
Memory Management

Dr. Yingwu Zhu

Big picture

• Main memory is a resource

• A process/thread is being executing, the
instructions & data must be in memory

• Assumption: Main memory is infinite
– Allocation of memory to processes

– Address translation

• Real world: a program and its data is larger than
physical memory
– VM comes to rescue

OS needs to manage this resource

First cut

• Background: Program must be brought into
memory and placed within a process for it to
be run

• An assumption for this discussion:

– Physical memory is large enough to hold an any
sized process

– We will relax this assumption later

CPU & Memory

• CPU reads instructions and reads/write data
from/to memory

Multiprogramming
• Keep more than one process in

memory
• More processes in memory

improves CPU utilization
– If a process spends 20% of its time

computing, then would switching
among 5 processes give us 100%
CPU utilization?

– Not quite. For n processes, if p = %
time a process is blocked on I/O
then:
probability all are blocked = pn

– CPU is not idle for (1-pn) of the
time

– 5 processes: 67% utilization

Logical vs. Physical Address Space

• Logical address (virtual address)

– Seen by the CPU, always starting from 0

• Physical address

– Address seen/required by the memory unit

• Logical address space is bound to a physical
address space

– Central to proper memory management

Binding logical address space to
physical address space

• Binding instructions & data into memory can
happen at 3 different stages
– Compile time: If memory location known a priori, absolute code can be

generated; must recompile code if starting location changes

– Load time: Must generate relocatable code if memory location is not
known at compile time

– Execution time: Binding delayed until run time if the process can be
moved during its execution from one memory segment to another.
Need hardware support for address maps (e.g., relocation and limit
registers)

– Logical address = physical address for compile time and load time;
logical address != physical address for execution time

Memory Management Unit (MMU)

• Hardware device

– Real-time, on-demand translation between logical
and physical addresses

Simplest MMU
• Base & limit

– Physical address = logical address + base register

– But first check that: logical address < limit

The user program deals with logical addresses; it never sees the real physical
addresses

CPU < + Memory

Logical
address

Limit
register

Relocation
register

Trap: address error

yes
Physical
address

no

Multiple Fixed Partitions

• Divide memory into predefined
partitions (segments)
– Partitions don’t have to be the

same size
– For example: a few big partitions

and many small ones

• New process gets queued
(blocked) for a partition that can
hold it

• Unused memory in a partition
goes unused
– Internal fragmentation (within a

partition); external fragmentation

Multiple Fixed Partitions

• Issues

– Internal fragmentation (programs are rarely a
perfect match for the partitions they go into,
leading to wasted memory)

– Hard to decide

• What partition sizes to create (lots of small partitions?
A few small and a few medium sized ones? A couple of
big partitions?).

Variable partition multiprogramming

• Create partitions as needed

• New process gets queued

• OS tries to find a hole for it

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

process 9

OS

process 5

process 9

process 2

process 10

rm p8 add p9 add p10

Variable partition multiprogramming

• What if a process needs more memory?

– Always allocate some extra memory just in case
(say, 20%)

– Find a hole big enough to relocate the process

• May swap other process(es) out

• Combining holes

– Memory compaction

– Usually not done because of CPU time to move a
lot of memory

Segmentation

• Allocate each of the components of a process
separately (e.g., code, data, heap, stack)
– Break up a process into smaller chunks and

increase our chances of finding free memory

– Code and static data, will not grow in size and will
never have to be reallocated

– Only heap and stack will be moved

• More hardware
– A number of segment registers

Segmentation

Allocation algorithms

• First fit: find the first hole that fits

• Best fit: find the hole that best fits the process

• Worst fit: find the largest available hole

– Why? Maybe the remaining space will be big
enough for another process. In practice, this
algorithm does not work well.

Paging: Non-contiguous allocation

Paging

• Memory management scheme

– Physical space can be non-contiguous

– No fragmentation problems (external)

– No need for compaction

• Paging is implemented by the Memory
Management Unit (MMU) in the processor

Paging
• Translation:

– Divide physical memory into fixed-size blocks: page frames
– A logical address is divided into blocks of the same size: pages
– All memory accesses are translated: page → page frame
– A page table maps pages to frames

• Example:
– 32-bit address, 4 KB page size:
– Top 20 bits identify the page number
– Bottom 12 bits identify offset within the page/frame

Paging Example

Address Translation

Exercise

• Consider a process of size 72,776 bytes and
page size of 2048 bytes

How many entries are in the page table?

What is the internal fragmentation size?

Discussion

• How to implement page tables? Where to
store page tables?

Implementation of Page Tables (1)

• Option 1: hardware support, using a set of
dedicated registers

• Case study

16-bit address, 8KB page size, how many registers
needed for the page table?

• Using dedicated registers

– Pros

– Cons

Implementation of Page Tables (2)

• Option 2: kept in main memory

– Page-table base register (PTBR) points to the page
table

• Each process has a page table

• Change the page table by changing a page table base
register

– Page-table length register (PTLR) indicates size of
the page table

– Problem?

Implementation of Page Tables (2)

• Option 2: kept in main memory

– Page-table base register (PTBR) points to the page
table

– Page-table length register (PTLR) indicates size of
the page table

– Problem?

Implementation of Page Tables (2)

• Option 2: kept in main memory

– Page-table base register (PTBR) points to the page
table

– Page-table length register (PTLR) indicates size of
the page table

– Problem?

Performance stinks!
Every data/instruction access requires 2 memory
accesses: one for the page table and one for the

data/instruction.

Option 2: Using memory to keep page
tables

• How to handle 2-memory-accesses problem?

Option 2: Using memory to keep page
tables

• How to handle 2-memory-accesses problem?
• Caching + hardware support

– Use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)
• Associative memory: key (page #) and value (frame #)

– Cache frequently-accessed page-table entries (LRU,
etc.)

– Expensive but fast (on-chip)
– Small: 64 – 1024 entries
– TLB miss:

• Need to do page table lookup in memory

Associative Memory

• Associative memory – parallel search

• Address translation (A´, A´´)

– If A´ is in associative register, get frame # out

– Otherwise get frame # from page table in
memory

Page # Frame #

Tagged TLB

• There is only one TLB per system
• When we context switch, we switch address spaces

– New page table
– TLB entries belong to the old address space

• Either:
– Flush the TLB: invalidate all entries

• Costly, the first several memory references of a process will be
forced to access the in-memory page table

– Have a Tagged TLB:
• Address space identifier (ASID): Another field to indicate the

process
• A hardware register has to be added to the processor that will

allow OS to set the ASID during a context switch
• Save time on context switch

Why Hierarchical Paging?

• Most modern computer systems support a
large logical address space, 232 – 264

• Large page tables
– Example: 32-bit logical address space, page size is 4KB,

then 220 page table entries. If address takes 4 bytes, then
the page table size costs 4MB

– Contiguous memory allocation for large page tables may
be a problem!

– Physical memory may not hold a single large page table!

– Also, most processes use only a small part of their address
space

• Keeping an entire page table is wasteful

Hierarchical Paging

• Break up the logical address space into
multiple page tables

– Page table is also paged!

• A simple technique is a two-level page table

Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page size) is divided into:
– A page number consisting of 20 bits  what’s the page table size in bytes?

– A page offset consisting of 12 bits

• Since the page table is paged, the page number is further divided into:
– A 10-bit page number

– A10-bit page offset

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12

Address Translation

• 2-level 32-bit paging architecture

Hashed Page Tables

• A common approach for handling address
space > 32 bits

– The virtual page number is hashed into a page
table. This page table contains a chain of elements
hashing to the same location.

– Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

Hashed Page Tables

Inverted page tables

• # of pages on a system may be huge

• # of page frames will be more manageable (limited by
physical memory)

• Inverted page table
– One entry for each memory frame

– Each entry consists of the virtual address of the page
stored in the memory frame, with info about the process
that owns the page: <pid, page #>

– One page table system wide

• Table access is no longer a simple index but a search
– Use hashing and take advantage of associative memory

Inverted Hash Tables

• Pros: reduce memory consumption for page tables

• Cons: linear search performance!

Protection

• An MMU can enforce memory protection

• Page table stores protection bits per frame

– Valid/invalid: is there a frame mapped to this
page?

– Read-only

– No execute

– Dirty

Memory Protection

Exercise

• Consider a system with 32GB virtual memory, page
size is 2KB. It uses 2-level paging. The physical
memory is 512MB.
 Show how the virtual memory address is split in page directory, page

table and offset.

 How many (2nd level) page tables are there in this system (per
process)?

 How many entries are there in the (2nd level) page table?

 What is the size of the frame number (in bits) needed for
implementing this?

 How large should be the outer page table size?

