
Synchronization

Dr. Yingwu Zhu

Concurrency
• Concurrent threads/processes

– The threads run at the same time in multiprocessing
environments or their execution is interleaved through
preemption

• Asynchronous
– Threads require occasional synchronization & communication
– For the most part, the execution of one thread neither speeds

up nor slows down the execution of another.

• Independent
– Do not have any reliance on each other

• Synchronous
– Frequent synchronization with each other – order of execution

is guaranteed!

• Parallel
– Threads run at the same time on separate processors.

Race Condition

• A race condition is a bug

– The outcome of concurrent threads are
unexpectedly dependent on a specific sequence of
events

• Cause:

– Multiple threads access shared data and resources

– Uncontrolled access to the shared data results in
data inconsistency!

Classic Example
• Your current bank balance is $1,000

• Withdraw $500 from an ATM machine while a
$5,000 direct deposit is coming in

• Possible outcomes

– Total balance: $5500, $500, $6000

Synchronization

• Synchronization deals with developing
techniques to avoid race conditions

• Something as simple as: x = x + 1

– May have a race condition

Mutual Exclusion

• Critical section
– Region in a program where race conditions can arise

• Mutual exclusion
– Allow only one thread to access a critical section at a time

• Deadlock
– A thread is perpetually blocked (circular dependency on

resources)

• Starvation
– A thread is perpetually denied resources

• Livelock
– Threads run but no progress in execution

Controlling Critical Section Access:
Locks

• Grab and release locks around critical section

• What if cannot get a lock?

Solution to Critical-Section Problem
MUST satisfy the following requirements:

1. Mutual Exclusion -- No threads is inside the same critical section
simultaneously

2. Progress - If no thread is executing in its critical section and some
thread or threads want to enter the critical section, the selection
of a thread that can do so cannot be delayed indefinitely.
– if only one thread wants to enter, it should be permitted to do so.

– If more than one wants to enter, only one of them should be allowed
to.

3. Bounded Waiting - No thread should wait forever to enter a
critical section.

4. No thread running outside its critical section may block others
from entering a critical section

5. Performance -- The overhead of entering and exiting the critical
section is small with respect to the work being done within it

A good solution ensures…

• No assumptions are made on the number of
processors.
– Threads run at the same time on different processors

• No assumptions are made on the number of
threads or processes
– Support arbitrary # of threads/processes

• No assumptions are made on the relative speed
of each thread.
– No knowledge of when or if a thread will request a

critical section again

Critical section & the kernel

• Multiprocessors
– Multiple threads/processes on different processors may

access the kernel simultaneously
– Interrupts may occur on multiple processors

simultaneously

• Preemptive kernels
– Preemptive kernel: process can be preempted while

running in kernel mode
– Nonprememptive kernel: processes running in kernel

mode cannot be preempted (but interrupts can still occur!)

• Single processor, nonpreemptive kernel: free from race
conditions

Solution #1: Disable Interrupts

• Disable all interrupts just before entering its
critical section and re-enable them when
leaving

– OS won’t get a timer interrupt & have its
scheduler preempt the thread while it is in critical
section

Solution #1: Disable Interrupts

• Bad!
– Give the thread too much control over the system
– Stop timer update and scheduling
– What if the logic in the critical section is incorrect? (other threads

never get change to run!)
– What if the critical section itself has a dependency on some other

interrupt, thread, or system call?
• Need read data from disk but OS won’t get the disk interrupt when data is

ready!

– What about multiple processors?
• Disabling interrupts will only disable them on one processor

• Advantage
– Simple, guaranteed to work on a uniprocessor system
– Was a common approach to mutual exclusion in uniprocessor kernels,

at least before multiprocessors spoiled the fun.

Solution #2: Software Test & Set Locks

• Keep a shared lock variable
while (locked) ;

locked = 1; /* set the lock */

/* do critical section */

locked = 0; /* release the lock */

• Disadvantages
– Buggy! Race condition in setting the lock

• Advantages
– Simple to understand. It’s been used for things such as

locking mailbox files

Solution #3: Lockstep Synchronization

• A shared variable that tells which thread’s turn

• Disadvantages
– Busy waiting or spin lock
– Forces strict alternation between the threads. If

thread 0 is really slow, thread 1 is slowed down with
it; It turns asynchronous threads into synchronous
threads.

Software Solutions for Mutual
Exclusion

• Peterson’s solution

• Others

• Disadvantages

– Difficult to implement correctly – have to rely on
volatile data types to ensure that compilers don’t
make the wrong optimizations

– Relies on busy waiting

Looking for hardware solutions

Help from Processor

• Atomic (indivisible) CPU instructions to get
locks

– Test-and-set

– Compare-and-swap

– Fetch-and-increment

Test-and-set

Compare & Swap (CAS)
• Compare the value of a memory location with

an old value. If they match then replace with a
new value

Fetch & Increment
• Simply increments a memory location but returns the

previous value of that memory location.

• To implement a critical section, grab a ticket and wait for your
turn

Spin Locks

• All these techniques rely on spin locks
– Waste CPU cycles

• The process with the lock may not be allowed to
run!
– Lower priority process obtained a lock
– Higher priority process is always ready to run but

loops on trying to get the lock
– Scheduler always schedules the higher-priority process
– Priority inversion

• If the low priority process would get to run & release its lock,
it would then accelerate the time for the high priority
process to get a chance to get the lock and do useful work

• Try explaining that to a scheduler!

Priority Inheritance

• Technique to avoid priority inversion

• Increase the priority of any process to the
maximum of any process waiting on any
resource for which the process has a lock

• When the lock is released, the priority goes to
its normal level

Spin locks aren’t great!
Can we block until we get the

critical section?

Semaphores

• An integer variable

• Have two associated operations: wait (also
known as p or down) and signal (known as v
or up).

• A queue of waiting processes/threads

Semaphore Implementation

• Implementation of wait:

 wait (S){
 value--;
 if (value < 0) {
 add this thread T to waiting queue
 block(P);
 }
 }

• Implementation of signal:

 signal (S){
 value++;
 if (value <= 0) {
 remove a thread T from the waiting queue
 wakeup(P);
 }
 }

Struct Semaphore {
 int value;
 Queue q;
} S;

Semaphores

• Count the number of threads that may enter a
critical section at any given time.

 – Each wait decreases the number of future accesses

 – When no more are allowed, processes have to wait

 – Each signal lets a waiting process get in

• Binary semaphores
– Initialized to 1 and used by two or more threads to

ensure that only one of them can enter a critical
section

Producer-Consumer Problem

• Producer
– Generates items that go into a buffer

– Maximum buffer capacity = N

– If the producer fills the buffer, it must wait (sleep)

• Consumer
– Consumes things from the buffer

– If there’s nothing in the buffer, it must wait (sleep)

• This is also known as the Bounded-Buffer
Problem

Producer-Consumer Problem

• Use three semaphores:

• mutex: mutual exclusion to shared set of
buffers

– Binary semaphore

• empty: count of empty buffers

– Counting semaphore

• full: count of full buffers

– Counting semaphore

Producer-Consumer: bounded buffer

void append(int d) {

 buffer[in] = d;

 in = (in + 1) % N;

}

int take() {

 int x = out;

 out = (out+1) %N;

 return buffer[x];

}

Initialization: semaphores: mutex = 1, full = 0; empty = N;
 integers: int = 0, out = 0;

Producer:

While (1) {
 produce x;
 wait(empty);
 wait(mutex);
 append(x);
 signal(mutex);
 signal(full);

}

Consumer:

While (1) {
 wait(full);
 wait(mutex);
 x = take();
 signal(mutex);
 signal(empty);
 consume x;
}

Reader-Writer Problem

• Shared data store (e.g., database)

• Multiple processes can read concurrently

• Only one process can write at a time

– And no readers can read while the writer is writing

Synchronization
Relying on Inter-Process Communication

What problems do previous solution
have?

• Assumptions

– All concurrent threads or processors have access
to common memory and share the same
operating system kernel

• What if distributed systems where each
system has its own local memory and its own
operating system?

• Rescue: Message Passing

Communicating Processes

• Must:

– Synchronize

– Exchange data

• Message passing offers

– Data communication

– Synchronization (via waiting for messages)

– Works with processes on different machines

Message passing

• Two primitives

– send(destination, message)

• Sends a message to a given destination.

– receive(source, &message)

• Receives a message from a source. This call could block
if there is no message.

• Operations may or may not be blocking

Producer-Consumer Example

Messaging: Rendezvous

• Sending process blocked until receive occurs

• Receive blocks until a send occurs

• No message buffering

• Advantages:
– No need for message buffering if on same system

– Easy & efficient to implement

– Allows for tight synchronization

• Disadvantage:
– Forces sender & receiver to run in lockstep

Messaging: Direct Addressing

• Previous two solutions

– Require the use of direct addressing

– Sending process identifies receiving process

– Receiving process can identify sending process

• Or can receive it as a parameter

Messaging: Indirect Addressing

• Messages set to an intermediary data structure of FIFO
queues

• Each queue is a mailbox
• Simplifies multiple readers
• Pros:

– flexibility of having multiple senders and/or receivers.
– Do not require the sender to know how to identify any

specific receiver. Senders and receivers just need to
coordinate on a mailbox identifier.

• Cons:
– Data copying to mailbox and to receivers
– Where should the mailbox be located?

Deadlocks

• Four conditions must hold
– Mutual exclusion

• a resource can be held by at most one process.

– Hold and wait
• processes that already hold resources can wait for another

resource.

– Non-preemption of resources
• Resources can only be released voluntarily

– Circular wait
• two or more processes are waiting for resources held by one

of the other processes

Deadlocks

• Resource allocation
graph
– Resource R1 is

allocated to process P1:
assignment edge

– Resource R1 is
requested by process
P1:

 request edge

• Deadlock is present
when the graph has
cycles

Dealing with Deadlocks

• Deadlock prevention
– Ensure that at least one of the necessary

conditions cannot hold

• Deadlock avoidance
– Provide advance information to the OS on which

resources a process will request.

– OS can then decide if the process should wait

• Ignore the problem
– Let the user deal with it (most common solution)

Conditional Variables

Conditional Variables
• Condition variables provide a mechanism to wait for

events (a “rendezvous point”)
– Resource available, no more writers, etc.

• Condition variables support three operations:
– Wait – release monitor lock, wait for C/V to be signaled

• So condition variables have wait queues, too

– Signal – wakeup one waiting thread

– Broadcast – wakeup all waiting threads

• Note: Condition variables are not boolean objects
– “if (condition_variable) then” … does not make sense

– “if (num_resources == 0) then wait(resources_available)” does

– An example will make this more clear

Condition Variables != Semaphores

• Condition variables != semaphores
– Although their operations have the same names, they have entirely

different semantics

– However, they each can be used to implement the other

• Usage: Combined with a lock
– wait() blocks the calling thread, and gives up the lock

• To call wait, the thread has lock

• Semaphore::wait just blocks the thread on the queue

– signal() causes a waiting thread to wake up
• If there is no waiting thread, the signal is lost

• Semaphore::signal increases the semaphore count, allowing future entry even if no
thread is waiting

• Condition variables have no history

Signal Semantics
• There are two flavors of monitors that differ in the scheduling

semantics of signal()

– Hoare monitors (original)
• signal() immediately switches from the caller to a waiting thread

• The condition that the waiter was anticipating is guaranteed to
hold when waiter executes

• Signaler must restore monitor invariants before signaling

– Mesa monitors (Mesa, Java)
• signal() places a waiter on the ready queue, but signaler continues

inside monitor

• Condition is not necessarily true when waiter runs again
– Returning from wait() is only a hint that something changed

– Must recheck conditional case

Hoare vs. Mesa

• Hoare

if (empty)

 wait(condition);

• Mesa

while (empty)

 wait(condition);

• Tradeoffs

– Mesa monitors easier to use, more efficient
• Fewer context switches, easy to support broadcast

– Hoare monitors leave less to chance
• Easier to reason about the program

Condition Variables vs. Locks

• Condition variables are used in conjunction with blocking
locks

Summary

• Semaphores
– wait()/signal() implement blocking mutual exclusion

– Also used as atomic counters (counting semaphores)

– Can be inconvenient to use

• Condition variables
– Used by threads as a synchronization point to wait for

events

– Used with locks

 Case Study: Pthread
Synchronization

Mutual Exclusion

• Bad things can happen when two threads
“simultaneously” access shared data structures:
Race condition  critical section problem

– Data inconsistency!

– These types of bugs are really nasty!
• Program may not blow up, just produces wrong results

• Bugs are not repeatable

• Associate a separate lock (mutex) variable with
the shared data structure to ensure “one at a time
access”

Mutual Exclusion in PThreads

• pthread_mutex_t mutex_var;
– Declares mutex_var as a lock (mutex) variable

– Holds one of two values: “locked” or “unlocked”

• pthread_mutex_lock (&mutex_var)
– Waits/blocked until mutex_var in unlocked state

– Sets mutex_var into locked state

• pthread_mutex_unlock (&mutex_var)
– Sets mutex_var into unlocked state

– If one or more threads are waiting on lock, will allow one thread
to acquire lock

Example: pthread_mutex_t m; //pthread_mutex_init(&m, NULL);

 …

 pthread_mutex_lock (&m);

 <access shared variables>

 pthread_mutex_unlock(&m);

//pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

Pthread Semaphores

• #include <semaphore.h>

• Each semaphore has a counter value, which is
a non-negative integer

Pthread Semaphores

• Two basic operations:
– A wait operation decrements the value of the semaphore by 1. If the

value is already zero, the operation blocks until the value of the
semaphore becomes positive (due to the action of some other
thread).When the semaphore’s value becomes positive, it is
decremented by 1 and the wait operation returns.  sem_wait()

– A post operation increments the value of the semaphore by 1. If the
semaphore was previously zero and other threads are blocked in a
wait operation on that semaphore, one of those threads is unblocked
and its wait operation completes (which brings the semaphore’s value
back to zero).  sem_post()

Slightly different from our discussion on semaphores

Pthread Semaphores

• sem_t s; //define a variable

• sem_init(); //must initialize
– 1st para: pointer to sem_t variable

– 2nd para: must be zero
• A nonzero value would indicate a semaphore that can be shared

across processes, which is not supported by GNU/Linux for this
type of semaphore.

– 3rd para: initial value

• sem_destroy(): destroy a semaphore if do not
use it anymore

Pthread Semaphores

• int sem_wait(): wait operation

• int sem_post(): signal operation

• int sem_trywait():

– A nonblocking wait function

– if the wait would have blocked because the
semaphore’s value was zero, the function returns
immediately, with error value EAGAIN, instead of
blocking.

Example

#include <malloc.h>

#include <pthread.h>

#include <semaphore.h>

struct job {

/* Link field for linked list. */

struct job* next;

/* Other fields describing work to be
done...*/

};

/* A linked list of pending jobs. */

struct job* job_queue;

/* A mutex protecting job_queue. */

pthread_mutex_t job_queue_mutex =

PTHREAD_MUTEX_INITIALIZER;

/* A semaphore counting the number of jobs in the queue. */
sem_t job_queue_count;
/* Perform one-time initialization of the job queue. */
void initialize_job_queue ()
{

/* The queue is initially empty. */
job_queue = NULL;
/* Initialize the semaphore which counts jobs in the
queue. Its initial value should be zero. */
sem_init (&job_queue_count, 0, 0);

}

Assume infinite queue capacity.

Example
/* Process dequeued jobs until the queue is empty. */

void* thread_function (void* arg)

{

while (1) {

 struct job* next_job;

/* Wait on the job queue semaphore. If its value is positive,indicating that the queue is not empty,
decrement the count by 1. If the queue is empty, block until a new job is enqueued. */

 sem_wait (&job_queue_count);

/* Lock the mutex on the job queue. */

 pthread_mutex_lock (&job_queue_mutex);

/* Because of the semaphore, we know the queue is not empty. Get the next available job. */

 next_job = job_queue;

/* Remove this job from the list. */

 job_queue = job_queue->next;

/* Unlock the mutex on the job queue because we’re done with the queue for now. */

 pthread_mutex_unlock (&job_queue_mutex);

/* Carry out the work. */

 process_job (next_job);

/* Clean up. */

 free (next_job);

 }

return NULL;

}

Example
/* Add a new job to the front of the job queue. */

void enqueue_job (/* Pass job-specific data here... */)

{

struct job* new_job;

/* Allocate a new job object. */

new_job = (struct job*) malloc (sizeof (struct job));

/* Set the other fields of the job struct here... */

/* Lock the mutex on the job queue before accessing it. */

pthread_mutex_lock (&job_queue_mutex);

/* Place the new job at the head of the queue. */

new_job->next = job_queue;

job_queue = new_job;

/* Post to the semaphore to indicate that another job is available. If

threads are blocked, waiting on the semaphore, one will become

unblocked so it can process the job. */

sem_post (&job_queue_count);

/* Unlock the job queue mutex. */

pthread_mutex_unlock (&job_queue_mutex);
}

Can they switch order?

Waiting for Events: Condition Variables

• Mutex variables are used to control access to
shared data

• Condition variables are used to wait for
specific events

– Buffer has data to consume

– New data arrived on I/O port

– 10,000 clock ticks have elapsed

Condition Variables

• Enable you to implement a condition under
which a thread executes and, inversely, the
condition under which the thread is blocked

Condition Variables in PThreads
• pthread_cond_t c_var;

– Declares c_var as a condition variable

– Always associated with a mutex variable (say m_var)

• pthread_cond_wait (&c_var, &m_var)
– Atomically unlock m_var and block on c_var

– Upon return, mutex m_var will be re-acquired

– Spurious wakeups may occur (i.e., may wake up for no good reason -
always recheck the condition you are waiting on!)

• pthread_cond_signal (&c_var)
– If no thread blocked on c_var, do nothing

– Else, unblock a thread blocked on c_var to allow one thread to be
released from a pthread_cond_wait call

• pthread_cond_broadcast (&c_var)
– Unblock all threads blocked on condition variable c_var

– Order that threads execute unspecified; each reacquires mutex when it
resumes

Waiting on a Condition
pthread_mutex_t

m_var=PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t c_var=PTHREAD_COND_INITIALIZER;

 //pthread_cond_init()

pthread_mutex_lock (m_var);

while (<some blocking condition is true>)

 pthread_cond_wait (c_var, m_var);

<access shared data structrure>

pthread_mutex_unlock(m_var);

Note: Use “while” not “if”; Why?

Revisit on the example

Example continued…

Exercise

• Design a multithreaded program which handles bounded
buffer problem using semaphores or conditional variables
– int buffer[10]; //10 buffers

– Implement producers and consumers threads

