
CPSC 545 Computing Systems
Project 1: Program Graph Executor

Due: April 11th, 23:59PM

1. Goal

This project is to develop a graphexec program in C/C++ that will execute a graph of user programs in
parallel using fork, exec and wait in a controlled fashion. Such graphs are used in compiler analysis and
parallel program execution to model control- and data-dependencies. Control dependence specifies that
a program cannot start until its predecessor(s) is finished. Data dependency specifies that a program
requires input from its predecessor(s) before it can execute.

2. Description

Your main program graphexec is responsible for analyzing a graph of user
programs, determining which ones are eligible to run, and running programs
that are eligible to run at that moment in time. As programs in the graph finish,
your program will determine which other programs in the graph have become
eligible to run, execute those programs, and continue this process until all
programs are finished.

In the example graph above, node 0 can be executed first because it is not a child of any other node.
After node 0 finishes executing, then nodes 1 and 2 can be executed in parallel (they both should be
started immediately without waiting for either 1 or 2 to finish). Only after both 1 and 2 finish can the
final node 3 be executed. Each node in the graph represents one program to be executed.

Each node will contain:

• the program name with its arguments,
• “pointers” to child nodes,
• the input file to be used as standard input for that program, and
• the output file to be used as standard output for that program.

A node becomes eligible for execution once all of its parent nodes (nodes that contain a pointer to this
node) have completed their own execution. Your main program will fork and exec each of the nodes as
they become eligible to run. Also, input and output redirection must be used so that each node can get
its standard input from a file and also write its output to a file (respectively).

We will run your graphexec program as follows:

$./graphexec some-graph-file.txt

2.1 Graph file format

In the above command, a text file will represent the structure of the graph. We have posted a sample
graph file along with these specifications. Each node will be represented by a line in the following format:

0

0

0
1 2

3

program name with arguments:list of children IDs:input file:output file

[Example:] ls -l:1 2:blank-file.txt:ls-output.txt
[Example:] cat myfile1 file2:none:blank-file.txt:cat-out.txt
[Example:] gzip:none:ls-output.txt:ls-output.txt.gz

NOTE: If there are no children for a node, it must be specified as “none”.

For convenience, the nodes will implicitly be numbered from 0 to (n-1) from the order the nodes appear
in the text file (where n = total number of nodes in the graph). The children IDs will correspond to this
numbering system. You may not assume that the nodes are in order from top to bottom based on their
ID number. The ID numbers are used mainly to create “pointers” from parent nodes to children nodes.

2.2 Node structure

You may find helpful the node structure below:

enum Status { INELIGIBLE, READY, RUNNING, FINISHED };
struct Node {

int id; // corresponds to line number in graph text file
char prog[1024]; // prog + arguments
char input[1024]; // filename
char output[1024]; // filename
int children[10]; // children IDs
int num_children; // how many children this node has
Status status; // ineligible/ready/running/finished
pid_t pid; // track it when it's running

} ;

2.3 High-level view

Your main program will first parse the graph file given in the first argument, construct a data structure
that models the graph, and then start executing the nodes. Your program should determine which
nodes are eligible to run, execute those nodes, wait for any node to finish, then repeat this process until
all nodes have finished executing.

3. Useful system calls and functions

It is highly suggested that you make use of the following system calls or library functions:

open, fopen, fgets, fork, dup2, execvp, wait, strtok

4. Simplifying assumptions

 There will be no more than 50 nodes in any given graph.
• No node will have more than 10 children.
• The graph file will not contain extra whitespace “padding” between the colons and the values.
• The graph file will contain single spaces between the children ID numbers for that parameter.
• Each line in the graph file will not exceed 1023 characters.
• The graph will not contain cycles

5. Error handling

You are expected to check the return value of all system calls that you use in your program to check for
error conditions. Also, your main program should check to make sure the proper number of arguments
is used when it is executed. If your program encounters an error, a useful error message should be
printed to the screen. Your program should be robust; it should try to recover from errors if possible. If
the error prevents your program from functioning normally, then it should exit after printing the error
message. (The use of the perror() function for printing error messages is encouraged.)

6. Documentation

You must include a README file which describes your program. It needs to contain the following:
• The purpose of your program
• How to use the program from the shell (syntax)
• What exactly your program does

The README file does not have to be very long, as long as it properly describes the above points. Proper
in this case means that a first-time user will be able to answer the above questions without any
confusion.

Within your code you should use one or two sentences to describe each function that you write. You do
not need to comment every line of your code. However, you might want to comment portions of your
code to increase readability.

At the top of your README file and main C source file please include the following comment:
/* CPSC545 Spring2011 Project 1
* login: cs1_login_name (login used to submit)
* Linux
* date: mm/dd/yy
* name: full_name1, full_name2 (for partner(s))
* emails: your and your partners’ emails */

7. Grading [20 points]

2 pts README file
2 pts Makefile that works correctly to compile your program

4 pts Documentation within code, coding, and style (indentations, readability of code, use of defined
constants rather than numbers)
12 pts Test cases (correctness, error handling, meeting the specifications, no scrambling messages on
screen)

• Please make sure to pay attention to documentation and coding style. A perfectly working program

will not receive full credit if it is undocumented and very difficult to read.
• The test cases will not be given to you upfront. They will be designed to test how well your program

adheres to the specifications. So make sure that you read the specifications very carefully. If there is
anything that is not clear to you, you should ask for a clarification.

• Make sure your code compiles and run on cs1.seattleu.edu. Failures to compile and execute you
program result in zero point.

•

8. Deliverables

The following deliverables must be submitted:

• Source code files
• A README file
• A Makefile that will compile your code and produce a program called graphexec. Note: this

Makefile will be used by us to compile your program with the make utility.

All files should be made a package by tar and submitted using the SUBMIT utility. This is your official
submission that we will grade. Please note that future submissions under the same homework title
OVERWRITE previous submissions; we can only grade the most recent submission. You can NOT submit
your code after the deadline is passed.

9. Submission

You should connect to cs1.seattleu.edu using your account to submit your project deliverables. You
can submit multiple times before the deadline. The system keeps the most recent submission. You
should follow the steps to submit your project:

 Make a tar package of your deliverables (one example below)
tar -cvf p1.tar README Makefile graphexe.h graphexe.cpp

 Submit your tar package
/home/fac/testzhuy/CPSC545/upload p1 p1.tar

