
Threads

Dr. Yingwu Zhu

Processes are expensive

• Recall that a process includes many things
– An address space (defining all the code and data pages)

– OS resources (e.g., open files) and accounting information

– Execution state (PC, SP, regs, etc.)

• Creating a new process is costly because of all of the
data structures that must be allocated and initialized
– FreeBSD: 81 fields, 408 bytes

– …which does not even include page tables, etc.

• Communicating between processes is costly because
most communication goes through the OS
– Overhead of system calls and copying data

Parallel programs

• E.g.: A multi-processing web server that forks off copies of
itself to handle multiple simultaneous requests
– Or any parallel program that executes on a multiprocessor

• To execute these programs we need to
– Create several processes that execute in parallel

– Cause each to map to the same address space to share data

• They are all part of the same computation

• Have the OS schedule these processes in parallel (logically or
physically)

• This situation is very inefficient
– Space: PCB, page tables, etc.

– Time: create data structures, fork and copy addr space, etc.

Rethinking Processes

• What is similar in these cooperating processes?
– They all share the same code and data (address space)
– They all share the same privileges
– They all share the same resources (files, sockets, etc.)

• What don’t they share?
– Each has its own execution state: PC, SP, and registers

• Key idea: Why don’t we separate the concept of a
process from its execution state?
– Process: address space, privileges, resources, etc.
– Execution state: PC, SP, registers

• Exec state also called thread of control, or thread

Threads

• Modern OSes (Mach, Chorus, NT, modern Unix)
separate the concepts of processes and threads
– The thread defines a sequential execution stream within a

process (PC, SP, registers)

– The process defines the address space and general process
attributes (everything but threads of execution)

• A thread is bound to a single process
– Processes, however, can have multiple threads

• Threads become the unit of scheduling
– Processes are now the containers in which threads execute

– Processes become static, threads are the dynamic entities

Multi-threaded Models

Sharing

• The items that are shared among threads
within a process are:
– Text segment (instructions)

– Data segment (static and global data)

– BSS segment (uninitialized data)

– Open file descriptors

– Signals

– Current working directory

– User and group IDs

Not Shared

• A multithread-aware OS also needs to keep track
of threads

• The items that the operating system must store
that are unique to each thread are:
– Thread ID

– Saved registers, stack pointer, instruction pointer

– Stack (local variables, temporary variables, return
addresses)

– Signal mask

– Priority (scheduling information)

Why Threads?

• Threads are more efficient
– Much less overhead to create: no need to create a

new memory map and allocate new structures to
track open files & reference counts

• Sharing memory is easy (inborn)
– Do not need IPC

• Take advantage of multiple CPUs – just like
processes
– Scale in performance as the number of processors or

cores increases

How OS manage threads?

• PCB contains one
or more Thread
Control Blocks
(TCB):
– Thread ID

– Saved registers

– Other per-thread
info (signal mask,
scheduling
parameters)

Scheduling

• A traditional, non-multithreaded OS
scheduled processes

• A thread-aware OS schedules threads, not
processes

– A process is just a container for one or more
threads

Scheduling

• Scheduler has to realize

– Context switch among threads of different processes
is more expensive

• Flush cache memory (or have memory with process tags)

• Flush virtual memory TLB (or have tagged TLB)

• Replace page table pointer in memory management unit

– Scheduling threads onto a different CPU is more
expensive

• The CPU’s cache may have memory used by the thread
cached

• CPU affinity

Thread Programming Pattern

• Single task thread
– Create a thread for a specific job and the thread exits

upon completion

• Worker thread
– Specific task for each worker thread
– Dispatch task to the thread that handles it

• Thread pools
– Creates a number of threads upon start-up
– All of these threads then grab work items off the same

work queue
– Wait if no thread available
– Common model for servers

Kernel-level threads vs. User-level
threads

• Kernel level

– Threads supported by OS

– OS handles scheduling, creation, synchronization

• User level

– Library with code for creation, termination,
scheduling

– Kernel sees one execution context: one process

– May or may not be preemptive

User-level threads & Threading library

• A threading library is responsible for handling the
saving and switching of the execution context from one
thread to another
– Allocate a region of memory within the process that will

serve as a stack for each thread
– Save and swap registers and the instruction pointer as the

library switches execution from one thread to another
– Threads call the threading library to yield its use of the

processor to another thread
– Or: ask OS for a timer-based interrupt (e.g., setitimer

system call). When the process gets the interrupt (via the
signal mechanism), the function in the threading library
that registered for the signal is called and handles the
saving of the current registers, stack pointer, and stack and
restoring those items from the saved context of another
thread.

User-level threads

• Advantages
– Low cost: user level operations, no switching to the

kernel
– Scheduling algorithms can be replaced eaisly &

custom to app
– Greater portability

• Disadvantages
– If a thread is blocked, all threads for the process are

blocked
• Every system call needs an asynchronous counterpart

– Cannot take advantage of multiprocessing

You can have both!

• User-level thread library on top of multiple kernel
threads

• 1:1 – pure kernel threads only
– 1 user thread = 1 kernel thread
– E.g. win32, Linux, Windows 7, FreeBSD

• N:1 – pure user threads only
– N user threads on 1 kernel thread/process
– E.g. Early version of Java

• N:M – hybrid threading
– N user threads on M kernel threads

POSIX Threads (Pthreads)

• Low-level threading libraries

• Native threading interface for Linux now

• Use kernel-level thread (1:1 model)

• Developed by the IEEE committees in charge
of specifying a portable operating system
interface (POSIX)

• Shared memory

Using Pthreads

Example

#include <pthread.h>
#include <stdio.h>
void * entry_point(void *arg) {
 printf("Hello world!\n");
 pthread_exit(NULL); //return NULL;
}
int main(int argc, char **argv) {
 pthread_t thr;
 if(pthread_create(&thr, NULL, &entry_point, NULL)) {
 printf("Could not create thread\n");
 return -1; }
 if(pthread_join(thr, NULL)) {
 printf("Could not join thread\n");
 return -1; }
 return 0;
}

Linux clone() system call

Acknowledgement

• Some slides are adapted from Dr. Paul
Krzyzanowski

