
copyright 2004 by Elsevier Science (USA) All Rights Reserved November 1, 2003
 1

J. E. Smith and Ravi Nair

Excerpt from “Virtual Machines: Architectures, Implementations and Applications,” to be pub-
lished by Morgan Kaufmann Publishers, 2004.

hen early computer systems were being developed, hardware was designed first and software
written specifically for that hardware followed. Each system was essentially handcrafted with its
own instruction set, and software was developed for that specific instruction set. This included
operating system software, assemblers (later compilers), and application programs. With a small

user community, relatively simple programs, and fixed hardware, this tightly integrated approach worked
quite well, especially while the basic concepts of the stored program computer were still evolving. But user
communities grew, operating systems became more complex, and the number of application programs rap-
idly expanded, so that re-writing and distributing software for each new computer system became a major
burden.

The advantages of software compatibility and portability quickly became evident. Furthermore, hardware
designers for the various computer companies gravitated toward certain common features. New designs
were often similar to previous ones, although usually not identical. It was not until the development of the
IBM 360 family in the early 1960s, that the importance of full software compatibility was fully recognized
and articulated. The IBM 360 series had a number of models that could incorporate a wide range of hard-
ware resources, thereby covering a broad spectrum of price and performance levels -- yet they were designed
to run the same software. To successfully accomplish this, the interface between the hardware and software
had to be precisely defined and controlled; the concept of the Instruction Set Architecture (ISA) came into
being1.

In addition, operating systems were developed that could shield application programs from specifics of the
hardware, for example, the amount of memory available and the exact characteristics of disk drives. Operat-
ing systems were responsible for managing hardware resources, protecting running applications and user
data, supporting controlled sharing, and providing other useful functions. Because application programs de-
pend heavily on the services provided by the operating system, these operating system services and the oper-
ating system interfaces also became an important point for standardization. Today, there is a relatively small
number of standard operating systems. Furthermore, operating systems no longer work in relative isolation;

1The term "ISA" is commonly used for distinguishing the formal architecture specification from other less formal uses of the term "archi-
tecture" which often include aspects of the hardware implementation.

An Overview of Virtual Machine Architectures

W

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 2

today they are responsible for controlled protection and sharing of data and resources, extending across net-
works of computers.

The development of standard interfaces for matching software to underlying hardware has led to a very
powerful environment for developing large, complex, and varied software systems. Because of standardized
interfaces, software can be made much more flexible and portable than would otherwise be possible. The
situation is not perfect, however, because there are a number of different, incompatible ISAs and operating
systems. Hence, software portability is limited to those platforms that conform to the same standards as the
ones for which the software was developed. User programs are tied to a specific instruction set and operat-
ing system. An operating system is tied to a computer that implements a specific instruction set, memory
system, and I/O system interfaces. This lack of portability becomes especially restrictive in a world of net-
worked computers where one would like software to move as freely as data.

These limitations on software are only there because the platform, or “machine”, on which the software exe-
cutes is assumed to be a physical entity with certain properties: e.g. it runs a specific ISA and/or operating
system. In brief, the software runs on a single type of real machine. Virtual Machines (VMs) eliminate this
real machine constraint and enable a much higher degree of portability and flexibility. A virtual machine is
implemented by adding software to an execution platform to give it the appearance of a different platform,
or for that matter, to give the appearance of multiple platforms. A virtual machine may have an operating
system, instruction set, or both, that differ from those implemented on the underlying real hardware.

The virtualization of architected elements enables a larger scale virtualization of computer system resources.
And in some VM applications, this is the whole point of virtualization. That is, processors, memory, and I/O
devices, including network resources can be virtualized. When the state of a process, or system, is virtual-
ized it is essentially separated from a specific piece of physical hardware. This means that a virtual process or
system can be temporarily associated with specific physical resources, and that the association can change
over time. For example, a server with m processors can support n system virtual machines where n ! m,
and the number of physical processors associated with a given virtual machine can change over time as the
workloads of the virtual systems change. Similarly, a single physical network interface can serve a number of
virtual networks by time-multiplexing the physical resource amongst a number of virtualized network inter-
faces.

As we shall see, there is a wide variety of virtual machines that provide an equally wide variety of benefits.
Virtual machines provide cross-platform compatibility as has already been suggested. They can also be used
to increase security, provide enhanced performance, simplify software migration, and enable network-mobile
platform-independent software. Over the years, virtual machines have been investigated and built by operat-
ing system developers, compiler developers, language designers, and hardware designers. Although each ap-
plication of virtual machines has its unique characteristics, there also are underlying technologies that are
common to a number of virtual machines. Because the various virtual machine architectures and underlying
technologies have been developed by different groups it is especially important to unify this body of knowl-
edge and understand the base technologies that cut across the various forms of virtual machines. The goals
of this book are to describe the family of virtual machines in a unified way, to discuss the common underly-
ing technologies that support them, and to explore their many applications.

1.1 Standardized Computer System Components: A Two-Edged Sword
Computer systems are constructed of the three major components shown in Figure 0-1: hardware, the oper-
ating system, and application programs. The figure illustrates the hierarchical nature of the system and the
meshing of its major interfaces. The three major system components are stacked on one another to reflect

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 3

the direct interaction that takes place. For example, the operating system and application programs interact
directly with hardware during normal instruction execution. Because the operating system has special privi-
leges for managing and protecting shared hardware resources, e.g. memory and the I/O system, application
programs interact with these resources only indirectly by making operating system calls.

Hardware

OS

Applications

ISA

Figure 0-1 A computer system consisting of Hardware that implements an Instruction Set Architec-
ture, an Operating System, and a set of Application programs.

Clearly, there are many advantages to the conventional computer system architecture with its well-defined
interfaces. Major system design tasks are decoupled; hardware and software designers can work more or less
independently. In fact, the three major components are often developed at different companies, and at dif-
ferent times, sometimes years apart. Application developers do not need to be aware of changes inside the
OS, and hardware and software can be upgraded according to different schedules. Software can run on dif-
ferent hardware platforms implementing the same ISA, either within the same hardware generation (at dif-
ferent performance levels) or across generations.

Because of its many advantages, the architecture model of Figure 0-1 has persisted for several decades, and
huge investments have been made to sustain it. There are also significant disadvantages to this approach,
however, and these have become increasingly evident as software and hardware have continued to grow in
complexity and the variety of computer applications has broadened.

Problems (or limitations) arise because the major components work together only in the proper combina-
tions. Figure 0-2a shows three popular desktop computer systems, each constructed of hardware, an operat-
ing system and application programs. However, the components that form the three systems are not inter-
operable (Figure 0-2b). Application software compiled for a particular ISA will not run on hardware that
implements a different ISA. For example, Apple Macintosh application binaries will not directly execute on
an Intel processor. The same is true of system software; Intel PC users had to wait for Windows 3.1 to get a
reasonable graphical user interface similar (at least superficially) to the one that Macintosh users had been
using for years. Even if the underlying ISA is the same, applications compiled for one operating system will
not run if a different operating system is used. For example, applications compiled for Linux and for Win-
dows use different operating system calls, so a Windows application cannot be run directly on a Linux sys-
tem and vice versa.

In isolated computer systems, lack of software compatibility is bad enough, but in a heavily networked envi-
ronment the problem becomes even more inhibiting. There are big advantages to viewing a collection of
networked computers as a single system (“the network is the computer”) where software can freely migrate.
This view is obstructed if the networked computers have incompatible ISAs and/or operating systems. That

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 4

is, if a piece of software is restricted to running on only certain nodes of the network, then a great deal of
flexibility and transparency is lost, especially when the network is as large and varied as the internet.

PowerPC

MacOS

MacIntosh apps.

x86

Linux

Linux apps

x86

Windows

Windows apps.

(a)

MacOS

MacIntosh apps

x86

Linux

x86

Windows apps.

 (b)

Figure 0-2 Interoperability
a) Three popular computer systems composed of different ISAs, OSes, and Applications.
b) Although highly modular, the major system components are not always interoperable.

A second problem is that innovation is sometimes limited by the need to support interfaces developed years,
possibly decades earlier. For example, implementing new software concepts may be inhibited by an old "leg-
acy" ISA. Hardware development may also be inhibited by the need to support ISA features that restrict
high performance innovations. And, even when ISAs are extended to allow innovation, as they sometimes
are, they must continue supporting old ISA features that are seldom used and become excess baggage.

A third problem is that optimization across major interfaces is difficult. The interfaces allow independent
development of the major components, but this can also be problematic. The developers on each side of an
interface seldom communicate (often they are working at different companies and at different times), so it is
very difficult to cooperate closely on optimizations that cross an interface. For example, the separate devel-
opment of application software and hardware means that program binaries are often not optimized for the
specific hardware on which they are run. Typically only one version of a binary is distributed, and it is likely
optimized for only one processor model (if it is optimized at all). Furthermore, compiler development usu-
ally lags processor development so binaries are often compiled for an earlier generation processor than on
which they are being run.

Finally, in a traditional computer system, one operating system is matched with one hardware platform and
all applications co-exist under the management and protection of the single operating system. Not only does

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 5

this constrain all the system users to the same OS, but it also opens opportunities for exploiting security
“holes” in the operating system. That is, the degree of isolation among the application programs is limited
by the shared system software. This may be especially important when a large hardware system, e.g. a server,
is to be shared by different groups of users who would like to be assured of a secure environment.

1.2 Virtual Machine Basics
The above problems can be solved by implementing a layer of software that provides a virtual machine envi-
ronment for executing software. One type of virtual machine (VM) is illustrated in Figure 0-3 where virtualiz-
ing software is placed between the underlying machine and conventional software. In this example, virtualiz-
ing software translates the hardware ISA so that conventional software “sees” a different ISA from the one
supported by hardware. As we shall see, virtualizing at the ISA level is only one possibility, but it is adequate
for illustrating the range of VM applications. The virtualization process involves 1) the mapping of virtual
resources, e.g. registers and memory, to real hardware resources and 2) using real machine instructions to
carry out the actions specified by the virtual machine instructions, e.g. emulating the virtual machine ISA.

Hardware
"Machine"

OS

Applications

Virtualizing
Software Virtual

Machine

OS

Applications

Guest

VMM

Host

Figure 0-3 Virtualizing software can translate the ISA used by one hardware platform to another,
forming a Virtual Machine, capable of executing software developed for a different set of hardware.

With regard to terminology (see Figure 0-3), we usually refer to the underlying platform as the “host”, and
the software that runs in the VM environment as the “guest”. The virtualizing software will often be re-
ferred to as the “virtual machine monitor” (VMM), in accordance with the term used in the original VMs
developed in the late 1960’s. Occasionally, we will use other more specific names for the virtualizing soft-
ware, depending on the type of VM that is being discussed.

Virtualizing software can be applied in several ways to connect and adapt the three major system compo-
nents (see Figure 0-4). As just illustrated, emulation (Figure 0-4a) adds considerable flexibility by permitting
“mix and match” cross-platform software portability. Virtualizing software can enhance emulation with
optimization, by taking implementation-specific information into consideration as it performs emulation, or it
can perform optimization alone, without emulation (Figure 0-4b). Virtualizing software can also provide
resource replication, for example by giving a single hardware platform the appearance of multiple platforms
(Figure 0-4c), each capable of running a complete operating system and/or a set of applications. Finally, the
various types of virtual machines can be composed (Figure 0-4d) to form wide variety of architectures, freed
of many of the traditional compatibility constraints.

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 6

ISA 1

OS 1

apps 2

ISA 2

OS 1

apps 2
OS 1

apps 1

(b) (c) (d)(a)

ISA 2

 OS 1

apps 1

OS 2

apps 3

ISA 2

OS 1

apps 2

Figure 0-4. Examples of virtual machine applications.

a) emulating one instruction set with another
b) optimizing an existing application binary for the same instruction set,
c) replicating a virtual machine so that multiple OSes can be supported simultaneously,
d) composing virtual machine software to form a more complex, flexible system.

Given the wide variety of applications, VM technologies are widely used today to allow interoperability of the
major system components. Furthermore, because of the heavy reliance on a few standards and consolida-
tion in the computer industry, it seems likely that any major innovation, e.g. a new ISA, new OS, or new pro-
gramming language will leverage VM technology. Consequently, for constructing modern systems, virtualiz-
ing software has essentially become a fourth major system component that merits equal standing with hard-
ware, operating systems and application software.

In computer systems, with their many levels of abstraction, the meaning of “machine” is a matter of perspec-
tive. From the perspective of a process, the machine consists of a memory address space that has been as-
signed to the process, along with user level registers and instructions that allow the execution of code belong-
ing to the process. The I/O system, as perceived by the process, is rather abstract. Disks and other secon-
dary storage appear as a collection of files to which the process has access permissions. In the desktop envi-
ronment, the process can interact with a user through a window (or windows) that it creates within a larger
graphical user interface (GUI). The only way the process can interact with the I/O system of its machine is
via operating system calls, either directly, or through libraries that are supplied to the process. Processes are
often transient in nature (although not always). They are created, execute for a period of time, perhaps
spawn other processes along the way, and eventually terminate.

From a higher level perspective, an entire system is supported by an underling machine. A system is a full
execution environment that can simultaneously support a number of processes potentially belonging to dif-
ferent users. All the processes share a file system and other I/O resources. The system environment persists
over time (with occasional re-boots) as processes come and go. The system allocates physical memory and
I/O resources to the processes, and allows the processes to interact with their resources via an OS that is
part of the system.

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 7

x86 PC

Java VM

Java
application

Linux

native
applications

Figure 0-5. A process supported by a guest Java Virtual Machine executes alongside native proc-
esses on a Linux/x86 host platform.

Just as there is a process perspective and a system perspective of what a machine is, one can also provide
virtual machines at either the process level or the system level. As the name suggests, a process virtual ma-
chine is capable of supporting an individual process. A process virtual machine is created along with its guest
process and terminates when the guest process terminates. For example, consider a host platform that con-
sists of Linux running on Intel x86 PC hardware (Figure 0-5). This system clearly can support native x86
applications that are compiled for a Linux system. However, this system can also act as a host for supporting
guest Java processes via Java virtual machines. The Java VM environment can execute Java bytecode pro-
grams and perform I/O operations through Java libraries. The same system could also support
PowerPC/Linux guest applications via process level virtual machines that are capable of emulating the
PowerPC instructions.. All these processes can reside simultaneously within the same system environment,
and they may interact in the ways that processes sharing a system normally do for example, a PowerPC proc-
ess could create an x86 process and communicate with it via shared memory. In a desktop system, for ex-
ample, they would each have individual windows, all appearing within the same X-windows GUI.

x86 PC

Windows

Windows
applications

Linux

native
applications

VMM

Figure 0-6. A Windows system supported as guest virtual machine running on a Linux/x86 host
platform.

A system virtual machine provides a complete system environment. This environment can support multiple
user processes, includes a file system, provides the processes with access to I/O devices, and, on the desk-
top, it supports a GUI. Again, consider a platform that consists of Linux running on x86 hardware (Figure

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 8

0-6). The native system is Linux/x86, but the platform can also serve as a host for supporting a virtual Win-
dows system, accessed through the Windows GUI, that contains a (virtual) Windows file system and can run
Window applications. The Windows processes interact with each other, just as on a real windows system.
And, they can interact with the native UNIX system via a network interface, just as if it were a physically
separate system. However, the UNIX and Windows processes do not interact directly as if they were part of
the same system (because they are not part of the same system); for example, a UNIX process cannot spawn
a Windows process.

System Calls

User ISASystem ISA
ISA

Application Software

Operating System

Hardware

(a)

System Calls

User ISASystem ISA
ABI

Operating System

Hardware

Application Software

(b)

Figure 0-7. System Interfaces
a) Instruction Set Architecture (ISA) interface
b) Application Binary Interface (ABI)

For implementing virtual machines, there are two standardized interfaces that will be of interest to us. The
interfaces roughly correspond to the process level and the system level. These interfaces are shown in more
detail in Figure 0-7. The ISA, shown in Figure 0-7a, includes both user and system instructions. The user
instructions are available to both application programs and to the operating system. The system instructions
include privileged operations that permit the direct manipulation, allocation, and observation of shared hard-
ware resources (the processor, memory and I/O).

Figure 0-7b illustrates the Application Binary Interface (ABI). The ABI has two major components. The
first is the set of all user instructions; system instructions are not included in the ABI. At the ABI level, all
application programs interact with the shared hardware resources indirectly, by calling the operating system
via a system call interface, which is the second major part of the ABI. System calls provide a specific set of

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 9

operations that an operating system may perform on behalf of a user program (after checking to make sure
that the user program should be granted its request). The system call interface is typically implemented via a
system call instruction that transfers control to the operating system in a manner somewhat similar to a sub-
routine call, except the call target address is forced to be a specific address in the operating system. Argu-
ments for the system call are passed through registers and/or a stack held in memory, following specific con-
ventions that are part of the system call interface.

We are now ready to describe some specific types of virtual machines. These span a fairly broad spectrum of
applications, and we will discuss them according to the two main categories: Process VMs and System VMs.

1.3 Process VMs
Process level VMs provide user applications with a virtual ABI environment. In their various forms, process
VMs can provide replication, emulation, and optimization. The following subsections describe each of
these. Note that for many of VMs, it is common practice to use some term other than “Virtual Machine” to
describe the function being performed. Nevertheless, they are for all intents and purposes virtual machines –
in spirit if not in name.

1.3.1 Multiprogramming
The first and most common virtual machine is so ubiquitous that we don’t even think of it as being a virtual
machine. Conventional multiprogramming provides each user process with the illusion of having a complete
machine to itself. Each process is given its own address space and is given access to a file structure. The op-
erating system timeshares the hardware and manages underlying resources to make this possible. In effect,
the OS provides replicated process level virtual machines for each of the concurrently executing applications.
And, there is virtually an unlimited number of such processes – the process virtual machine can be freely
replicated.

1.3.2 Emulation and Dynamic Binary Translators
A more challenging problem for process level virtual machines is to support program binaries compiled to a
different instruction set that the one executed by the underlying hardware. Such an emulating process virtual
machine is illustrated in Figure 0-8. Application programs are compiled for a source ISA, but the hardware
implements a different target ISA. As shown in the figure, the operating system is the same for both the
guest process and the host platform. The example illustrates the Digital FX!32 system. The FX!32 system
could run Intel x86 application binaries compiled for Windows NT, on an Alpha hardware platform also
running Windows NT.

Alpha ISA

Windows OS

x86 Windows apps.

Figure 0-8. A process VM that emulates guest applications. The Digital FX!32 system allows Win-
dows x86 applications to be run on an Alpha Windows platform.

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 10

Because of the different ISAs, it is necessary for the virtual machine to emulate execution of the source ISA.
The most straightforward emulation method is interpretation. An interpreter program executing the native,
target ISA fetches, decodes and emulates execution of individual source instructions. This can be a relatively
slow process, requiring on the order of tens of native instructions for each source instruction interpreted.

For better performance, binary translation is typically used. With binary translation, blocks of source instruc-
tions are converted to native instructions that perform equivalent functions. There can be a relatively high
overhead associated with the translation process, but once a block of instructions is translated, the translated
instructions can be cached and repeatedly executed -- much faster than they can be interpreted. Because bi-
nary translation is commonly used with this type of process virtual machine, they are often called dynamic
binary translators.

Interpretation and binary translation have different performance characteristics. Interpretation has relatively
low startup overhead but consumes significant time whenever an instruction is emulated. On the other
hand, binary translation has high initial overhead when performing the translations, but it is fast for each re-
peated execution. Consequently, some virtual machines use a staged emulation model combined with profil-
ing. Initially, a block of source instructions is interpreted, and profiling is used to determine which instruc-
tion sequences are frequently executed. Then, a frequently executed block may be binary translated. Some
systems perform additional code optimizations on the translated code if profiling shows that it has a very
high execution frequency. In most emulating virtual machines the stages of interpretation and binary transla-
tion can occur over the course of a single program run. In the case of FX!32 mentioned above, translation
occurs incrementally between program runs.

1.3.3 Dynamic Optimizers
Most dynamic translators not only translate from source to target code, but they also perform some optimi-
zations in the process. This leads naturally to virtual machines where the instruction sets used by host and
the guest are the same, and optimization is the sole purpose of the virtual machine. Dynamic translators are
implemented in a manner very similar to emulating virtual machines, including staged optimization and soft-
ware caching of optimized code. An example of such a dynamic optimizer is the Dynamo system, developed
as a research project at Hewlett-Packard. A dynamic optimizer can collect statistics on a running program, i.e.
construct a profile, and then use this profile information to optimize the binary on-the-fly.

1.3.4 High Level VMs: Complete Platform Independence
For the VMs described above, cross-platform portability is clearly a very important objective. For example,
the FX!32 virtual machine enabled portability of application software compiled for a popular platform (x86
PC) to a less popular platform (Alpha). However, this approach allows cross-platform compatibility on a
case-by-case basis and requires a great deal of effort. For example, if one wanted to run x86 binaries on all
the hardware platforms currently in use, e.g. SPARC, PowerPC, Mips, etc., then an FX!32-like VM would
have to be developed for each of them. Furthermore, the problem would be even more difficult, if not im-
possible, if the host platforms run a different OS than the one for which the binary is compiled.

Full cross-platform portability is more easily achieved by taking a step back and designing it into programs in
the first place. One way of accomplishing this is to design a process level VM at the same time as an applica-
tion development environment, including a high level language (HLL), is being defined. Here, the VM envi-
ronment does not correspond to a particular hardware platform. Rather it is designed for portability and to
match the features of the HLL used for application program development. These High Level VMs are simi-
lar to the ISA-specific process VMs described above. They focus on supporting applications and they tend

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 11

to minimize hardware related-features (and OS-specific features) because these would compromise platform
independence.

 This type of virtual machine first became popular with the Pascal programming environment. In a conven-
tional system, Figure 0-9a, the compiler consists of a front-end that performs lexical, syntax, and semantic
analysis to generate simple intermediate code – similar to machine code but more abstract. Typically the in-
termediate code does not contain specific register assignments, for example. Then, a code generator takes
the intermediate code and generates an object file containing machine code for a specific ISA and OS. This
object file is then distributed and executed on platforms that support the given ISA/OS combination. To
execute the program on a different platform, however, it must be re-compiled for that platform.

With Pascal, this model was changed (Figure 0-9b). The steps are similar to the conventional ones, but the
point at which distribution takes place is at a higher level. In Figure 0-9b, a conventional compiler front-end
generates abstract machine code, which is very similar to an intermediate form. In Pascal, this “P-code” is for
a rather generic stack-based ISA. P-code is in essence the machine code for a virtual machine. It is the P-
code that is distributed to be executed on different platforms. For each platform, a VM capable of execut-
ing the P-code is implemented. In its simplest form, the VM contains an interpreter that takes each P-code
instruction, decodes it, and then performs the required operation on state (memory and the stack) that is
used by the P-code. I/O functions are performed via a set of standard library calls that are defined as part of
the VM. In more sophisticated, higher performance VMs, the abstract machine code may be re-compiled
(binary translated) into machine code for the host platform that can be directly executed.

Distribution

HLL Program

Intermediate Code

Memory Image

Object Code

Compiler front-end

Compiler back-end

Loader

HLL Program

Portable Code

Host Instructions

Virt. Mem. Image

Compiler

VM loader

VM Interpreter/Compiler

Distribution

(a) (b)

Figure 0-9. High Level Language environments
a) A conventional system where platform-dependent object code is distributed
b) A HLL VM environment where portable intermediate code is “executed” by a platform-
dependent virtual machine.

An advantage of a high level VM is that software can be completely portable, provided the VM can be im-
plemented on a target platform. While this would take some effort, it is a much simpler task than develop-
ing a compiler for each platform and re-compiling an application beginning with the HLL whenever it is to
be ported. It is also much simpler than developing a conventional emulating process VM for a typical real-
world ISA.

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 12

The Java VM architecture is a more recent, and a widely used example of a high level VM. Platform inde-
pendence and high security are central to the Java VM architecture. The ISA chosen for Java definition is
referred to as the "Java Bytecode" instruction set. Like P-code, this instruction set is stack-based (to elimi-
nate register requirements) and has a very general bit width-independent data specification and memory
model. In fact, the memory size is essentially unbounded, with garbage collection as an assumed part of the
implementation. Because all hardware platforms are potential targets for executing Java programs on a Java
virtual machine, application programs are not compiled for a specific OS. Rather, just as with P-code, there
is a set of standard libraries whose calling interface and functions are parts of the Java virtual machine archi-
tecture.

1.4 System Virtual Machines
System virtual machines provide a complete system environment in which many processes, possibly belong-
ing to multiple users can co-exist. These VMs were first developed during the 1960s and early 1970s and
were the origin of the term “Virtual Machine” . By using system VMs, a single host hardware platform can
support multiple guest OS environments simultaneously. At the time they were first developed computer
hardware systems were very large and expensive, and computers were almost always shared among a large
number of users. Different groups of users often wanted different OSes to be run on the shared hardware,
and VMs allowed them to do so. Alternatively, a multiplicity of single-user OSes allowed a convenient way
of implementing time-sharing amongst several users. Figure 0-10 illustrates these classical system VMs.

For system VMs, replication is the major feature provided by a VMM. The central problem is dividing a sin-
gle set of hardware resources among multiple guest operating system environments. The VMM has access
to, and manages all the hardware resources. A guest operating system and application programs compiled
for that operating system are then managed under (hidden) control of the VMM. This is accomplished by
constructing the system so that when a guest OS performs a system ISA operation involving the shared
hardware resources, the operation is intercepted by the VMM, checked for correctness and performed by the
VMM on behalf of the guest. Guest software is unaware of the "behind the scenes" work performed by the
VMM. Multiple guest OSes can be supported; in Figure 0-10 there are two.

Linux

Linux
apps.

x86

Windows

Windows
apps.

VMM

Figure 0-10. An example system VM -- supporting multiple OS environments on the same hard-
ware.

This type of replicated VM system has a number of advantages. The first, and probably most important to-
day is that multiple OS environments can be simultaneously supported, so applications developed for differ-
ent OSes can be simultaneously executed on the same hardware. For example, DOS, Windows NT, OS/2,

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 13

Linux, and Solaris operating systems are all available (or have been) for the x86-based PC platform. And,
different application programs have been developed for each of the OSes. This poses a problem if a user
wants to run an application written for Windows NT on a PC that is currently running Solaris. There is a
similar problem if multiple users are sharing a larger system, say a server, and different users prefer (or re-
quire) different operating systems.

Another important application, and one that could possibly be the most important in the future, is that the
separate virtual environments provide a security "firewall" for protecting independent groups of users and
applications. Also, OS software development can be supported simultaneously with production use of a sys-
tem. This replicated VM approach has been very successful for IBM; it has continued to evolve and is a key
part of large multiprocessor servers -- today's equivalent to the mainframes of the ‘60s and’70s.

1.4.1 Implementations of System VMs
From the user perspective, most system VMs provide more-or-less the same functionality (although per-
formance may vary widely). The thing that tends to differentiate them is the way in which they are imple-
mented. As discussed above in Section 1.2, there are a number of interfaces in a computer system and there
is a number of choices for where the VMM can be placed. Summaries of two of the more important im-
plementations follow.

In Figure 0-10, the “classic” VM, the VMM is placed on “bare” hardware, and virtual machines fit on top.
The VMM runs in the most highly privileged mode, while all the guests run with lesser privileges. Then, the
VMM can intercept and implement all the guest OS's actions that interact with hardware resources -- in a
completely transparent way. In many respects, this system VM implementation is the most efficient, and pro-
vides service to all the guest systems in a more-or-less equivalent way. One disadvantage of this type of sys-
tem, at least for desktop users, is that installation requires wiping an existing system clean and starting from
scratch, installing the VMM, then installing guests on top. Another disadvantage is that device drivers must
be available for installation in the VMM, because it is the VMM that interacts directly with I/O devices.

An alternative system VMM implementation builds virtualizing software on top of an existing host operating
system – resulting in what is called a hosted VM. With a hosted VM, the installation process is similar to in-
stalling a typical application program. Furthermore, virtualizing software can rely on the host OS to provide
device drivers and other lower-level services; they don’t have to be done by the VMM. The disadvantage of
this approach is that there can be some loss of efficiency because more layers of software become involved
when OS service is required. The hosted VM approach is taken in the VMware implementation, a modern
VM that runs on x86 hardware platforms.

1.4.2 Whole System VMs: Emulation
In the “classic” system VMs described above, all the operating systems (both guest and host) and applica-
tions use the same ISA as the underlying hardware. In some important situations, however, the host and
guest systems do not have a common ISA. For example, the Apple PowerPC-based systems and Windows
PC use different ISAs (and different OSes), and they are the two most popular desktop systems today. As
another example, Sun Microsystems servers use a different OS and ISA than the windows PCs that are
commonly attached to them as clients.

This situation leads to an emulating system VM, where a complete software system, both OS and applica-
tions, are supported on a host system that runs a different ISA and OS. These are called "whole system"
VMs because they essentially virtualize all software. Because the ISAs are different, both application and OS
code require emulation, e.g. via binary translation. For whole system VMs, the most common implemen-

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 14

taion method is to place the VMM and guest software on top of a conventional host OS running on the
hardware.

Figure 0-11 illustrates a whole system VM built on top of a conventional system with its own OS and appli-
cation programs. The VM software executes as an application program supported by the host OS and uses
no system ISA operations. It is as if the VM software, the guest OS and guest application(s) are one very
large application implemented on the host OS and hardware. Meanwhile the host OS can also continue to
run applications compiled for the native ISA; this feature is illustrated in the right section of the drawing.

PowerPC

Windows

MAC OS

Windows apps.

MAC apps.

Figure 0-11. A whole system VM that supports a guest OS and applications, in addition to host ap-
plications.

To implement a system VM of this type, the VM software must emulate the entire hardware environment. It
must control the emulation of all the instructions, and it must convert the guest system ISA operations to
equivalent OS calls to the host OS. Even if binary translation is used, it is tightly constrained because trans-
lated code cannot easily take advantage of underlying system ISA features like virtual memory management
and trap handling. In addition, problems can arise if the properties of hardware resources are significantly
different in the host and the guest. Solving these mismatches is difficult because the VMM has no direct ac-
cess to hardware resources and can only go through the host OS via the system calls that it provides.

1.4.3 Co-Designed VMs: Optimization
In all the VM models discussed thus far, the goal has been flexibility and portability -- to either support mul-
tiple (possibly different) OSes on the same host platform, or to support different ISAs and OSes on the
same platform. In practice, these virtual machines are implemented on hardware already developed for some
standard ISA, and for which native (host) applications, libraries, and operating systems already exist. By-and-
large, improved performance (i.e. beyond native hardware performance) has not been a goal -- in fact mini-
mizing performance losses is often the performance goal.

Co-Designed VMs have a different objective and take a different approach. These VMs are designed to en-
able innovative new ISAs and/or hardware implementations for improved performance, power efficiency, or
both. Co-designed VMs may be based on hardware that uses a non-standard, proprietary ISA. In fact, the
native ISA is developed along with the hardware implementation to enhance and enable better hardware im-

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 15

plementation features. This native ISA may be completely concealed from all conventional software that
runs on the host processor.

In general, the host ISA may be completely new, or it may be based on an existing ISA with some new in-
structions added and/or some instructions deleted. In a co-designed VM (Figure 0-12), there are no native
ISA applications (although one can imagine situations where they may eventually be developed). It is as if
the VM software is, in fact, part of the hardware implementation. Because the goal is to provide a VM plat-
form that looks exactly like a native hardware platform, the software portion of the VM uses a region of
memory that is not visible to any application and system software.

This concealed memory is carved out of main memory at boot time and the conventional guest software is
never informed of its existence. VMM code that resides in the concealed memory can take control of the
hardware at practically any time and perform a number of different functions. In its more general form, the
VM software includes a binary translator that converts guest instructions into native ISA instructions and
caches the translated instructions in a region of concealed memory. Hence, the guest ISA never directly exe-
cutes on the hardware. Of course, interpretation can also be used to supplement binary translation, depend-
ing on performance tradeoffs. To provide improved performance, translation is often coupled with code
optimization. Optimization can be performed at the translation time, and/or it can be performed as an on-
going process as a program runs, depending on which code sequences are more frequently executed.

ISA 1

OS 1

apps 2

Figure 0-12. Co-Designed VM -- VM software translates and executes code for a concealed na-
tive ISA.

The two best examples of co-designed VMs are the IBM Daisy processor and the Transmeta Crusoe. In
both these processors, the underlying hardware happens to use a native VLIW instruction set; the guest ISA
for Daisy is PowerPC and for Transmeta it is the Intel x86. The objective of the Daisy project is to provide
the simplicity and performance advantages of VLIW while executing existing software. The Transmeta de-
signers focused on power saving advantages of simpler VLIW hardware.

Besides code translation and optimization, VM software can also be used in other ways to optimize the usage
of hardware resources. For example, the VMM can read and analyze performance-monitoring data collected
in the hardware. It can then reconfigure resources, e.g. a cache memory, for better performance or power
savings. If a fault is detected by hardware, the hidden VMM may be able to isolate the fault and reconfigure
hardware to avoid the faulty portion. In effect, the VMM acts as a small operating system for native proces-
sor resources in a manner similar to the way the conventional operating system manages system resources.

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 16

1.5 Virtualization
The computational function carried out by a computer system is specified in terms of architected state (regis-
ters, memory) and instructions that cause changes in the architected state. In the physical implementation,
there is also state in the form of latches, flip-flops, and DRAM, for example. And, at any given time, there is
a mapping from the architected state to the implementation state (Figure 0-13). Instructions in the architec-
ture cause state transitions in the implementation, such that the change in implementation state can be inter-
preted as a corresponding change in the implementation state. Over the course of a computation, the exact
implementation element (e.g. a register) that corresponds to a particular architected element may change; for
example when register renaming is used. Nevertheless, at certain points during the computation, it must be
possible to construct the “precise” architected state. In a modern hardware implementation, one of the
more challenging situations is when an exception condition (trap or interrupt) occurs, and the entire archi-
tected state must be materialized.

Architected
Registers
& Memory

GPRs

FPRs
system regs.

Instruction Set

Load/store ops

Arithmetic ops

Control ops

latch

latch

RAM

latch

RAM

latch

Implementation
State

Instruction Set Architecture

memory space

Figure 0-13. In a computer system, architected state is mapped to implementation state. Instruction
execution causes state transitions in the implementation.

In early machines the architected and implementation state were more-or-less equivalent, that is, a register in
the physical design would typically be visible as a register in the instruction set architecture. Today, there is
often more implementation state than architected state. This implementation state includes pipeline latches,
branch predictor contents, rename registers, etc. For good performance, the architected state is usually held
in an implementation equivalent, i.e. an architected register is held in a physical register. However, as far as
function is concerned, state is state, no matter how efficient or inefficient it is to access. For example, archi-
tected register state could be held in implementation DRAM.

When a computational function is virtualized, there is an analogous situation to the one just described (see
Figure 0-14). In a virtual machine, the architected guest state maps to architected host state and the guest
instructions are emulated by host instructions that cause corresponding state transitions. In order to get high
performance, this architectural faithfulness at the instruction level is often achieved by maintaining architec-

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 17

tural faithfulness at some higher level of granularity, while providing mechanisms to backtrack and recover
the precise state at some particular instruction whenever required. The inherent assumption is that events
that need such recovery of precise state are infrequent, so that, for large stretches of time, the machine can be
running at full speed (or nearly so).

A practical difference between the virtual machine implementation and a real machine implementation is that
the real machine is implemented with a specific instruction set architecture in mind. Consequently, there is
usually a good match between the architected and implementation state, and the hardware that causes im-
plementation state transitions is well-matched for the architected instructions. In the virtual machine case,
however, the guest and host are often specified independently of each other (an exception is co-designed
VMs). This means that state mapping and instruction mapping may not necessarily be efficient. For exam-
ple, the host may have fewer registers than the guest. The efficiency of virtualization depends on the type of
VM being implemented. In the remainder of this section, we will discuss the virtualization process, i.e. the
mapping of guest onto host, for each of the VMs, and will evaluate virtualization efficiency in general terms.
This discussion will provide an overview of the major issues to be discussed throughout the book as we de-
scribe VM implementations.

Architected
Registers
& Memory

GPRs

FPRs
system regs.

Instruction Set

Load/store ops

Arithmetic ops

Control ops

Host
Instruction Set Architecture

memory space

Architected
Registers
& Memory

GPRs

FPRs
system regs.

Instruction Set

Load/store ops

Arithmetic ops

Control ops

Guest
Instruction Set Architecture

memory space

Figure 0-14. In a virtual machine, guest state is mapped to host state.

There are three aspects to the virtualization process that we will focus on: mapping of state (including both
register and memory state), instruction mapping (emulation), and precise state materialization when excep-
tions occur. While not all-inclusive, these aspects are the probably the more important ones and collectively
they represent the issues that must be considered when a process or system is virtualized.

1.5.1 Process VMs
As described in Section 1.3, there is a variety of process level virtual machines, i.e. those VMs where the
process views a virtual execution environment consisting primarily of user level instructions and operating

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 18

system calls. For each of the process VMs discussed, we will briefly summarize the major issues related to
the virtualization process: state mapping, instruction mapping, and materialization of precise state.

The easiest process virtual machine to implement is multiprogramming – because virtually all computer sys-
tems today are designed to support a multiprogrammed environment. First, the state of the process, both
registers and memory map naturally in a 1 to 1 fashion with the underlying architected state. Instructions are
natively executed, that is, they require no emulation or any other special handling. Finally, the state can be
captured precisely whenever an exception occurs, and this feature is provided by the hardware implementa-
tion. Table 0-1 summarizes the key aspects of the virtualizing process virtual machines; multiprogramming is
in the first row of the table.

Table 0-1. Key aspects of the virtualizing process VMs

State

Registers Memory
Instructions Preciseness

Multiprogramming Mapped 1:1 Mapped 1:1 native provided by
hardware

Dynamic
Translation

Mapped to
host regs.

as available

Mapped to
 available
memory

emulated provided by
VM software

Dynamic
Optimization

Mapped 1:1 Mapped 1:1 block-level
translated

provided by
VM software

HLL VMs
Mapped to
host regs.

as available

Mapped to
 available
memory

emulated/
just-in-time
compiled

provided by
VM software

Process virtual machines can also provide dynamic translation for cross-platform compatibility. For these
VMs (second row of Table 0-1) the guest state is mapped to the host state “as available”. In particular, all
guest registers can be mapped to host registers, provided there are enough host registers. In cases where there are
not, e.g. if the PowerPC (32 general registers) is being virtualized on an x86 (8 general registers), then at any
given time, some of the guest registers will have to be mapped to memory locations, which will likely reduce
efficiency. Likewise, the memory space of the guest is mapped into the memory space of the host. If the
guest address space is larger, then the VMM must manage the situation, for example by keeping some of the
guest state on disk. Because the guest and host instruction sets are different, emulation of some type must be
used. The type of emulation depends on performance requirements and can be either interpretation, transla-
tion, or both. Precise state is also provided by emulation software; that is, the software must keep track of the
correct guest state and must be able to materialize the state when an exception occurs.

With dynamic optimizers, the guest and host architectures are the same, as in multiprogramming, so ostensi-
bly the register and memory state are relatively easy to map in a 1 to 1 fashion. However, because optimiza-
tions often increase register pressure, this mapping may at times be modified with some register state being
held temporarily in memory. Although the instruction sets of the host and the guest are the same, many of

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 19

the same techniques that are used for emulation are also used for dynamic optimization. In particular, blocks
of code are scanned and optimized, with the optimized versions being cached for multiple re-use. Because
many dynamic optimizations systems are transparent to the user, exceptions must result in materialization of
a precise state with respect to the original (unoptimized) code. Consequently, the VM software will typically
track and recover correct guest state, just as it does when dynamic translation is performed.

Finally, high level language virtual machines are in many respects similar to dynamic translating VMs. An
important difference, however, is that HLL VMs are usually designed with portability in mind. Conse-
quently, although the virtualization issues may be similar to the issues with dynamic translators, the solutions
are often more straightforward. For example, some HLL VMs use a stack to specify instruction operands
rather than registers; hence, there is no problem with register mapping, and whatever registers happen to be
available in the host can be used for optimizations. The memory model in HLL VMs is usually more abstract
than in a conventional ISA, so, once again, mapping of state is simplified. Regarding instruction mapping,
HLL VMs are usually designed with ease of interpretation in mind. Consequently, they usually have a rather
“vanilla” flavor, and they are often designed to be compiled (e.g. translated) at a procedure (or method) level.
Often compilation is performed “just-in-time”, i.e. it is deferred until a method or procedure is invoked for
the first time. Finally, precise state must be provided by the VM software, but the process state and require-
ments for exception handling are often specified in ways that simplify the problem.

1.5.2 System VMs
In system VMs, both user code and system code runs on a virtual machine, and the virtualization techniques
may depend on whether code user or privileged system code is being run. Consequently when we summa-
rize the major aspects to virtualization, we distinguish these two types of code. Table 0-2 summarizes the
important considerations when implementing system level VMs.

Table 0-2. Key aspects of virtualizing system VMs

State

Registers Memory
Instructions Preciseness

User Mapped 1:1 Mapped 1:1 native provided by
hardware “Classic” System

VMs
System In memory Mapped 1:1 Native/some

emulated
provided by

hardware

User
Mapped to

available host
regs.

Mapped to
 available
memory

emulated provided by
VM software Whole System

VMs
System In memory

Mapped to
 available
memory

emulated provided by
VM software

User Mapped 1:1 Mapped 1:1 block-level
translated

provided by
hardware/VM

software
Co-Designed VMs

System Mapped 1:1 Mapped 1:1 block-level
translated

provided by
hardware/VM

software

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 20

Classic system VMs run guest software that is developed for hardware running the same ISA as the host
platform, hence, in user mode, the registers and memory state can be mapped 1 to 1, and in most VM im-
plementations, the instructions can be natively executed. There may be exceptions to this, however, depend-
ing on properties of the instruction set that will be described in Chapter 8. The system code requires special
handling because in the virtual machine implementation, this code does not actually run in a privileged mode.
Only VMM software runs in system mode because the VMM keeps overall control of the system resources
and allocates them among the various guest virtual machines. Consequently, the system registers (those used
for managing hardware resources and accessible only by system instructions) are held in memory and are
maintained by the VMM. The real system registers are used by the VMM for managing the hardware re-
sources.

Whole system VMs have many of the characteristics of the process VMs that use dynamic translation. The
major difference is that both system and user instructions must be emulated. That is, it is the ISA interface
that is of interest rather than the ABI interface. Both user registers and memory state of the guest are
mapped to guest state “as available”. Any excess guest register state is mapped to memory. The system reg-
isters, i.e. those used for managing hardware resources are mapped to memory and are maintained by the
VMM. In many whole system VMs, the VMM software also runs in user mode and relies on an underlying
host operating system for managing memory resources.

Co-designed VMs make an interesting case because here the hardware is designed specifically to implement a
guest’s instruction set. Consequently, there will most likely be adequate host register and memory resources
for all of the guest state to be mapped 1 to 1. Instructions are primarily emulated via dynamic binary transla-
tion and are optimized for high performance. Because hardware is specially designed, it may be able to sup-
port precise state recovery for exceptions, or it may do it cooperatively with VM software. Finally, because
there is typically only one guest in a co-designed VM, and the guest can be provided with both a system and
user mode of operation, even the system registers can be maintained in hardware registers.

1.6 Summary and a Taxonomy
We have just described rather broad array of VMs, with different goals and different implementations. To
put them in perspective and organize the common implementation issues, following is an overall taxonomy.
First, VMs are divided into the two major types: Process VMs and System VMs. In the first type, the VM
supports the ABI – user instructions plus system/library calls, in the second, the VM supports a complete
ISA – both user and system instructions. The remainder of the taxonomy is based on whether the guest and
host use the same ISA. Using this taxonomy, Figure 0-15 shows the "space" of virtual machines that we have
identified.

On the left side of the figure are process VMs. There are two types of process VMs where the host and guest
instruction sets are the same. The first is multiprogrammed systems, where virtualization is a natural part of
multiprogramming and is supported on most of today’s systems. The second is dynamic optimizers, which
transform guest instructions only by optimizing them, and then execute them natively. The two types of
process VMs that do provide emulation are dynamic translators and HLL VMs. HLL VMs are connected to
the VM taxonomy via a “dotted line” because their process level interface is at a different, higher level than
the other process VMs.

copyright 2004 by Elsevier Science (USA) All Rights Reserved Nov. 1, 2003
 21

Multi
programmed

Systems

HLL VMs Co-Designed
VMs

same ISA
different

ISA

Process VMs System VMs

Whole
System VMs

different
ISA

same ISA

Classic
OS VMs

Dynamic
Optmizers

Dynamic
Translators

Hosted
VMs

Figure 0-15. A taxonomy of virtual machine architectures.

On the right side of the figure are system VMs. These range from Classic OS VMs and Hosted VMs, where
replication – and providing isolated system environments – is the goal, to Whole System VMs and Co-
Designed VMs where emulation is the goal. With Whole System VMs, performance is often secondary, in
favor of accurate functionality, while with Co-Designed VMs, performance (or power efficiency) is the major
goal. Here, Co-Designed VMs are “dotted line” connected because their interface is at a lower level than
other system VMs.

THE POWER OF VIRTUAL MACH INES

A good way to end this summary is with an example of a realistic system that could conceivably be in use
today (Figure 0-16). The example clearly illustrates power of virtual machine technologies. A computer user
might have a Java application running on a laptop PC. This is nothing special; it is done via a Java virtual ma-
chine developed for x86/Linux. However, the user happens to have Linux installed as an OS VM via
VMware executing on a Windows PC. And, as it happens, the x86 hardware is in fact a Transmeta Crusoe, a
co-designed VM implementing a VLIW ISA with binary translation to support x86. Through the magic of
VMs, a Java bytecode program is actually executing as native VLIW.

Binary Trans.

Java application
JVM

Linux x86

VMware

Windows x86

Crusoe VLIW

Figure 0-16. Three levels of VMs: a Java application running on a Java VM, running on an OS VM,
running on a co-designed VM.

