
Multi-core Architectures

Dr. Yingwu Zhu

What is parallel computing?

Using multiple processors in
parallel to solve problems more

quickly than with a single
processor

Examples of parallel computing

• A cluster computer that contains multiple PCs
combined together with a high speed network

• A shared memory multiprocessor (SMP*) by
connecting multiple processors to a single memory
system

• A Chip Multi-Processor (CMP) contains multiple
processors (called cores) on a single chip

Concurrent execution comes from desire for
performance!

Cost & Challenges of Parallel
Computing/Execution

• Communication cost

• Synchronization cost

• Not all problems are amenable to
parallelization

• Hard to think in parallel

• Hard to debug

Single Core vs. Multicore

Single-core computer

Single-core CPU chip

the single core

A register file is an array of processor registers in a central processing unit (CPU)

http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Central_processing_unit

Multi-core architectures

Replicate multiple processor cores on a single die

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip

Multi-core CPU chip

• The cores fit on a single processor socket

• Also called CMP (Chip Multi-Processor)

core

 1

core

 2

core

 3

core

 4

The cores run in parallel

core

 1

core

 2

core

 3

core

 4

thread 1 thread 2 thread 3 thread 4

Within each core, threads are time-
sliced (like on a uniprocessor)

core

 1

core

 2

core

 3

core

 4

Several threads Several threads Several threads Several threads

Interaction with OS

• OS perceives each core as a separate
processor

• OS scheduler maps threads/processes
to different cores

• Most major OS support multi-core today:
Windows, Linux, Mac OS X, …

Why Multi-core?

Why multi-core?

• Difficult to make single-core clock frequencies even
higher

• Deeply pipelined circuits:
– heat problems
– speed of light problems
– difficult design and verification
– large design teams necessary
– server farms need expensive

air-conditioning

• Many new applications are multithreaded
• General trend in computer architecture (shift towards

more parallelism)
• Save power

Multicore Processors Save Power

Concurrency vs. Parallelism: Same
meaning?

• Concurrency: At least two tasks are making
progress at the same time frame.
– Not necessarily at the same time

– Include techniques like time-slicing

– Can be implemented on a single processing unit

– Concept more general than parallelism

• Parallelism: At least two tasks execute literally
at the same time.
– Requires hardware with multiple processing units

Questions

• If we have as much hardware as we want, do
we get as much parallelism as we wish?

• If we have 2 cores, do we get 2x speedup?

Amdahl’s Law

What was Amdahl trying to say?

• Don’t invest blindly on large number of
processors

• Having faster core (or processor at his time)
makes more sense than having many cores.

• Was he right?
– At his days (the law appeared 1967) may programs

have long sequential parts
• This is not necessarily the case nowadays

– It is not very easy to find F (sequential portion)

So…
• Decreasing the serialized portion is of greater

importance than adding more cores

• Only when a program is mostly parallelized, does
adding more processors help more than parallelizing
the remaining rest

• Gustafson’s law: computations involving arbitrarily
large data sets can be efficiently parallelized

• Both Amdahl and Gustafson do not take into account:
– The overhead of synchronization, communication, OS, etc.

– Load may not be balanced among cores

• So you have to use these laws as guidelines and
theoretical bounds only.

DAG Models for Multithreading

DAG Models for Multithreading

Can we define parallelism now?

Can we define parallelism now?

Parallelism Granularity

• Instruction Level Parallelism (ILP)

• Thread Level Parallelism (TLP)

Instruction-level parallelism

• Parallelism at the machine-instruction level

• The processor can re-order, pipeline
instructions, split them into microinstructions,
do aggressive branch prediction, etc.

• Instruction-level parallelism enabled rapid
increases in processor speeds over the last 15
years

Thread-level parallelism (TLP)

• This is parallelism on a more coarser scale

• Server can serve each client in a separate
thread (Web server, database server)

• A computer game can do AI, graphics, and
physics in three separate threads

• Single-core superscalar processors cannot fully
exploit TLP

• Multi-core architectures are the next step in
processor evolution: explicitly exploiting TLP

General context: multiprocessors

• Multiprocessor is any
computer with several
processors

• SIMD
– Single instruction, multiple data

– Modern graphics cards

• MIMD
– Multiple instructions, multiple data

Lemieux cluster,
Pittsburgh

supercomputing
center

http://www.psc.edu/machines/tcs/lemieux.html

Flynn Classification: Computer
Architecture

• Proposed by Michael Flynn in 1966

• Based on: Instructions & Data

SIMD vs. MIMD

• MIMD = Multiple Instruction, Multiple Data

– “traditional” parallel processing

– N processors all doing their own thing

• SIMD = Singe Instruction, Multiple Data

– All processors do exactly the same thing

– Simple hardware

Multiprocessor (MIMD) memory types

• Shared memory:
In this model, there is one (large) common
shared memory for all processors

• Distributed memory:
In this model, each processor has its own
(small) local memory, and its content is not
replicated anywhere else

• Hybrid

Multi-core processor is a special kind of a
multiprocessor:

All processors are on the same chip

• Multi-core processors are MIMD:

Different cores execute different threads (Multiple
Instructions), operating on different parts of memory
(Multiple Data).

• Multi-core is a shared memory multiprocessor:
All cores share the same memory

What applications benefit
from multi-core?

• Database servers

• Web servers (Web commerce)

• Compilers

• Multimedia applications

• Scientific applications, CAD/CAM

• In general, applications with
Thread-level parallelism
(as opposed to instruction-level
parallelism)

Each can
run on its
own core

38

More examples

• Editing a photo while recording a TV show
through a digital video recorder

• Downloading software while running an anti-
virus program

• “Anything that can be threaded today will map
efficiently to multi-core”

• BUT: some applications difficult to
parallelize

Single superscalar core

Equipped with SMT

– Simultaneous MultiThreading

Simultaneous multithreading:
complementary to multi-cores

• Problem addressed:
The processor pipeline
can get stalled:
– Waiting for the result

of a long floating point
(or integer) operation

– Waiting for data to
arrive from memory

 Other execution units
wait unused! BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

Source: Intel

Simultaneous multithreading (SMT)

• Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

• Weaving together multiple “threads”
on the same core

• Example: if one thread is waiting for a floating point
operation to complete, another thread can use the
integer units

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROM BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

Thread 1: floating point

Without SMT, only a single thread can run
at any given time

Without SMT, only a single thread can run
at any given time

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROM BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

Thread 2:
integer operation

SMT processor: both threads can run
concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROM BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

Thread 1: floating point Thread 2:
integer operation

But: Can’t simultaneously use the same
functional unit

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROM BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

Thread 1 Thread 2

This scenario is
impossible with SMT
on a single core
(assuming a single
integer unit) IMPOSSIBLE

SMT not a “true” parallel processor

• Enables better threading (e.g. up to 30%)

• OS and applications perceive each simultaneous
thread as a separate
“virtual processor”

• The chip has only a single copy
of each resource

• Compare to multi-core:
each core has its own copy of resources

Multi-core:
threads can run on separate cores

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

Thread 1 Thread 2

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

Thread 3 Thread 4

Multi-core:
threads can run on separate cores

Combining Multi-core and SMT

• Cores can be SMT-enabled (or not)

• The different combinations:

– Single-core, non-SMT: standard uniprocessor

– Single-core, with SMT

– Multi-core, non-SMT

– Multi-core, with SMT

• The number of SMT threads:
2, 4, or sometimes 8 simultaneous threads

• Intel calls them “hyper-threads”

SMT Dual-core: all four threads can run
concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
h

e
an

d
 C

o
n

tr
o

l
B

u
s

Thread 1 Thread 3 Thread 2 Thread 4

Comparison: multi-core vs SMT

• Advantages/disadvantages?

Comparison: multi-core vs SMT

• Multi-core:
– Since there are several cores,

each is smaller and not as powerful
(but also easier to design and manufacture)

– However, great with thread-level parallelism

• SMT
– Can have one large and fast superscalar core

– Great performance on a single thread

– Mostly still only exploits instruction-level
parallelism

The memory hierarchy

• If simultaneous multithreading only:

– all caches shared

• Multi-core chips:

– L1 caches private

– L2 caches private in some architectures
and shared in others

• Memory is always shared

“Fish” machines

• Dual-core
Intel Xeon processors

• Each core is
hyper-threaded

• Private L1 caches

• Shared L2 caches
memory

L2 cache

L1 cache L1 cache C
 O

 R
 E

 1

C
 O

 R
 E

 0

hyper-threads

Designs with private L2 caches

memory

L2 cache

L1 cache L1 cache C
 O

 R
 E

 1

C
 O

 R
 E

 0

L2 cache

memory

L2 cache

L1 cache L1 cache C
 O

 R
 E

 1

C
 O

 R
 E

 0

L2 cache

Both L1 and L2 are private

Examples: AMD Opteron,
AMD Athlon, Intel Pentium D

L3 cache L3 cache

A design with L3 caches

Example: Intel Itanium 2

Private vs shared caches?

• Advantages/disadvantages?

Private vs shared caches

• Advantages of private:

– They are closer to core, so faster access

– Reduces contention

• Advantages of shared:

– Threads on different cores can share the same
cache data

– More cache space available if a single (or a few)
high-performance thread runs on the system

The cache coherence problem

• Since we have private caches:
How to keep the data consistent across caches?

• Each core should perceive the memory as a
monolithic array, shared by all the cores

The cache coherence problem

Suppose variable x initially contains 15213

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=15213

multi-core chip

The cache coherence problem

Core 1 reads x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=15213

multi-core chip

The cache coherence problem

Core 2 reads x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=15213

multi-core chip

The cache coherence problem

Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=21660

multi-core chip

assuming
write-through
caches

The cache coherence problem

Core 2 attempts to read x… gets a stale copy

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=21660

multi-core chip

Solutions for cache coherence

• This is a general problem with multiprocessors,
not limited just to multi-core

• There exist many solution algorithms, coherence
protocols, etc.

• A simple solution:
invalidation-based protocol with snooping

Inter-core bus

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory

multi-core chip

inter-core
bus

Invalidation protocol with snooping

• Invalidation:
If a core writes to a data item, all other copies of
this data item in other caches are invalidated

• Snooping:
All cores continuously “snoop” (monitor) the bus
connecting the cores.

Snooping is the process where the individual caches monitor
address lines for accesses to memory locations that they have
cached. When a write operation is observed to a location that a
cache has a copy of, the cache controller invalidates its own copy of
the snooped memory location.

http://en.wikipedia.org/wiki/Bus_sniffing

The cache coherence problem

Revisited: Cores 1 and 2 have both read x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=15213

multi-core chip

The cache coherence problem

Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=21660

multi-core chip

assuming
write-through
caches

INVALIDATED sends
invalidation
request

inter-core
bus

The cache coherence problem

 After invalidation:

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=21660

multi-core chip

The cache coherence problem

Core 2 reads x. Cache misses, and loads the new copy.

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=21660

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=21660

multi-core chip

Alternative to invalidate protocol: update
protocol

Core 1 writes x=21660:

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=21660

One or more
levels of

cache

One or more
levels of

cache

Main memory

x=21660

multi-core chip

assuming
write-through
caches

UPDATED

broadcasts
updated
value inter-core

bus

Which do you think is better?
Invalidation or update?

Invalidation vs update

• Multiple writes to the same location

– invalidation: only the first time

– update: must broadcast each write
 (which includes new variable value)

• Invalidation generally performs better:
it generates less bus traffic

Programming for multi-core

• Programmers must use threads or processes

• Spread the workload across multiple cores

• Write parallel algorithms

• OS will map threads/processes to cores

Thread safety very important

• Pre-emptive context switching:
context switch can happen AT ANY TIME

• True concurrency, not just uniprocessor time-
slicing

• Concurrency bugs exposed much faster with
multi-core

However: Need to use synchronization even if only
time-slicing on a uniprocessor

int counter=0;

void thread1() {

 int temp1=counter;

 counter = temp1 + 1;

}

void thread2() {

 int temp2=counter;

 counter = temp2 + 1;

}

Need to use synchronization even if only time-
slicing on a uniprocessor

temp1=counter;

counter = temp1 + 1;

temp2=counter;

counter = temp2 + 1

temp1=counter;

temp2=counter;

counter = temp1 + 1;

counter = temp2 + 1

gives counter=2

gives counter=1

Assigning threads to the cores

• Each thread/process has an affinity mask

• Affinity mask specifies what cores the thread
is allowed to run on

• Different threads can have different masks

• Affinities are inherited across fork()

Affinity masks are bit vectors

• Example: 4-way multi-core, without SMT

1 0 1 1

core 3 core 2 core 1 core 0

• Process/thread is allowed to run on
 cores 0,2,3, but not on core 1

Affinity masks when multi-core and SMT
combined

• Separate bits for each simultaneous thread

• Example: 4-way multi-core, 2 threads per core

1

core 3 core 2 core 1 core 0

1 0 0 1 0 1 1

thread
1

• Core 2 can’t run the process
• Core 1 can only use one simultaneous thread

thread
0

thread
1

thread
0

thread
1

thread
0

thread
1

thread
0

Default Affinities

• Default affinity mask is all 1s:
all threads can run on all processors

• Then, the OS scheduler decides what threads
run on what core

• OS scheduler detects skewed workloads,
migrating threads to less busy processors

Process migration is costly

• Need to restart the execution pipeline

• Cached data is invalidated

• OS scheduler tries to avoid migration as much as
possible:
it tends to keeps a thread on the same core

• This is called soft affinity

Hard affinities

• The programmer can prescribe her own
affinities (hard affinities)

• Rule of thumb: use the default scheduler
unless a good reason not to

When to set your own affinities

• Two (or more) threads share data-structures in
memory

– map to same core so that can share cache

• Real-time threads:
Example: a thread running
a robot controller:
- must not be context switched,
 or else robot can go unstable
- dedicate an entire core just to this thread

Source: Sensable.com

Kernel scheduler API

#include <sched.h>

int sched_getaffinity(pid_t pid,

unsigned int len, unsigned long * mask);

Retrieves the current affinity mask of process ‘pid’ and stores it
into space pointed to by ‘mask’.

‘len’ is the system word size: sizeof(unsigned int long)

Kernel scheduler API

#include <sched.h>

int sched_setaffinity(pid_t pid,

unsigned int len, unsigned long * mask);

Sets the current affinity mask of process ‘pid’ to *mask

‘len’ is the system word size: sizeof(unsigned int long)

To query affinity of a running process:
$ taskset -p 3935

pid 3935's current affinity mask: f

Windows Task Manager

core 2

core 1

Legal licensing issues

• Will software vendors charge a separate
license per each core or only a single license
per chip?

• Microsoft, Red Hat Linux, Suse Linux will
license their OS per chip, not per core

Attempts to Make Multicore
Programming Easy

Attempts to Make Multicore
Programming Easy

Attempts to Make Multicore
Programming Easy

Attempts to Make Multicore
Programming Easy

Mutlicore and Manycore

• Dilemma
– Parallel hardware is ubiquitous

– Parallel software is not!

– After over 25 years of research, we are not closer to
solving the parallel programming model!

Conclusions

• Multi-core chips an
important new trend in
computer architecture

• Several new multi-core
chips in design phases

• Parallel programming techniques
likely to gain importance

Acknowledgement

• Some slides are adapted from

– Jernej Barbic

– Mohamed Zahran

