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What do we know about page table? 

• One page table per process 
• Stores corresponding page frame # for a page # 
• And stores page permissions: 

– Read-only 
– No-execute 
– Dirty (modified) 
– Referenced 
– Others (e.g., secure or privileged mode access) 

• Page table is selected by setting a page table base 
 register with the address of the table 
• Memory protection 

– Isolation of address spaces 
– Access control defined in PTE 



TLB to improve look-up performance 

• Cache frequently-accessed pages 
– Translation lookaside buffer (TLB) 
– Associative memory: key (page #) and value (frame #) 

• TLB is on-chip & fast … but small (64 – 1,024 
entries) 

• TLB miss: result not in the TLB 
– Need to do page table lookup in memory 

• Hit ratio = % of lookups that come from the TLB 
• Address Space Identifier (ASID): share TLB among 

address spaces 



Our first cut on memory management 

• Assumption: 
– Physical memory > process size 

• MMU + page-table  
– Give the illusion of contiguous allocation 

• Memory Protection 
– Each process’ address space is separate from 

others 

– MMU allows pages to be protected: 
• Writing, execution, kernel vs. user access 



Second cut: back to reality 
• Physical memory < process size! 
• Virtual memory – separation of user logical 

memory from physical memory. 
– Only part of the program needs to be in memory for 

execution. 
– Logical address space can therefore be much larger 

than physical address space. 
– Allows physical address spaces to be shared by 

processes. 
– Allows for more efficient process creation. Why? 

• Virtual memory can be implemented via: 
– Demand paging (our focus) 
– Demand segmentation 



Virtual Memory that is Larger than Physical Memory 

 



Access memory 
• Process makes virtual address references for all memory 

access 
• MMU converts to physical address via a per-process page 

table 
– Page number  Page frame number 
– Basic info stored in a PTE (page table entry): 

• Valid? Is the page mapped? 
• Page frame number 
• Permissions (read-only, read-write, execute-only, …) 
• Modified? 

• – Page fault if not a valid reference 
• Most CPUs support: 

– Virtual addressing mode and Physical addressing mode 
• CPU starts in physical mode … someone has to set up page tables 

– Divide address space into user & kernel spaces 



Kernel’s view 

• Each process sees a flat linear address space 

– Accessing regions of memory mapped to the 
kernel causes a page fault 

• Kernel’s view: 

– Address space is split into two parts 

• User part: changes with context switches 

• Kernel part: remains constant 

– Split is configurable: 

• 32-bit x86: PAGE_OFFSET: 3GB for process + 1 GB kernel 



Page allocator 

• With VM, processes can use non-contiguous 
pages 

• Sometimes you need contiguous allocation 

– E.g., DMA logic ignores paging (bypass CPU & 
MMU) 

– If we rely on DMA, we need contiguous pages 



Page allocator 

• Linux kernel support for contiguous buffers 

– free_area: keep track of lists of free pages 

– 1st element: free single pages 

– 2nd element: free blocks of 2 contiguous pages 

– 3rd element: free blocks of 4 contiguous pages 

– … 

– 10th element: free blocks of 512 contiguous pages 



Buddy system 
• Try to get the best usable allocation unit 
• If not available, get the next biggest one & split 
• Coalesce upon free 
• Example 

– We want 8 contiguous pages 
– Do we have a block of 8? Suppose no. 
– Do we have a block of 16? Suppose no. 
– Do we have a block of 32? Suppose yes. 

• Split the 32 block into two blocks of 16. Back up. 

– Do we have a block of 16? Yes! 
• Split one of the 16 blocks into two blocks of eight. Back up. 

– Do we have a block of 8? Yes! 



Buddy System: Coalescence 

• When a block is freed, see if we can merge 
buddies 

• Two blocks are buddies if: 
– They are the same size, b 

– They are contiguous 

– The address of the first page of the lower # block 
is a multiple of 2b × page_size 

• If two blocks are buddies, they are merged 

• Repeat the process 



Buddy system example 
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Buddy system example 



Sample memory map per process 



Multilevel (Hierarchical) page tables 

• Most processes use only a small part of their 
address space 

• Keeping an entire page table is wasteful 

• E.g., 32-bit system with 4KB pages: 20-bit page 
table 

– 1,048,576 entries in a page table 



Virtual memory makes memory 
sharing easy 

• Sharing is by 
page granularity. 

• Shared library or 
shared memory 

• Keep reference 
counts! 



Copy on write 

• Share until a page gets modified 

• Example: fork() 

– Set all pages to read-only 

– Trap on write 

– If legitimate write 

• Allocate a new page and copy contents 



Demand Paging 



Executing a Program 

• Allocate memory + stack and load the entire 
program into memory (including linked 
libraries) 

• Then execute it 



Executing a Program 

• Allocate memory + stack and load the entire 
program into memory (including linked 
libraries) 

• Then execute it 

We do not have to do this! 



Demand Paging 

• Load pages into memory only as needed 

– On first access 

– Pages that are never used never get loaded 

• Use valid/invalid bit in page table entry 

– Valid: the page is in memory (“valid” mapping) 

– Invalid: out of bounds access or page is not in memory 

• Have to check the process’ memory map in the PCB to find 
out 

• Invalid memory access generates a page fault 



Demand Paging: At Process Start 

• Open executable file 

• Set up memory map (stack & text/data/bss) 

– But don’t load anything! 

• Load first page & allocate initial stack page 

• Run it! 



Memory Mapping 
• Executable files & libraries must be brought into a 

process’ virtual address space 
– File is mapped into the process’ memory 
– As pages are referenced, page frames are allocated & 

pages are loaded into them 

• If we ever run out of memory, we may need to save 
some modified pages into a swap file and load those in 
later on demand. 

• vm_area_struct ! 
– Defines regions of virtual memory 
–  Used in setting page table entries 
– Start of VM region, end of region, access rights 

• Several of these are created for each mapped image 
– Executable code, initialized data, uninitialized data 



Demand Paging: Page Fault Handling 

• Soon the process will access an address without a 
valid page 
– OS gets a page fault from the MMU 

• What happens? 
– Kernel searches a tree structure of memory 

allocations for the process to see if the faulting 
address is valid 
• If not valid, send a SEGV (segmentation violation) signal to 

the process 

– Is the type of access valid for the page? 
• Send a signal if not 

– We have a valid page but it’s not in memory 



Keeping track of a processes’ memory region 



Demand Paging: Getting a Page 

• The page we need is either in the a mapped file 
(executable or library) or in a swap file 
– If PTE is not valid but page # is present 

• The page we want has been saved to a swap file 
• Page # in the PTE tells us the location in the file 

– If the PTE is not valid and no page # 
• Load the page from the program file from the disk 

• Read page into physical memory 
– Find a free page frame (evict one if necessary) 
– Read the page: This takes time: context switch & block 
– Update page table for the process 
– Restart the process at the instruction that faulted 



Page Replacement 
• A process can run without having all of its 

memory allocated 
– It’s allocated on demand 

• • If the {address space used by all processes + OS}  
              ≤ physical memory 
then we’re ok 

• Otherwise: 
– Make room: discard or store a page onto the disk 
– If the page came from a file & was not modified 

• Discard … we can always get it 

– If the page is dirty, it must be saved in a swap file 
– Swap file: a file (or disk partition) that holds excess 

pages 



Cost 

• Handle page fault exception: ~ 400 usec 
(microseconds) 

• Disk seek & read: ~ 10 msec 

• Memory access: ~ 100 ns 

• Page fault degrades performance by around 
100,000!! 

• Avoid page faults! 
– If we want < 10% degradation of performance, we can 

have just one page fault per 1,000,000 memory 
accesses 



Page Replacement 

• We need a good replacement policy for good 
performance 



FIFO Replacement 

• First In, First Out 

• Good 

– May get rid of initialization code or other code 
that’s no longer used 

• Bad 

– May get rid of a page holding frequently used 
global variables 



Least Recently Used (LRU) 

• Timestamp a page when it is accessed 

• When we need to remove a page, search for 
the one with the oldest timestamp 

• Nice algorithm but… 

– Timestamping is a pain – we can’t do it with the 
MMU! 



Not Frequently Used Replacement 

• Approximate LRU 
• Each PTE has a reference bit 
• Keep a counter for each page frame 
• At each clock interrupt: 

– Add the reference bit of each frame to its counter 
– Clear reference bit 

• To evict a page, choose the frame with the lowest 
counter 

• Problem 
– No sense of time: a page that was used a lot a long time 

ago may still have a high count 
– Updating counters is expensive 



Clock (Second Chance) 

• Arrange physical pages in a logical circle (circular 
queue) 
– Clock hand points to first frame 

• Paging hardware keeps 1 reference bit per frame 
– Set reference bit on memory reference 
– If it’s not set then the frame hasn’t been used for a 

while 

• On page fault: 
– Advance clock hand 
– Check reference bit 

• If 1, it’s been used recently – clear & advance 
• If 0, evict this page 

 



Enhanced Clock (Second Chance) 

• Use the reference and modify bits of the page 
• Choices for replacement – (reference, modify): 

– (0, 0): not referenced recently or modified 
• Good candidate for replacement 

– (0, 1): not referenced recently but modified. 
•  The page will have to be saved before replacement 

– (1, 0): recently used. 
• Less ideal – will probably be used again 

– (1, 1): recently used and modified 
• Least ideal – will probably be used again AND we’ll have to save it 

to a swap file if we replace it. 

• Algorithm: like clock but replace the first page in the 
lowest non-empty class 



Nth Chance Replacement 

• Similar to Second Chance 

• Maintain a counter along with a reference bit 

• On page fault: 

– Advance clock hand 

– Check reference bit 

• If 1, clear and set counter to 0 

• If 0, increment counter. If counter < N, go on. Else evict 

• Better approximation of LRU 



Kernel Swap Daemon 

• kswapd on Linux 

• Anticipate problems 

• Timer periodically triggered 

• Decides whether to shrink caches if page 
count  (# of free page frames) is low 

– Page cache, buffer cache 

– Evict pages from page frames 



Demand paging summary 

• Allocate page table 

– Map kernel memory 

– Initialize stack 

– Memory-map text & data from executable 
program (& libraries) 

• But don’t load! 

• Load pages on demand (first access) 

– When we get a page fault 



Summary: If we run out of free page frames 

• Free some page frames 

– Discard pages that are mapped to a file 

 or 

– Move some pages to a swap file 

• Clock algorithm 

• Anticipate need for free page frames 

– kswapd – kernel swap dæmon 

 



Multitasking Considerations 



Supporting multitasking 

• Multiple address spaces can be loaded in 
memory 

• A CPU register points to the current page table 

• OS changes the register set when context 
switching 

• Performance increased with Address Space ID 
in TLB 



Working Set 

• Keep active pages in memory 

• A process needs its working set in memory to 
perform well 
– Working set = set of pages that have been referenced 

in the last window of time 

– Spatial locality 

– Size of working set varies during execution 

• More processes in a system: 
– Good: increase throughput; chance that some process 

is available to run 

– Bad: thrashing: processes do not have enough page 
frames available to run without paging 



Thrashing 
• Locality 

– Process migrates from one locality (working set) to another 

• Thrashing 
– Occurs when sum of all working sets > total memory 



Working Set Model 


