
Signals & Shared Memory

Dr. Yingwu Zhu

Topics

• Signals

• Shared memory for IPC

Question

• Q: How does the OS communicate to a
process?

• A: Signals

Signals

• What if something unexpected or
unpredictable happens?
– a floating-point error

– a power failure

– an alarm clock "ring"

– the death of a child process

– a termination request from a user (i.e., a Control-
C)

– a suspend request from a user (i.e., a Control-Z)

Signals

• These kind of events are often called
interrupts

– i.e., they interrupt the normal flow of the program
to service an interrupt handler

• When Linux recognizes such event it sends
corresponding signal,

– e.g., floating point error: kernel sends offending
process signal number 8

Who can send signals?

• The kernel

• Any process can send any other process a
signal as long as it has permission

– receiving process suspends its current flow of
control

– executes signal handler

– resumes original flow when signal handler finishes

Two Signal Types

• Standard signal (traditional unix signals)
– delivered to a process by setting a bit in a bitmap

– one for each signal

– thus there cannot be multiple instances of the same
signal; bit can be one (signal) or zero (no-signal)

• real-time signals (or queued signals)
– defined by POSIX 1003.1b where successive instances

of the same signal are significant and need to be
properly delivered.

– In order to use queued signals, you must use the
sigaction () system call, rather than signal ()

Defined Signals

• Where are signals defined?
– Signals are defined in /usr/include/signal.h

– other platform-specific header files
• e.g., /usr/include/asm/signal.h

• Programmer may chose that
– particular signal triggers a user-defined signal

handler

– triggers the default kernel-supplied handler

– signal is ignored

Default Signal Handler

• Terminates the process and generates a dump
of memory in a core file (core)

• Terminates the process without generating a
core image file (quit)

• Ignores and discards the signal (ignore)

• Suspends the process (stop)

• Resumes the process

Terminal Signals

• Easiest way to send signal to foreground
process
– press Control-C or Control-Z

– when terminal driver recognizes a Control-C it
sends SIGINT signal to all of the processes in the
current foreground job

– Control-Z causes SIGSTP to be sent

– by default
• SIGINT terminates a process

• SIGTSTP suspends a process

Alarm Signal

• System Call: unsigned int alarm (unsigned int
count)

• alarm () instructs the kernel to send the SIGALRM
signal to the calling process after count seconds.
If an alarm had already been scheduled, it is
overwritten. If count is 0, any pending alarm
requests are cancelled.

• alarm () returns the number of seconds that
remain until the alarm signal is sent.

• The default handler for this signal displays the
message "Alarm clock" and terminates the
process

Example

Handling Signals

• How do you override the default action in the
previous example?
– the signal() system call may be used

• System Call:
– typedef void (*sighandler_t)(int);
– sighandler_t signal(int signum, sighandler_t handler);

– signal () allows a process to specify the action that it

will take when a particular signal is received.
– The parameter signum specifies the number of the

signal that is to be reprogrammed

Handling Signals

• func may be one of several values:

– SIG_IGN indicates that the specified signal should
be ignored and discarded.

– SIG_DFL indicates that the kernel's default handler
should be used.

– an address of a user-defined function, which
indicates that the function should be executed
when the specified signal arrives.

Handling Signals

• signals SIGKILL and SIGSTP may not be reprogrammed.

• a child process inherits signal settings from its parent
during fork (). When process performs exec (),
previously ignored signals remain ignored but installed
handlers are set back to the default handler.

• with the exception of SIGCHLD, signals are not stacked,
e.g., if a process is sleeping and three identical signals
are sent to it, only one of the signals is actually
processed.

• signal () returns the previous func value associated
with signum if successful; otherwise it returns -1.

What is the problem?

System Call: int pause (void)

• pause () suspends the calling process and
returns when the calling process receives a
signal.

• It is most often used to wait efficiently for an
alarm signal.

• pause () doesn't return anything useful.

• to enhance efficiency the previous program is
modified to wait for a signal.
– also a custom signal handler is installed

Handling ctr-c

• Sometimes we want to protect critical pieces
of code against Control-C attacks and other
such signals

– save previous value of the handler so that it can
be restored after the critical code has executed

– in the following example SIGINT is “disabled”

Send Signals to other processes

• Process may send signal to other process by using
kill()
– often misunderstood as “killing another process”, but

not all kill signals do that

• System Call: int kill (pid_t pid, int sigCode)
– sends the signal with value sigCode to the process

with PID pid. kill () succeeds and the signal is sent as
long as at least one of the following conditions is
satisfied:
• The sending process and the receiving process have the

same owner.

• The sending process is owned by a super-user.

Kill()

• There are a few variations on the way that kill ()
works:
– If pid is 0, the signal is sent to all of the processes in

the sender's process group.
– If pid is -1 and the sender is owned by a super-user,

the signal is sent to all processes, including the sender.
– If pid is -1 and the sender is not a super-user, the

signal is sent to all of the processes owned by the
same owner as the sender, excluding the sending
process.

– If the pid is negative and not -1, the signal is sent to all
of the processes in the process group.

– If kill () manages to send at least one signal
successfully, it returns 0; otherwise, it returns -1.

SIGCHLD

• When child terminates
– child process sends SIGCHLD to parent

– parent often installs a handler to deal with this
signal

– parent typically executes a wait() to accept the
child’s termination code (such child is not zombie
anymore)
• Alternatively, the parent can choose to ignore SIGCHLD

signals, in which case the child de-zombifies
automatically.

Suspending/resuming a process

• The SIGSTOP and SIGCONT signals suspend
and resume a process, respectively.

• They are used by the Linux shells to support
job control to implement built-in commands
like stop, fg, and bg.

• following example:
– create two children

– suspend and resume one child

– terminate both children

Process Group

• What happens when you Control-C a program
that created several children?

– typically the program and its children terminate

– why the children?

Process Group

• In addition to having unique ID, process also
belongs to a process group
– Several processes can be members of the same

process group.

– When a process forks, the child inherits its process
group from its parent.

– A process may change its process group to a new
value by using setpgid ().

– When a process execs, its process group remains
the same.

Shared Memory

Shared Memory

• Simplest, fastest, but local communication

• Allow two or more processes to access the
same memory (as if they called malloc and
were returned pointer to the same memory
address)
– Let multiple processes attach a segment of physical memory to their

virtual address spaces

• One changes the memory, then all others see
the change!

Caution on Shared Memory

• Sometimes, you may need to synchronize
accesses to the shared memory

– Synchronization issue!

Overview

• Creation: shmget()

• Access control: shmctl()

• Attached to addr. space: shmat()

• Detached from addr. space : shmdt()

• #include <sys/types.h>

• #include <sys/ipc.h>

• #include <sys/shm.h>

Notes

• A process creates a shared memory segment using shmget().

– The original owner of a shared memory segment can assign ownership to another user
with shmctl(). It can also revoke this assignment.

• Other processes with proper permission can perform various control functions on
the shared memory segment using shmctl().

• Once created, a shared segment can be attached to a process address space using
shmat(). It can be detached using shmdt().

– The attaching process must have the appropriate permissions for shmat(). Once
attached, the process can read or write to the segment, as allowed by the permission
requested in the attach operation.

– A shared memory segment is described by a control structure with a unique ID that
points to an area of physical memory. The identifier of the segment is called the shmid.
The structure definition for the shared memory segment control structures and
prototypes can be found in <sys/shm.h>.

Create a Share Memory Segment

• int shmget(key_t key, size_t size, int shmflg)
 key: integer ID

 processes can access the same seg. by using the same key; IPC_PRIVATE as the key
guarantee a new seg. is created

 size: number of bytes, actual bytes rounded up to multiple of page size

 shmflg: access permissions flags and creation control flags
 specify IPC_CREAT, if a segment for the key does not exist, it is created

 If you specify IPC_CREAT | IPC_EXCL, the key must not exist, otherwise fails. If the
key exists and the ICP_EXCL is not given, the existing seg. is returned!

 Permission flag to indicate permissions granted to owner, group and world, see
<sys/stat.h> for constants, or simply bits

 #define PERM_UREAD 0400 #define PERM_UWRITE 0200
#define PERM_GREAD 0040 #define PERM_GWRITE 0020
#define PERM_OREAD 0004 #define PERM_OWRITE 0002

 return: shared memory segment ID on success
 int segment_id = shmget (shm_key, getpagesize (),IPC_CREAT | S_IRUSR | S_IWUSER);

 int segment_id = shmget (shm_key, 1000,IPC_CREAT | 0666);

Attach a Shared Memory Segment

• Must attach it before using!
• void *shmat (int shmid, const void*shmaddr, int shmflg);

– returns a pointer to the head of the shared segment associated with a
valid shmid

– #2 para: specifies where in your process’s address space you want to
map the shared memory; if you specify NULL, Linux will choose an
available address

– #3 para:
• SHM_RND indicates that the address specified for the second parameter should be

rounded down to a multiple of the page size. If you don’t specify this flag, you must
page-align the second argument to shmat yourself.

• SHM_RDONLY indicates that the segment will be only read, not written.

Detaching a Share Mem. Seg.

• Never forget to detach it!

• int shmdt(const void* shmaddr);
– Detaches the shared memory segment located at the address

indicated by shmaddr

Controlling a Shared Mem. Seg.

• int shmctl(int shmid, int cmd, struct shmid_ds *buf);

• cmd
 SHM_LOCK -- Lock the specified shared memory segment in memory. The

process must have the effective ID of superuser to perform this command.

 SHM_UNLOCK -- Unlock the shared memory segment. The process must have
the effective ID of superuser to perform this command.

 IPC_STAT -- Return the status information contained in the control structure
and place it in the buffer pointed to by buf. The process must have read
permission on the segment to perform this command.

 IPC_SET -- Set the effective user and group identification and access
permissions. The process must have an effective ID of owner, creator or
superuser to perform this command.

 IPC_RMID -- Remove the shared memory segment.

 The buf is a structure of type struct shmid_ds which is defined in
<sys/shm.h>

Deleting Segment

• When you detach from the segment, it isn't destroyed. Nor is
it removed when everyone detaches from it. You have to
specifically destroy it using a call to shmctl(), similar to the
control calls for the other System V IPC functions:

 shmctl(shmid, IPC_RMID, NULL);

Examples: server.c

main() {
char c;
int shmid;
key_t key;
char *shm, *s; /* * We'll name our shared memory segment * "5678". */
key = 5678;
/* * Create the segment. */
if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0) {
 perror("shmget");
 exit(1); }
/* * Now we attach the segment to our data space. */
if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat"); exit(1); }
/* * Now put some things into the memory for the * other process to read. */
s = (char*)shm;
for (c = 'a'; c <= 'z'; c++)
 *s++ = c;
*s = NULL;
/* * Finally, we wait until the other process * changes the first character of our
memory * to '*', indicating that it has read what * we put there. */
while (*shm != '*')
 sleep(1);
exit(0);

}

client.c
main() {

int shmid;
key_t key;
char *shm, *s;
/* * We need to get the segment named * "5678", created by the server. */

 key = 5678;
/* * Locate the segment. */
if ((shmid = shmget(key, SHMSZ, 0666)) < 0) {
 perror("shmget"); exit(1); }
/* * Now we attach the segment to our data space. */
if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat"); exit(1); }
/* * Now read what the server put in the memory. */
for (s = shm; *s != NULL; s++)
 putchar(*s);
putchar('\n');
/* * Finally, change the first character of the * segment to '*', indicating we have
read * the segment. */
shm = '';
exit(0);

}

server.c: does this have problem?

main() {
char c;
int shmid;
key_t key;
char *shm, *s; /* * We'll name our shared memory segment * "5678". */
key = 5678;
/* * Create the segment. */
if (shmid = shmget(key, SHMSZ, IPC_CREAT | 0666) < 0) {
 perror("shmget");
 exit(1); }
/* * Now we attach the segment to our data space. */
if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat"); exit(1); }
/* * Now put some things into the memory for the * other process to read. */
s = (char*)shm;
for (c = 'a'; c <= 'z'; c++)
 *s++ = c;
*s = NULL;
/* * Finally, we wait until the other process * changes the first character of our
memory * to '*', indicating that it has read what * we put there. */
while (*shm != '*')
 sleep(1);
exit(0);

}

Fork and shmat

• After fork(), the child inherits the attached
shared memory segments

Debugging

• ipcs –m

– Get info about shared memory
------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x00000000 1627649 user 640 25600 0

• ipcrm shm 1627649
– Remove the shared memory was erroneously left behind by a program

