
Processes

Dr. Yingwu Zhu

Process

Growing Memory

Stack expands automatically

Data area (heap) can grow
via a system call that

requests more memory
- malloc() in c/c++

Contexts
• Entering the kernel (mode)

– Hardware interrupts
• Asynchronous events (I/O, clock, etc.)

• Do not relate to the context of the current process

– Software traps
• Are related to the context of the current procesds

• E.g., illegal memory access, divide by zero, illegal instruction

– Software initiated traps
• System call from the current process

– The current executing process’s address space is active on a
trap

• Saving state

– Kernel stack switched in upon entering kernel mode

– Kernel must save machine state before servicing event
• Registers, flags (program status word), program counter, …

System Calls

• Entry: trap to system call handler

– Save state

–Verify parameters are in a valid address

–Call the function that implements the
system call

• If the function has to (cannot be satisfied
immediately), then

– Context switch to let another ready process to run

– Put our process in a blocked list

System Calls (cont)

• Return from system call or interrupt

– Check for signals to the process

– Check if another process should run

• Context switch to let the other process run

• Put our process on a ready list

– Calculate time spent in the call for
profiling/accounting

– Restore user process state

– Return from interrupt

Processes in a Multitasking
Environment

• Multiple concurrent processes
– Each has a unique identifier: PID

• Asynchronous events (interrupts) may occur
• Processes many request operations that take a

long time
• Goals: have some process running at all times
• Context saving/switching

– Processes may be suspended and resumed
– Need to save all state about a process so we can

restore it

Process States

Keeping track of processes
• Process list stores a Process Control Block (PCB) per process
• PCB contains

– PID
– Machine state (registers, PC, stack pointer)
– Parent & list of children
– Process state (ready, running, blocked)
– Memory map
– Open file descriptors
– Owner (User ID): determine access & signaling privileges
– Event descriptor if the process is blocked
– Signals that have not yet been handled
– Policy items: scheduling parameters, memory limits
– Timers for accounting (time & resource utilization)
– (Process group)

PCB and Hardware State

• When a process is running, its hardware state (PC, SP,
regs, etc.) is in the CPU
– The hardware registers contain the current values

• When the OS stops running a process, it saves the
current values of the registers into the process’ PCB

• When the OS is ready to start executing a new process,
it loads the hardware registers from the values stored
in that process’ PCB

• The process of changing the CPU hardware state from
one process to another is called a context switch

Context Switch
• When CPU switches to another process, the

system must save the state of the old process
and load the saved state for the new process

• Context-switch time is overhead; the system
does NO useful work while switching

• Time dependent on hardware support

– Depends on
• Memory speed, #-of-registers to copy, special instructions

(single instruction to load/save all registers)

• A few milliseconds. This can happen 100 or 1000 times a
second!

Processes in Linux

Processes in Linux

Processes on Ready & Blocked Queues

Process States: a bit more detail

Creating a process under POSIX

• fork system call

– Clones a process into two processes

• New context is created: duplicate of parent process

– fork returns 0 to the child process & the process
ID to the parent

What happens?

• Check for available resources
• Allocate a new PCB
• Assign a unique PID
• Check process limits for user
• Set child state to “created”
• Copy data from parent PCB slot to child
• Increment counts on current directory & open files
• Copy parent context in memory (or set copy-on-write)
• Set child state to “ready to run”
• Wait for the scheduler to run the process

Fork Example

Running Other Programs

• execve: replace the current process image with a new
one (execl, execle, execlp, execvp…)

• New process inherits
– Process group ID
– Open files
– Access groups
– Working directory
– Root directory
– Resource usages & limits
– Timers
– File mode mask
– Signal mask

Exec Example

Exit a process

What happens for exit?

• Ignore all signals
• Close all open files
• Release current directory
• Release current changed root, if any
• Free memory associated with the process
• Write an accounting record (if accounting)
• Make the process state zombie
• Assign the parent PID of any children to be 1 (init)
• Send a “death of child” signal to parent process

(SIGCHLD)
• Context switch

Wait for child process to die

Parent & Child Process

What Kernel does for a process
sleeping on a wait?

Signals

• Inform processes of asynchronous events

– Processes may specify signal handlers

• Processes can poke each other (if owned by
the same user)

• Sending a signal

– kill(int pid, int signal_number)

• Detecting a signal

– signal(signal_number, function)

Signal Example

Detecting signals

How does kernel check for signals?

• Signals may occur asynchronously and often
occur when the process is not running

• The kernel sets a bit in the PCB for that
process upon a signal sent to it

• When the process is brought from ready to
running, the kernel does…

How does kernel check for signals?
• When the process is brought from ready to

running, the kernel does…

Acknowledgement

• Some slides are adapted from Dr. Paul
Krzyzanowski

