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Concurrency 
• Concurrent threads/processes 

– The threads run at the same time in multiprocessing 
environments or their execution is interleaved through 
preemption 

• Asynchronous 
– Threads require occasional synchronization & communication 
– For the most part, the execution of one thread neither speeds 

up nor slows down the execution of another. 

• Independent 
– Do not have any reliance on each other 

• Synchronous 
– Frequent synchronization with each other – order of execution 

is guaranteed! 

• Parallel 
– Threads run at the same time on separate processors. 



Race Condition 

• A race condition is a bug 

– The outcome of concurrent threads are 
unexpectedly dependent on a specific sequence of 
events 

• Cause: 

– Multiple threads access shared data and resources 

– Uncontrolled access to the shared data results in 
data inconsistency! 



Classic Example 
• Your current bank balance is $1,000 

• Withdraw $500 from an ATM machine while a 
$5,000 direct deposit is coming in 

 

 

 

• Possible outcomes 

– Total balance: $5500, $500, $6000 



Synchronization 

• Synchronization deals with developing 
techniques to avoid race conditions 

• Something as simple as:   x = x + 1 

– May have a race condition 

 

 



Mutual Exclusion 

• Critical section 
– Region in a program where race conditions can arise 

• Mutual exclusion 
– Allow only one thread to access a critical section at a time 

• Deadlock 
– A thread is perpetually blocked (circular dependency on 

resources) 

• Starvation 
– A thread is perpetually denied resources 

• Livelock 
– Threads run but no progress in execution 



Controlling Critical Section Access: 
Locks 

• Grab and release locks around critical section 

• What if cannot get a lock? 



Solution to Critical-Section Problem 
MUST satisfy the following requirements: 

1. Mutual Exclusion  -- No threads is inside the same critical section 
simultaneously  

2. Progress - If no thread is executing in its critical section and some 
thread or threads want to enter the critical section, the selection 
of a thread that can do so cannot be delayed indefinitely.  
– if only one thread wants to enter, it should be permitted to do so. 

–  If more than one wants to enter, only one of them should be allowed 
to. 

3. Bounded Waiting -  No thread should wait forever to enter a 
critical section. 

4. No thread running outside its critical section may block others 
from entering a critical section 

5. Performance -- The overhead of entering and exiting the critical 
section is small with respect to the work being done within it 



A good solution ensures…  

• No assumptions are made on the number of 
processors. 
– Threads run at the same time on different processors 

• No assumptions are made on the number of 
threads or processes 
– Support arbitrary # of threads/processes 

• No assumptions are made on the relative speed 
of each thread. 
– No knowledge of when or if a thread will request a 

critical section again 



Critical section & the kernel 

• Multiprocessors 
– Multiple threads/processes on different processors may 

access the kernel simultaneously 
– Interrupts may occur on multiple processors 

simultaneously 

• Preemptive kernels 
– Preemptive kernel: process can be preempted while 

running in kernel mode 
– Nonprememptive kernel: processes running in kernel 

mode cannot be preempted (but interrupts can still occur!) 

• Single processor, nonpreemptive kernel: free from race 
conditions 



Solution #1: Disable Interrupts 

• Disable all interrupts just before entering its 
critical section and re-enable them when 
leaving  

– OS won’t get a timer interrupt & have its 
scheduler preempt the thread while it is in critical 
section 

 



Solution #1: Disable Interrupts 

• Bad! 
– Give the thread too much control over the system 
– Stop timer update and scheduling 
– What if the logic in the critical section is incorrect? (other threads 

never get change to run!) 
– What if the critical section itself has a dependency on some other 

interrupt, thread, or system call? 
• Need read data from disk but OS won’t get the disk interrupt when data is 

ready! 

– What about multiple processors?  
• Disabling interrupts will only disable them on one processor 

• Advantage 
– Simple, guaranteed to work on a uniprocessor system 
– Was a common approach to mutual exclusion in uniprocessor kernels, 

at least before multiprocessors spoiled the fun. 



Solution #2: Software Test & Set Locks 

• Keep a shared lock variable 
while (locked) ;  

locked = 1; /* set the lock */  

/* do critical section */  

locked = 0; /* release the lock */ 

• Disadvantages 
– Buggy! Race condition in setting the lock 

• Advantages 
– Simple to understand. It’s been used for things such as 

locking mailbox files 

 



Solution #3: Lockstep Synchronization 

• A shared variable that tells which thread’s turn 
 
 
 
 

• Disadvantages 
– Busy waiting or spin lock 
– Forces strict alternation between the threads. If 

thread 0 is really slow, thread 1 is slowed down with 
it; It turns asynchronous threads into synchronous 
threads. 



Software Solutions for Mutual 
Exclusion 

• Peterson’s solution 

• Others 

• Disadvantages 

– Difficult to implement correctly – have to rely on 
volatile data types to ensure that compilers don’t 
make the wrong optimizations 

– Relies on busy waiting 

 



Looking for hardware solutions 



Help from Processor 

• Atomic (indivisible) CPU instructions to get 
locks 

– Test-and-set 

– Compare-and-swap 

– Fetch-and-increment 



Test-and-set 



Compare & Swap (CAS) 
• Compare the value of a memory location with 

an old value. If they match then replace with a 
new value 



Fetch & Increment 
• Simply increments a memory location but returns the 

previous value of that memory location. 

• To implement a critical section, grab a ticket and wait for your 
turn 

 



Spin Locks 

• All these techniques rely on spin locks 
– Waste CPU cycles 

• The process with the lock may not be allowed to 
run! 
– Lower priority process obtained a lock 
– Higher priority process is always ready to run but 

loops on trying to get the lock 
– Scheduler always schedules the higher-priority process 
– Priority inversion 

• If the low priority process would get to run & release its lock, 
it would then accelerate the time for the high priority 
process to get a chance to get the lock and do useful work 

• Try explaining that to a scheduler! 

 



Priority Inheritance 

• Technique to avoid priority inversion 

• Increase the priority of any process to the 
maximum of any process waiting on any 
resource for which the process has a lock 

• When the lock is released, the priority goes to 
its normal level 

 



Spin locks aren’t great! 
Can we block until we get the 

critical section? 



Semaphores 

• An integer variable  

• Have two associated operations: wait (also 
known as p or down) and signal (known as v 
or up). 

• A queue of waiting processes/threads 



Semaphore Implementation 

• Implementation of wait: 
 
                        wait (S){  
                           value--; 
                           if (value < 0) {  
              add this thread T to waiting queue 
              block(P);   
                                } 
                         } 
 

• Implementation of signal: 
 
                        signal (S){  
                              value++; 
                               if (value <= 0) {  
              remove a thread T from the waiting queue 
              wakeup(P);   
                                   } 
                        } 

Struct Semaphore { 
       int value; 
       Queue q; 
} S; 



Semaphores 

• Count the number of threads that may enter a 
critical section at any given time. 

 – Each wait decreases the number of future accesses 

 – When no more are allowed, processes have to wait 

 – Each signal lets a waiting process get in 

• Binary semaphores 
– Initialized to 1 and used by two or more threads to 

ensure that only one of them can enter a critical 
section 



Producer-Consumer Problem 

• Producer 
– Generates items that go into a buffer 

– Maximum buffer capacity = N 

– If the producer fills the buffer, it must wait (sleep) 

• Consumer 
– Consumes things from the buffer 

– If there’s nothing in the buffer, it must wait (sleep) 

• This is also known as the Bounded-Buffer 
Problem 



Producer-Consumer Problem 

• Use three semaphores: 

• mutex: mutual exclusion to shared set of 
buffers 

– Binary semaphore 

• empty: count of empty buffers 

– Counting semaphore 

• full: count of full buffers 

– Counting semaphore 



Producer-Consumer: bounded buffer 

void append(int d) { 

   buffer[in] = d; 

   in = (in + 1) % N; 

} 

 

 

int take() { 

   int x = out; 

   out = (out+1) %N; 

   return buffer[x]; 

}  

Initialization:  semaphores:  mutex = 1,   full = 0; empty = N; 
                          integers: int = 0, out = 0;  

Producer: 
 
While (1) { 
    produce x;  
    wait(empty); 
    wait(mutex); 
    append(x); 
    signal(mutex); 
 signal(full);  
    
} 
 

Consumer: 
 
While (1) { 
    wait(full);  
    wait(mutex); 
    x = take(); 
     signal(mutex); 
  signal(empty); 
     consume x; 
} 
 



Reader-Writer Problem 

• Shared data store (e.g., database) 

• Multiple processes can read concurrently 

• Only one process can write at a time 

– And no readers can read while the writer is writing 

 



Synchronization 
Relying on Inter-Process Communication 



What problems do previous solution 
have? 

• Assumptions 

– All concurrent threads or processors have access 
to common memory and share the same 
operating system kernel 

• What if distributed systems where each 
system has its own local memory and its own 
operating system? 

• Rescue: Message Passing 



Communicating Processes 

• Must: 

– Synchronize 

– Exchange data 

• Message passing offers 

– Data communication 

– Synchronization (via waiting for messages) 

– Works with processes on different machines 



Message passing 

• Two primitives 

– send(destination, message) 

•  Sends a message to a given destination.  

– receive(source, &message)  

• Receives a message from a source. This call could block 
if there is no message.  

• Operations may or may not be blocking 



Producer-Consumer Example 



Messaging: Rendezvous 

• Sending process blocked until receive occurs 

• Receive blocks until a send occurs 

• No message buffering 

• Advantages: 
– No need for message buffering if on same system 

– Easy & efficient to implement 

– Allows for tight synchronization 

• Disadvantage: 
– Forces sender & receiver to run in lockstep 



Messaging: Direct Addressing 

• Previous two solutions 

– Require the use of direct addressing 

– Sending process identifies receiving process 

– Receiving process can identify sending process 

• Or can receive it as a parameter 



Messaging: Indirect Addressing 

• Messages set to an intermediary data structure of FIFO 
queues 

• Each queue is a mailbox 
• Simplifies multiple readers 
• Pros: 

– flexibility of having multiple senders and/or receivers. 
– Do not require the sender to know how to identify any 

specific receiver. Senders and receivers just need to 
coordinate on a mailbox identifier. 

• Cons: 
– Data copying to mailbox and to receivers 
– Where should the mailbox  be located? 





Deadlocks 

• Four conditions must hold 
– Mutual exclusion 

• a resource can be held by at most one process. 

– Hold and wait 
• processes that already hold resources can wait for another 

resource. 

– Non-preemption of resources 
• Resources can only be released voluntarily 

– Circular wait 
• two or more processes are waiting for resources held by one 

of the other processes 

 



Deadlocks 

• Resource allocation 
graph 
– Resource R1 is 

allocated to process P1: 
assignment edge 

– Resource R1 is 
requested by process 
P1:  

 request edge 

• Deadlock is present 
when the graph has 
cycles 



Dealing with Deadlocks 

• Deadlock prevention 
– Ensure that at least one of the necessary 

conditions cannot hold 

• Deadlock avoidance 
– Provide advance information to the OS on which 

resources a process will request. 

– OS can then decide if the process should wait 

• Ignore the problem 
– Let the user deal with it (most common solution) 



Conditional Variables 



Conditional Variables 
• Condition variables provide a mechanism to wait for 

events (a “rendezvous point”) 
– Resource available, no more writers, etc. 

• Condition variables support three operations: 
– Wait – release monitor lock, wait for C/V to be signaled 

• So condition variables have wait queues, too 

– Signal – wakeup one waiting thread 

– Broadcast – wakeup all waiting threads 

• Note: Condition variables are not boolean objects 
– “if (condition_variable) then” … does not make sense 

– “if (num_resources == 0) then wait(resources_available)” does 

– An example will make this more clear 

 



Condition Variables != Semaphores 

• Condition variables != semaphores 
– Although their operations have the same names, they have entirely 

different semantics  

– However, they each can be used to implement the other 

• Usage: Combined with a lock 
– wait() blocks the calling thread, and gives up the lock 

• To call wait, the thread has lock 

• Semaphore::wait just blocks the thread on the queue 

– signal() causes a waiting thread to wake up 
• If there is no waiting thread, the signal is lost 

• Semaphore::signal increases the semaphore count, allowing future entry even if no 
thread is waiting 

• Condition variables have no history 



Signal Semantics 
• There are two flavors of monitors that differ in the scheduling 

semantics of signal() 

– Hoare monitors (original) 
• signal() immediately switches from the caller to a waiting thread 

• The condition that the waiter was anticipating is guaranteed to 
hold when waiter executes 

• Signaler must restore monitor invariants before signaling 

– Mesa monitors (Mesa, Java) 
• signal() places a waiter on the ready queue, but signaler continues 

inside monitor 

• Condition is not necessarily true when waiter runs again 
– Returning from wait() is only a hint that something changed 

– Must recheck conditional case 



Hoare vs. Mesa 

• Hoare 

if (empty) 

 wait(condition); 

• Mesa 

while (empty) 

 wait(condition); 

• Tradeoffs 

– Mesa monitors easier to use, more efficient 
• Fewer context switches, easy to support broadcast 

– Hoare monitors leave less to chance 
• Easier to reason about the program 



Condition Variables vs. Locks 

• Condition variables are used in conjunction with blocking 
locks 



Summary 

• Semaphores 
– wait()/signal() implement blocking mutual exclusion 

– Also used as atomic counters (counting semaphores) 

– Can be inconvenient to use 

 

• Condition variables 
– Used by threads as a synchronization point to wait for 

events 

– Used with locks 



 Case Study: Pthread 
Synchronization 



Mutual Exclusion 

• Bad things can happen when two threads 
“simultaneously” access shared data structures: 
Race condition  critical section problem 

– Data inconsistency! 

– These types of bugs are really nasty! 
• Program may not blow up, just produces wrong results 

• Bugs are not repeatable 

• Associate a separate lock (mutex) variable with 
the shared data structure to ensure “one at a time 
access” 



Mutual Exclusion in PThreads 

• pthread_mutex_t      mutex_var; 
– Declares mutex_var as a lock (mutex) variable 

– Holds one of two values: “locked” or “unlocked” 

• pthread_mutex_lock (&mutex_var) 
– Waits/blocked until mutex_var in unlocked state 

– Sets mutex_var into locked state 

• pthread_mutex_unlock (&mutex_var) 
– Sets mutex_var into unlocked state 

– If one or more threads are waiting on lock, will allow one thread 
to acquire lock 

 

Example:                  pthread_mutex_t   m;   //pthread_mutex_init(&m, NULL); 

   … 

   pthread_mutex_lock (&m); 

   <access shared variables> 

   pthread_mutex_unlock(&m); 

//pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER; 



Pthread Semaphores 

• #include <semaphore.h> 

• Each semaphore has a counter value, which is 
a non-negative integer 



Pthread Semaphores 

• Two basic operations: 
– A wait operation decrements the value of the semaphore by 1. If the 

value is already zero, the operation blocks until the value of the 
semaphore becomes positive (due to the action of some other 
thread).When the semaphore’s value becomes positive, it is 
decremented by 1 and the wait operation returns.   sem_wait() 

– A post operation increments the value of the semaphore by 1. If the 
semaphore was previously zero and other threads are blocked in a 
wait operation on that semaphore, one of those threads is unblocked 
and its wait operation completes (which brings the semaphore’s value 
back to zero).  sem_post() 

Slightly different from our discussion on semaphores 



Pthread Semaphores 

• sem_t   s; //define a variable 

• sem_init(); //must initialize  
– 1st para: pointer to sem_t variable 

– 2nd para: must be zero  
• A nonzero value would indicate a semaphore that can be shared 

across processes, which is not supported by GNU/Linux for this 
type of semaphore. 

– 3rd para: initial value 

• sem_destroy(): destroy a semaphore if do not 
use it anymore 



Pthread Semaphores 

• int sem_wait(): wait operation 

• int sem_post(): signal operation 

• int sem_trywait():  

– A nonblocking wait function 

– if the wait would have blocked because the 
semaphore’s value was zero, the function returns 
immediately, with error value EAGAIN, instead of 
blocking. 

 



Example 

#include <malloc.h> 

#include <pthread.h> 

#include <semaphore.h> 

struct job { 

/* Link field for linked list. */ 

struct job* next; 

/* Other fields describing work to be 
done...*/ 

}; 

/* A linked list of pending jobs. */ 

struct job* job_queue; 

/* A mutex protecting job_queue. */ 

pthread_mutex_t job_queue_mutex = 

PTHREAD_MUTEX_INITIALIZER; 

/* A semaphore counting the number of jobs in the queue. */ 
sem_t job_queue_count; 
/* Perform one-time initialization of the job queue. */ 
void initialize_job_queue () 
{ 

/* The queue is initially empty. */ 
job_queue = NULL; 
/* Initialize the semaphore which counts jobs in the 
queue. Its initial value should be zero. */ 
sem_init (&job_queue_count, 0, 0); 

} 
 

Assume infinite queue capacity. 



Example 
/* Process dequeued jobs until the queue is empty. */ 

void* thread_function (void* arg) 

{ 

while (1) { 

   struct job* next_job; 

/* Wait on the job queue semaphore. If its value is positive,indicating that the queue is not empty, 
decrement the count by 1. If the queue is empty, block until a new job is enqueued. */ 

  sem_wait (&job_queue_count); 

/* Lock the mutex on the job queue. */ 

  pthread_mutex_lock (&job_queue_mutex); 

/* Because of the semaphore, we know the queue is not empty. Get the next available job. */ 

  next_job = job_queue; 

/* Remove this job from the list. */ 

  job_queue = job_queue->next; 

/* Unlock the mutex on the job queue because we’re done with the queue for now. */ 

  pthread_mutex_unlock (&job_queue_mutex); 

/* Carry out the work. */ 

  process_job (next_job); 

/* Clean up. */ 

  free (next_job); 

 } 

return NULL; 

} 



Example 
/* Add a new job to the front of the job queue. */ 

void enqueue_job (/* Pass job-specific data here... */) 

{ 

struct job* new_job; 

/* Allocate a new job object. */ 

new_job = (struct job*) malloc (sizeof (struct job)); 

/* Set the other fields of the job struct here... */ 

/* Lock the mutex on the job queue before accessing it. */ 

pthread_mutex_lock (&job_queue_mutex); 

/* Place the new job at the head of the queue. */ 

new_job->next = job_queue; 

job_queue = new_job; 

/* Post to the semaphore to indicate that another job is available. If 

threads are blocked, waiting on the semaphore, one will become 

unblocked so it can process the job. */ 

sem_post (&job_queue_count); 

/* Unlock the job queue mutex. */ 

pthread_mutex_unlock (&job_queue_mutex); 
} 

Can they switch order? 



Waiting for Events: Condition Variables 

• Mutex variables are used to control access to 
shared data 

• Condition variables are used to wait for 
specific events 

– Buffer has data to consume 

– New data arrived on I/O port 

– 10,000 clock ticks have elapsed 



Condition Variables 

• Enable you to implement a condition under 
which a thread executes and, inversely, the 
condition under which the thread is blocked 



Condition Variables in PThreads 
• pthread_cond_t     c_var; 

– Declares c_var as a condition variable 

– Always associated with a mutex variable (say m_var) 

• pthread_cond_wait (&c_var, &m_var) 
– Atomically unlock m_var and block on c_var 

– Upon return, mutex m_var will be re-acquired 

– Spurious wakeups may occur (i.e., may wake up for no good reason - 
always recheck the condition you are waiting on!) 

• pthread_cond_signal (&c_var) 
– If no thread blocked on c_var, do nothing 

– Else, unblock a thread blocked on c_var to allow one thread to be 
released from a pthread_cond_wait call 

• pthread_cond_broadcast (&c_var) 
– Unblock all threads blocked on condition variable c_var 

– Order that threads execute unspecified; each reacquires mutex when it 
resumes 



Waiting on a Condition 
pthread_mutex_t 

m_var=PTHREAD_MUTEX_INITIALIZER; 

pthread_cond_t c_var=PTHREAD_COND_INITIALIZER; 

  //pthread_cond_init() 

pthread_mutex_lock (m_var); 

while (<some blocking condition is true>) 

   pthread_cond_wait (c_var, m_var); 

<access shared data structrure> 

pthread_mutex_unlock(m_var); 

 

Note: Use “while” not “if”;  Why? 



Revisit on the example 



Example continued… 



Exercise 

• Design a multithreaded program which handles bounded 
buffer problem using semaphores or conditional variables 
– int buffer[10];  //10 buffers 

– Implement producers and consumers threads 


