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What is parallel computing? 

Using multiple processors in 
parallel to solve problems more 

quickly than with a single 
processor 

 



Examples of parallel computing 

• A cluster computer that contains multiple PCs 
combined together with a high speed network  

• A shared memory multiprocessor (SMP*) by 
connecting multiple processors to a single memory 
system 

• A Chip Multi-Processor (CMP) contains multiple 
processors (called cores) on a single chip 

 

Concurrent execution comes from desire for 
performance! 



Cost & Challenges of Parallel 
Computing/Execution 

• Communication cost 

• Synchronization cost 

• Not all problems are amenable to 
parallelization 

• Hard to think in parallel 

• Hard to debug 



Single Core vs. Multicore 



Single-core computer 



Single-core CPU chip 

the single core 

A register file is an array of processor registers in a central processing unit (CPU) 

http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Central_processing_unit


Multi-core architectures 

Replicate multiple processor cores on a single die 

Core 1 Core 2 Core 3 Core 4 

Multi-core CPU chip 



Multi-core CPU chip 

• The cores fit on a single processor socket 

• Also called CMP (Chip Multi-Processor) 
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The cores run in parallel 

core 
 
   1 

core 
 
   2 

core 
 
   3 

core 
 
   4 

thread 1 thread 2 thread 3 thread 4 



Within each core, threads are time-
sliced (like on a uniprocessor) 
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Interaction with OS 

• OS perceives each core as a separate 
processor 

 

• OS scheduler maps threads/processes  
to different cores 

 

• Most major OS support multi-core today: 
Windows, Linux, Mac OS X, … 



Why Multi-core? 



Why multi-core? 

• Difficult to make single-core clock frequencies even 
higher  

• Deeply pipelined circuits: 
– heat problems 
– speed of light problems 
– difficult design and verification 
– large design teams necessary 
– server farms need expensive 

air-conditioning 

• Many new applications are multithreaded  
• General trend in computer architecture (shift towards 

more parallelism) 
• Save power 



Multicore Processors Save Power 



Concurrency vs. Parallelism: Same 
meaning? 

• Concurrency: At least two tasks are making 
progress at the same time frame. 
– Not necessarily at the same time 

– Include techniques like time-slicing 

– Can be implemented on a single processing unit 

– Concept more general than parallelism 

• Parallelism: At least two tasks execute literally 
at the same time. 
– Requires hardware with multiple processing units 







Questions 

• If we have as much hardware as we want, do 
we get as much parallelism as we wish? 

• If we have 2 cores, do we get 2x speedup? 



Amdahl’s Law 



What was Amdahl trying to say? 

• Don’t invest blindly on large number of 
processors 

• Having faster core (or processor at his time) 
makes more sense than having many cores. 

• Was he right? 
– At his days (the law appeared 1967) may programs 

have long sequential parts 
• This is not necessarily the case nowadays 

– It is not very easy to find F (sequential portion) 



So… 
• Decreasing the serialized portion is of greater 

importance than adding more cores 

• Only when a program is mostly parallelized, does 
adding more processors help more than parallelizing 
the remaining rest 

• Gustafson’s law: computations involving arbitrarily 
large data sets can be efficiently parallelized 

• Both Amdahl and Gustafson do not take into account: 
– The overhead of synchronization, communication, OS, etc. 

– Load may not be balanced among cores 

• So you have to use these laws as guidelines and 
theoretical bounds only. 



DAG Models for Multithreading 



DAG Models for Multithreading 



Can we define parallelism now? 



Can we define parallelism now? 



Parallelism Granularity 

• Instruction Level Parallelism (ILP) 

• Thread Level Parallelism (TLP) 



Instruction-level parallelism 

• Parallelism at the machine-instruction level 

• The processor can re-order, pipeline 
instructions, split them into microinstructions, 
do aggressive branch prediction, etc. 

• Instruction-level parallelism enabled rapid 
increases in processor speeds over the last 15 
years 



Thread-level parallelism (TLP) 

• This is parallelism on a more coarser scale 

• Server can serve each client in a separate 
thread (Web server, database server) 

• A computer game can do AI, graphics, and 
physics in three separate threads 

• Single-core superscalar processors cannot fully 
exploit TLP 

• Multi-core architectures are the next step in 
processor evolution: explicitly exploiting TLP 



General context: multiprocessors 

• Multiprocessor is any  
computer with several  
processors 

 

• SIMD 
– Single instruction, multiple data 

– Modern graphics cards 

• MIMD 
– Multiple instructions, multiple data 

 

Lemieux cluster, 
Pittsburgh  

supercomputing  
center 

http://www.psc.edu/machines/tcs/lemieux.html


Flynn Classification: Computer 
Architecture 

• Proposed by Michael Flynn in 1966 

• Based on: Instructions & Data 





SIMD vs. MIMD 

• MIMD = Multiple Instruction, Multiple Data 

– “traditional” parallel processing 

– N processors all doing their own thing 

• SIMD = Singe Instruction, Multiple Data 

– All processors do exactly the same thing 

– Simple hardware 



Multiprocessor (MIMD) memory types 

• Shared memory: 
In this model, there is one (large) common 
shared memory for all processors 

 

• Distributed memory: 
In this model, each processor has its own 
(small) local memory, and its content is not 
replicated anywhere else 

• Hybrid 





Multi-core processor is a special kind of a 
multiprocessor: 

All processors are on the same chip 

 
• Multi-core processors are MIMD: 

Different cores execute different threads (Multiple 
Instructions), operating on different parts of memory 
(Multiple Data). 

 

• Multi-core is a shared memory multiprocessor: 
All cores share the same memory 

 



What applications benefit  
from multi-core? 

• Database servers 

• Web servers (Web commerce) 

• Compilers 

• Multimedia applications 

• Scientific applications, CAD/CAM 

• In general, applications with  
Thread-level parallelism 
(as opposed to instruction-level 
parallelism) 

Each can 
run on its 
own core  
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More examples 

• Editing a photo while recording a TV show 
through a digital video recorder 

• Downloading software while running an anti-
virus program  

• “Anything that can be threaded today will map 
efficiently to multi-core” 

• BUT: some applications difficult to 
parallelize 



Single superscalar core 

Equipped with SMT  

– Simultaneous MultiThreading  



Simultaneous multithreading: 
complementary to multi-cores 

• Problem addressed: 
The processor pipeline  
can get stalled: 
– Waiting for the result  

of a long floating point  
(or integer) operation 

– Waiting for data to  
arrive from memory  
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Source: Intel 



Simultaneous multithreading (SMT) 

• Permits multiple independent threads to execute 
SIMULTANEOUSLY on the SAME core 

• Weaving together multiple “threads”  
on the same core 

 

• Example: if one thread is waiting for a floating point 
operation to complete, another thread can use the 
integer units 
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Thread 1: floating point 

Without SMT, only a single thread can run 
at any given time 



Without SMT, only a single thread can run 
at any given time 
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Thread 2: 
integer operation 



SMT processor: both threads can run 
concurrently 
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Thread 1: floating point Thread 2: 
integer operation 



But: Can’t simultaneously use  the same 
functional unit 
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Thread 1 Thread 2 

This scenario is 
impossible with SMT 
on a single core 
(assuming a single 
integer unit) IMPOSSIBLE 



SMT not a “true” parallel processor 

• Enables better threading (e.g. up to 30%) 

• OS and applications perceive each simultaneous 
thread as a separate  
“virtual processor” 

• The chip has only a single copy  
of each resource 

• Compare to multi-core: 
each core has its own copy of resources 



Multi-core:  
threads can run on separate cores 
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Multi-core:  
threads can run on separate cores 



Combining Multi-core and SMT 

• Cores can be SMT-enabled (or not) 

• The different combinations: 

– Single-core, non-SMT: standard uniprocessor 

– Single-core, with SMT  

– Multi-core, non-SMT 

– Multi-core, with SMT 

• The number of SMT threads: 
2, 4, or sometimes 8 simultaneous threads 

• Intel calls them “hyper-threads”  



SMT Dual-core: all four threads can run 
concurrently 
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Comparison: multi-core vs SMT 

• Advantages/disadvantages? 
 



Comparison: multi-core vs SMT 

• Multi-core: 
– Since there are several cores, 

each is smaller and not as powerful 
(but also easier to design and manufacture) 

– However, great with thread-level parallelism 

• SMT 
– Can have one large and fast superscalar core 

– Great performance on a single thread 

– Mostly still only exploits instruction-level 
parallelism 



The memory hierarchy 

• If simultaneous multithreading only:  

– all caches shared 

• Multi-core chips: 

– L1 caches private 

– L2 caches private in some architectures 
and shared in others 

• Memory is always shared 



“Fish” machines 

• Dual-core 
Intel Xeon processors 
 

• Each core is  
hyper-threaded 
 

• Private L1 caches 

• Shared L2 caches 
memory 
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Designs with private L2 caches 
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L2 cache 

Both L1 and L2 are private 
 
Examples: AMD Opteron,  
AMD Athlon, Intel Pentium D 
 

L3 cache L3 cache 

A design with L3 caches 
 
Example: Intel Itanium 2 



Private vs shared caches? 

• Advantages/disadvantages? 
 



Private vs shared caches 

• Advantages of private: 

– They are closer to core, so faster access 

– Reduces contention 

• Advantages of shared: 

– Threads on different cores can share the same 
cache data 

– More cache space available if a single (or a few) 
high-performance thread runs on the system 



The cache coherence problem 

• Since we have private caches: 
How to keep the data consistent across caches? 

• Each core should perceive the memory as a 
monolithic array, shared by all the cores 

 

 

 



The cache coherence problem 

Suppose variable x initially contains 15213 
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The cache coherence problem 

Core 1 reads x 
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The cache coherence problem 

Core 2 reads x 
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The cache coherence problem 

Core 1 writes to x, setting it to 21660 
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The cache coherence problem 

Core 2 attempts to read x… gets a stale copy 
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Solutions for cache coherence 

• This is a general problem with multiprocessors, 
not limited just to multi-core 

• There exist many solution algorithms, coherence 
protocols, etc. 

 

• A simple solution: 
invalidation-based protocol with snooping 
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Invalidation protocol with snooping 

• Invalidation: 
If a core writes to a data item, all other copies of 
this data item in other caches are invalidated 

• Snooping:  
All cores continuously “snoop” (monitor) the bus 
connecting the cores. 

 
Snooping is the process where the individual caches monitor 
address lines for accesses to memory locations that they have 
cached. When a write operation is observed to a location that a 
cache has a copy of, the cache controller invalidates its own copy of 
the snooped memory location. 

http://en.wikipedia.org/wiki/Bus_sniffing


The cache coherence problem 

Revisited: Cores 1 and 2 have both read x 
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The cache coherence problem 

Core 1 writes to x, setting it to 21660 
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The cache coherence problem 

   After invalidation: 
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The cache coherence problem 

Core 2 reads x. Cache misses, and loads the new copy. 
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Alternative to invalidate protocol: update 
protocol 

Core 1 writes x=21660: 
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Which do you think is better? 
Invalidation or update? 

 



Invalidation vs update 

• Multiple writes to the same location 

– invalidation: only the first time 

– update: must broadcast each write  
            (which includes new variable value) 

 

• Invalidation generally performs better: 
it generates less bus traffic 



Programming for multi-core 

• Programmers must use threads or processes 
 

• Spread the workload across multiple cores 
 

• Write parallel algorithms 
 

• OS will map threads/processes to cores 



Thread safety very important 

• Pre-emptive context switching: 
context switch can happen AT ANY TIME 
 

• True concurrency, not just uniprocessor time-
slicing 
 

• Concurrency bugs exposed much faster with 
multi-core 



However: Need to use synchronization even if only 
time-slicing on a uniprocessor 

int counter=0; 

 

void thread1() { 

 int temp1=counter; 

 counter = temp1 + 1; 

} 

 

void thread2() { 

 int temp2=counter; 

 counter = temp2 + 1; 

} 

 



Need to use synchronization even if only time-
slicing on a uniprocessor 

temp1=counter; 

counter = temp1 + 1; 

temp2=counter; 

counter = temp2 + 1 

 

temp1=counter; 

temp2=counter; 

counter = temp1 + 1; 

counter = temp2 + 1 

 

gives counter=2 

gives counter=1 



Assigning threads to the cores 

 

• Each thread/process has an affinity mask 

 

• Affinity mask specifies what cores the thread 
is allowed to run on 

 

• Different threads can have different masks 

 

• Affinities are inherited across fork() 

 



Affinity masks are bit vectors 

• Example: 4-way multi-core, without SMT 

1 0 1 1 

core 3 core 2 core 1 core 0 

• Process/thread is allowed to run on 
  cores 0,2,3, but not on core 1 



Affinity masks when multi-core and SMT 
combined 

• Separate bits for each simultaneous thread 

• Example: 4-way multi-core,  2 threads per core 
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Default Affinities 

• Default affinity mask is all 1s: 
all threads can run on all processors 

 

• Then, the OS scheduler decides what threads 
run on what core 
 

• OS scheduler detects skewed workloads, 
migrating threads to less busy processors  

 



Process migration is costly 

• Need to restart the execution pipeline 

• Cached data is invalidated 

• OS scheduler tries to avoid migration as much as 
possible:  
it tends to keeps a thread on the same core  

• This is called soft affinity 

 



Hard affinities 

 

• The programmer can prescribe her own 
affinities (hard affinities) 

 

• Rule of thumb: use the default scheduler 
unless a good reason not to 

 

 



When to set your own affinities 

• Two (or more) threads share data-structures in 
memory 

– map to same core so that can share cache 

• Real-time threads: 
Example: a thread running  
a robot controller: 
- must not be context switched,  
  or else robot can go unstable 
- dedicate an entire core just to this thread 

Source: Sensable.com 



Kernel scheduler API 

#include <sched.h> 

int sched_getaffinity(pid_t pid,   

unsigned int len, unsigned long * mask); 

 

Retrieves the current affinity mask of process ‘pid’ and stores it 
into space pointed to by ‘mask’. 

‘len’ is the system word size: sizeof(unsigned int long) 

 

 



Kernel scheduler API 

#include <sched.h> 

int sched_setaffinity(pid_t pid,   

unsigned int len, unsigned long * mask); 

 

Sets  the current affinity mask of process ‘pid’ to *mask  

‘len’ is the system word size: sizeof(unsigned int long) 

 

To query affinity of a running process: 
$ taskset -p 3935 

pid 3935's current affinity mask: f 

 

 



Windows Task Manager 

core 2 

core 1 



Legal licensing issues 

• Will software vendors charge a separate 
license per each core or only a single license 
per chip? 

 

• Microsoft, Red Hat Linux, Suse Linux will 
license their OS per chip, not per core 

 



Attempts to Make Multicore 
Programming Easy 
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Attempts to Make Multicore 
Programming Easy 



Mutlicore and Manycore 

• Dilemma 
– Parallel hardware is ubiquitous 

– Parallel software is not! 

– After over 25 years of research, we are not closer to 
solving the parallel programming model! 



Conclusions 

• Multi-core chips an  
important new trend in  
computer architecture  
 

• Several new multi-core  
chips in design phases 

 

• Parallel programming techniques 
likely to gain importance 
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