
Memory Management: paging

Dr. Yingwu Zhu

What do we know about page table?

• One page table per process
• Stores corresponding page frame # for a page #
• And stores page permissions:

– Read-only
– No-execute
– Dirty (modified)
– Referenced
– Others (e.g., secure or privileged mode access)

• Page table is selected by setting a page table base
 register with the address of the table
• Memory protection

– Isolation of address spaces
– Access control defined in PTE

TLB to improve look-up performance

• Cache frequently-accessed pages
– Translation lookaside buffer (TLB)
– Associative memory: key (page #) and value (frame #)

• TLB is on-chip & fast … but small (64 – 1,024
entries)

• TLB miss: result not in the TLB
– Need to do page table lookup in memory

• Hit ratio = % of lookups that come from the TLB
• Address Space Identifier (ASID): share TLB among

address spaces

Our first cut on memory management

• Assumption:
– Physical memory > process size

• MMU + page-table
– Give the illusion of contiguous allocation

• Memory Protection
– Each process’ address space is separate from

others

– MMU allows pages to be protected:
• Writing, execution, kernel vs. user access

Second cut: back to reality
• Physical memory < process size!
• Virtual memory – separation of user logical

memory from physical memory.
– Only part of the program needs to be in memory for

execution.
– Logical address space can therefore be much larger

than physical address space.
– Allows physical address spaces to be shared by

processes.
– Allows for more efficient process creation. Why?

• Virtual memory can be implemented via:
– Demand paging (our focus)
– Demand segmentation

Virtual Memory that is Larger than Physical Memory



Access memory
• Process makes virtual address references for all memory

access
• MMU converts to physical address via a per-process page

table
– Page number  Page frame number
– Basic info stored in a PTE (page table entry):

• Valid? Is the page mapped?
• Page frame number
• Permissions (read-only, read-write, execute-only, …)
• Modified?

• – Page fault if not a valid reference
• Most CPUs support:

– Virtual addressing mode and Physical addressing mode
• CPU starts in physical mode … someone has to set up page tables

– Divide address space into user & kernel spaces

Kernel’s view

• Each process sees a flat linear address space

– Accessing regions of memory mapped to the
kernel causes a page fault

• Kernel’s view:

– Address space is split into two parts

• User part: changes with context switches

• Kernel part: remains constant

– Split is configurable:

• 32-bit x86: PAGE_OFFSET: 3GB for process + 1 GB kernel

Page allocator

• With VM, processes can use non-contiguous
pages

• Sometimes you need contiguous allocation

– E.g., DMA logic ignores paging (bypass CPU &
MMU)

– If we rely on DMA, we need contiguous pages

Page allocator

• Linux kernel support for contiguous buffers

– free_area: keep track of lists of free pages

– 1st element: free single pages

– 2nd element: free blocks of 2 contiguous pages

– 3rd element: free blocks of 4 contiguous pages

– …

– 10th element: free blocks of 512 contiguous pages

Buddy system
• Try to get the best usable allocation unit
• If not available, get the next biggest one & split
• Coalesce upon free
• Example

– We want 8 contiguous pages
– Do we have a block of 8? Suppose no.
– Do we have a block of 16? Suppose no.
– Do we have a block of 32? Suppose yes.

• Split the 32 block into two blocks of 16. Back up.

– Do we have a block of 16? Yes!
• Split one of the 16 blocks into two blocks of eight. Back up.

– Do we have a block of 8? Yes!

Buddy System: Coalescence

• When a block is freed, see if we can merge
buddies

• Two blocks are buddies if:
– They are the same size, b

– They are contiguous

– The address of the first page of the lower # block
is a multiple of 2b × page_size

• If two blocks are buddies, they are merged

• Repeat the process

Buddy system example

Buddy system example

Buddy system example

Buddy system example

Buddy system example

Sample memory map per process

Multilevel (Hierarchical) page tables

• Most processes use only a small part of their
address space

• Keeping an entire page table is wasteful

• E.g., 32-bit system with 4KB pages: 20-bit page
table

– 1,048,576 entries in a page table

Virtual memory makes memory
sharing easy

• Sharing is by
page granularity.

• Shared library or
shared memory

• Keep reference
counts!

Copy on write

• Share until a page gets modified

• Example: fork()

– Set all pages to read-only

– Trap on write

– If legitimate write

• Allocate a new page and copy contents

Demand Paging

Executing a Program

• Allocate memory + stack and load the entire
program into memory (including linked
libraries)

• Then execute it

Executing a Program

• Allocate memory + stack and load the entire
program into memory (including linked
libraries)

• Then execute it

We do not have to do this!

Demand Paging

• Load pages into memory only as needed

– On first access

– Pages that are never used never get loaded

• Use valid/invalid bit in page table entry

– Valid: the page is in memory (“valid” mapping)

– Invalid: out of bounds access or page is not in memory

• Have to check the process’ memory map in the PCB to find
out

• Invalid memory access generates a page fault

Demand Paging: At Process Start

• Open executable file

• Set up memory map (stack & text/data/bss)

– But don’t load anything!

• Load first page & allocate initial stack page

• Run it!

Memory Mapping
• Executable files & libraries must be brought into a

process’ virtual address space
– File is mapped into the process’ memory
– As pages are referenced, page frames are allocated &

pages are loaded into them

• If we ever run out of memory, we may need to save
some modified pages into a swap file and load those in
later on demand.

• vm_area_struct !
– Defines regions of virtual memory
– Used in setting page table entries
– Start of VM region, end of region, access rights

• Several of these are created for each mapped image
– Executable code, initialized data, uninitialized data

Demand Paging: Page Fault Handling

• Soon the process will access an address without a
valid page
– OS gets a page fault from the MMU

• What happens?
– Kernel searches a tree structure of memory

allocations for the process to see if the faulting
address is valid
• If not valid, send a SEGV (segmentation violation) signal to

the process

– Is the type of access valid for the page?
• Send a signal if not

– We have a valid page but it’s not in memory

Keeping track of a processes’ memory region

Demand Paging: Getting a Page

• The page we need is either in the a mapped file
(executable or library) or in a swap file
– If PTE is not valid but page # is present

• The page we want has been saved to a swap file
• Page # in the PTE tells us the location in the file

– If the PTE is not valid and no page #
• Load the page from the program file from the disk

• Read page into physical memory
– Find a free page frame (evict one if necessary)
– Read the page: This takes time: context switch & block
– Update page table for the process
– Restart the process at the instruction that faulted

Page Replacement
• A process can run without having all of its

memory allocated
– It’s allocated on demand

• • If the {address space used by all processes + OS}
 ≤ physical memory
then we’re ok

• Otherwise:
– Make room: discard or store a page onto the disk
– If the page came from a file & was not modified

• Discard … we can always get it

– If the page is dirty, it must be saved in a swap file
– Swap file: a file (or disk partition) that holds excess

pages

Cost

• Handle page fault exception: ~ 400 usec
(microseconds)

• Disk seek & read: ~ 10 msec

• Memory access: ~ 100 ns

• Page fault degrades performance by around
100,000!!

• Avoid page faults!
– If we want < 10% degradation of performance, we can

have just one page fault per 1,000,000 memory
accesses

Page Replacement

• We need a good replacement policy for good
performance

FIFO Replacement

• First In, First Out

• Good

– May get rid of initialization code or other code
that’s no longer used

• Bad

– May get rid of a page holding frequently used
global variables

Least Recently Used (LRU)

• Timestamp a page when it is accessed

• When we need to remove a page, search for
the one with the oldest timestamp

• Nice algorithm but…

– Timestamping is a pain – we can’t do it with the
MMU!

Not Frequently Used Replacement

• Approximate LRU
• Each PTE has a reference bit
• Keep a counter for each page frame
• At each clock interrupt:

– Add the reference bit of each frame to its counter
– Clear reference bit

• To evict a page, choose the frame with the lowest
counter

• Problem
– No sense of time: a page that was used a lot a long time

ago may still have a high count
– Updating counters is expensive

Clock (Second Chance)

• Arrange physical pages in a logical circle (circular
queue)
– Clock hand points to first frame

• Paging hardware keeps 1 reference bit per frame
– Set reference bit on memory reference
– If it’s not set then the frame hasn’t been used for a

while

• On page fault:
– Advance clock hand
– Check reference bit

• If 1, it’s been used recently – clear & advance
• If 0, evict this page

Enhanced Clock (Second Chance)

• Use the reference and modify bits of the page
• Choices for replacement – (reference, modify):

– (0, 0): not referenced recently or modified
• Good candidate for replacement

– (0, 1): not referenced recently but modified.
• The page will have to be saved before replacement

– (1, 0): recently used.
• Less ideal – will probably be used again

– (1, 1): recently used and modified
• Least ideal – will probably be used again AND we’ll have to save it

to a swap file if we replace it.

• Algorithm: like clock but replace the first page in the
lowest non-empty class

Nth Chance Replacement

• Similar to Second Chance

• Maintain a counter along with a reference bit

• On page fault:

– Advance clock hand

– Check reference bit

• If 1, clear and set counter to 0

• If 0, increment counter. If counter < N, go on. Else evict

• Better approximation of LRU

Kernel Swap Daemon

• kswapd on Linux

• Anticipate problems

• Timer periodically triggered

• Decides whether to shrink caches if page
count (# of free page frames) is low

– Page cache, buffer cache

– Evict pages from page frames

Demand paging summary

• Allocate page table

– Map kernel memory

– Initialize stack

– Memory-map text & data from executable
program (& libraries)

• But don’t load!

• Load pages on demand (first access)

– When we get a page fault

Summary: If we run out of free page frames

• Free some page frames

– Discard pages that are mapped to a file

 or

– Move some pages to a swap file

• Clock algorithm

• Anticipate need for free page frames

– kswapd – kernel swap dæmon

Multitasking Considerations

Supporting multitasking

• Multiple address spaces can be loaded in
memory

• A CPU register points to the current page table

• OS changes the register set when context
switching

• Performance increased with Address Space ID
in TLB

Working Set

• Keep active pages in memory

• A process needs its working set in memory to
perform well
– Working set = set of pages that have been referenced

in the last window of time

– Spatial locality

– Size of working set varies during execution

• More processes in a system:
– Good: increase throughput; chance that some process

is available to run

– Bad: thrashing: processes do not have enough page
frames available to run without paging

Thrashing
• Locality

– Process migrates from one locality (working set) to another

• Thrashing
– Occurs when sum of all working sets > total memory

Working Set Model

