Processes

Dr. Yingwu Zhu

Process

» Program: code & static data stored in a file

Process: a program’s execution context

— Each process has its own address space
— Memory map

« Text: compiled program

« Data: initialized static data

« BSS: uninitialized static data

« Heap: dynamically allocated memory |
« Stack: call stack
— Process context:

« Program counter

: data+bss
CPU reQISterS Text (code) & initialized
data come from the -

stored program text

heap

Growing Memory

Stack expands automatically

Data area (heap) can grow
via a system call that / e
requests more memory
- malloc() in ¢/c++ data+bss

text

Contexts

Entering the kernel (mode)
— Hardware interrupts

» Asynchronous events (I/0, clock, etc.)
* Do not relate to the context of the current process

— Software traps

* Are related to the context of the current procesds
* E.g., illegal memory access, divide by zero, illegal instruction

— Software initiated traps

e System call from the current process

— The current executing process’s address space is active on a
trap

Saving state
— Kernel stack switched in upon entering kernel mode
— Kernel must save machine state before servicing event

* Registers, flags (program status word), program counter, ...

System Calls

* Entry: trap to system call handler
— Save state
— Verify parameters are in a valid address
— Call the function that implements the

system call

* If the function has to (cannot be satisfied
immediately), then
— Context switch to let another ready process to run
— Put our process in a blocked list

System Calls (cont)

e Return from system call or interrupt
— Check for signals to the process
— Check if another process should run

* Context switch to let the other process run
* Put our process on a ready list

— Calculate time spent in the call for
profiling/accounting

— Restore user process state
— Return from interrupt

Processes in a Multitasking
Environment

Multiple concurrent processes
— Each has a unique identifier: PID

Asynchronous events (interrupts) may occur

Processes many request operations that take a
long time
Goals: have some process running at all times

Context saving/switching
— Processes may be suspended and resumed

— Need to save all state about a process so we can
restore it

Process States

Preemption

Scheduler

Blocked

/O complete

Keeping track of processes

* Process list stores a Process Control Block (PCB) per process

* PCB contains
— PID
— Machine state (registers, PC, stack pointer)
— Parent & list of children
— Process state (ready, running, blocked)
— Memory map
— Open file descriptors
— Owner (User ID): determine access & signaling privileges
— Event descriptor if the process is blocked
— Signals that have not yet been handled
— Policy items: scheduling parameters, memory limits
— Timers for accounting (time & resource utilization)
— (Process group)

PCB and Hardware State

When a process is running, its hardware state (PC, SP,
regs, etc.) is in the CPU

— The hardware registers contain the current values

When the OS stops running a process, it saves the
current values of the registers into the process’ PCB

When the OS is ready to start executing a new process,
it loads the hardware registers from the values stored
in that process’ PCB

The process of changing the CPU hardware state from
one process to another is called a context switch

Context Switch

 When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process

e Context-switch time is overhead; the system
does NO useful work while switching

 Time dependent on hardware support
— Depends on

 Memory speed, #-of-registers to copy, special instructions
(single instruction to load/save all registers)

* A few milliseconds. This can happen 100 or 1000 times a
second!

Processes in Linux

+ The OS creates one task on startup:
init. the parent of all tasks
launchd: replacement for init on Mac OS X and FreeBSD

* Process state stored in struct task struct

— Defined in 1inux/sched.h

+ Stored as a circular, doubly linked list
— struct list head inlinux/list.h

struct task_struct init_task; /* static definition */

init_task | [c—] |task2| [} | task N | |(J,

Processes in Linux
terating through processes

for (p = &init task; ((p = next task(p)) != &lnit task;) {
/* whatever */

}

» The current process on the current CPU Is obtained from
the macro

current->state = TASK STOPPED;

init_task‘ L:" ‘task2 |:| |:’ ‘taskl\l‘ I(J,

Processes on Ready & Blocked Queues

Network1 —| PCB7 |—| pPcB101 }—{ PcBG4 |
Network2 —{ PcB118 |——{ PcB39
.

J
Blocked

Process States: a bit more detail

% [Terminated]
Sys call
or Interrupt l Return . @
exit , |
Kernel Linger until a
Running waiting process
| returns from wait()

Sleep

Reschedule

/O complete

Wake up

Creating a process under POSIX

* fork system call
— Clones a process into two processes
* New context is created: duplicate of parent process

— fork returns 0 to the child process & the process
ID to the parent

What happens?

Check for available resources

Allocate a new PCB

Assign a unique PID

Check process limits for user

Set child state to “created”

Copy data from parent PCB slot to child

Increment counts on current directory & open files
Copy parent context in memory (or set copy-on-write)
Set child state to “ready to run”

Wait for the scheduler to run the process

Fork Example

#include <stdio.h>

main(int argc, char **argv) [
int pid;

switch (pid= ()

case 0: printf ("
break;

default:
printf("I'm the parent of %d\n", pid);
break;

case -1:
perror("fork");

) |
I'm the child\n");

Running Other Programs

* execve: replace the current process image with a new

one (execl, execle, execlp, execvp...)
* New process inherits

— Process group ID

— Open files

— Access groups

— Working directory

— Root directory

— Resource usages & limits

— Timers

— File mode mask

— Signal mask

Exec Example

#include <unistd.h>

main(int argc, char **argv) {

char *av[] = { "l1ls",

("1ls", av);

EXit a process

system call

#include <stdlib.h>

main(int argc, char **argv) {
exit (0);

}

What happens for exit?

lgnore all signals

Close all open files

Release current directory

Release current changed root, if any

Free memory associated with the process

Write an accounting record (if accounting)

Make the process state zombie

Assign the parent PID of any children to be 1 (init)

Send a “death of child” signal to parent process
(SIGCHLD)

Context switch

Wait for child process to die

system call

« Suspend execution until a child process exits

 wait returns the exit status of that child.

int pid, my pid, status;

switch (my pid=fork()) {
case 0: /* do child stuff */ break;
case -1: /* do error stuff */ break;

default: /* wait for child to exit */
while (pid=wait(&status))
if (pid==my pid)
printf("got exit of %d\n", WEXITSTATUS(status));
break;

Parent & Child Process

child

parent

exec()

[esumes

walit

>

What Kernel does for a process
sleeping on a wait?

loop forever {
1f walting process has a zomble child
pick any zomble child
add its CPU usage to the parent
free child process control block
return child ID and the exit code of the child

1f process has no children
return error

sleep at an interruptible priority

Signals

Inform processes of asynchronous events
— Processes may specify signal handlers

Processes can poke each other (if owned by
the same user)

Sending a signal

— kill(int pid, int signal_number)
Detecting a signal

— signal(signal_number, function)

#include
#include

#include

main{int

1

<stdlib.h>
£stdio.h>
£signal.h>
argc, char **argv)
if (fork()) /™ fork, assume it always works %
for (33) /* parent prints &8 message forever
printf({"I'm the parent\n");
else { /~we'rethe child ¥
sleep(3); /™ do nothing for three seconds %
kill(getppid(), SIGKILL); ™ kill the p
h

Signal Example

Detecting signals

#include <stdio.h>
#include <stdlib.hz>

#include <signal.h>

main{int argc, char F**argwv)

1
if (Fork()) i /™ fork, assume it always works here

vold catchme(l) /™ zignal handling function %
signal({sSIGQUsR1l, catchme); /= call catchime ifwe get SIGUSRT %
for (;3;) M= parent prints & message forever %

printFf{"I*m the parentyn");

else { Swe're the child %
sleep(3); /™ do nothing for 3 seconds %
kill{getppid(), SIGUSR1); ™ zend SIGUSRT to the parent %
wodld
catchme{) { /™ zignal handler %

printf{"got the signal!n"};
exit(8);

How does kernel check for signals?

e Signals may occur asynchronously and often
occur when the process is not running

* The kernel sets a bit in the PCB for that
process upon a signal sent to it

 When the process is brought from ready to
running, the kernel does...

How does kernel check for signals?

* When the process is brought from ready to
running, the kernel does...

while ("received signal" field in PCB is not zero) {
find a signal number set to the process
if (signal == death of child)
if ignoring death of child

free PCBs of zombies for this parent
else
return the signal
else if not ignoring the signal
return the signal
turn off the "received signal" bit in the process control block

return "no signal"

Acknowledgement

* Some slides are adapted from Dr. Paul
KrzyzanowsKi

