-57

From InventoryItem.h
(Version 2)

13-58

From InventoryItem.h
(Version 2)

13-59

From InventoryItem.h
(Version 2)

13-60

Only One Default Constructor
and One Destructor

• Do not provide more than one default constructor
for a class: one that takes no arguments and one that
has default arguments for all parameters

 Square();

 Square(int = 0); // will not compile

• Since a destructor takes no arguments, there can
only be one destructor for a class

13-61

Member Function Overloading

• Non-constructor member functions can also
be overloaded:

 void setCost(double);

 void setCost(char *);

• Must have unique parameter lists as for
constructors

Using Private Member Functions

13.11

13-63

Using Private Member Functions

• A private member function can only be called by
another member function

• It is used for internal processing by the class, not for
use outside of the class

• See the createDescription function in
InventoryItem.h (Version 3)

Arrays of Objects

13.12

13-65

Arrays of Objects

• Objects can be the elements of an array:

InventoryItem inventory[40];

• Default constructor for object is used when
array is defined

13-66

Arrays of Objects

• Must use initializer list to invoke constructor
that takes arguments:

InventoryItem inventory[3] =

{ "Hammer", "Wrench", "Pliers" };

13-67

Arrays of Objects

• If the constructor requires more than one
argument, the initializer must take the form
of a function call:

13-68

Arrays of Objects

• It isn't necessary to call the same constructor
for each object in an array:

13-69

Accessing Objects in an Array

• Objects in an array are referenced using subscripts

• Member functions are referenced using dot
notation:

inventory[2].setUnits(30);

cout << inventory[2].getUnits();

13-70

13-71

Program 13-3 (Continued)

Classes vs. Structs

73

Structs and Classes: Similarities

• Essentially the same syntax

• Both are used to model objects with multiple
attributes (characteristics)

– represented as data members

– also called fields

• Thus, both are used to process non-
homogeneous data sets.

74

Differences
Structs vs. Classes

• Members public by
default

• Can be specified
private

• Class members are
private by default

• Can be specified
public

