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What is a file system? 

• Organization of data and metadata 

• What’s metadata? 

– Data of data 

– Attributes; things that describe the data 

– Name, length, type of file, 
creation/modification/access times, permissions, 
owner, location of data 

• File systems usually interact with block devices 



Standard Interfaces to Devices 

• Block Devices: e.g. disk drives, tape drives, Cdrom 
– Access blocks of data 
– Commands include open(), read(), write(), seek() 
– Raw I/O or file-system access 
– Memory-mapped file access possible 

• Character Devices: e.g. keyboards, mice, serial ports, some USB 
devices 
– Single characters at a time 
– Commands include get(), put() 
– Libraries layered on top allow line editing 

• Network Devices: e.g. Ethernet, Wireless, Bluetooth 
– different enough from block/character to have own interface 
– Unix and Windows include socket interface 

• Separates network protocol from network operation 
• Includes select() functionality 

– Usage: pipes, FIFOs, streams, queues, mailboxes 



FS design choices 



Mounting 
• A file system must be mounted before it can be used by the 

operating system 
• The mount system call is given the file system type, block 

device & mount point 
• The mounted file system overlays anything under that 

mount point 
• Looking up a pathname may involve traversing multiple 

mount points 



Virtual File System (VFS) Interface 

• Abstract interface for a file system object 
• Each real file system interface exports a common 

interface 



VFS and Other Components 

• System call interface: APIs for user programs  
• VFS: manages the namespace, keeps track of open files, 

reference counts, file system types, mount points, 
pathname traversal.  

• File system module: understands how the file system is 
implemented on the disk. Can fetch and store metadata 
and data for a file, get directory contents, create and delete 
files and directories  

• Buffer cache: no understanding of the file system; takes 
read and write requests for blocks or parts of a block and 
caches frequently used blocks.  

• Device drivers: the components that actually know how to 
read and write data to the disk.  
 



Keeping track of file system types 
• Like drivers, file systems can be built into the kernel or 

compiled as loadable modules (loaded at mount) 

• Each file system registers itself with VFS 

• Kernel maintains a list of file systems 



Keeping track of mounted file systems 

• Before mounting a file system, first check if we 
know the file system type: look through the 
file_systems list 
– If not found, the kernel daemon will load the file 

system module 
• /lib/modules/2.6.38-8-server/kernel/fs/ntfs/ntfs.ko! 
• /lib/modules/2.6.38-11-server/kernel/fs/jffs2/jffs2.ko! 
• /lib/modules/2.6.38-11-server/kernel/fs/minix/minix.ko! 

• The kernel keeps a linked list of mounted file 
systems: 

  current->namespace->list 
• Check that the mount point is a directory and 

nothing is already mounted there 



VFS: Common set of objects 
• Superblock: Describes the file system 

– Block size, max file size, mount point 
– One per mounted file system 

• inode: represents a single file 
– Unique identifier for every object (file) in a specific file 

system 
– File systems have methods to translate a name to an inode 
– VFS inode defines all the operations possible on it 

• dentry: directory entries & contents 
– Name of file/directory, inode, a pointer to the parent 

dentry 
– Directory entries: name to inode mappings 

• file: represents an open file 
– VFS keeps state: mode, read/write offset, etc. 
– Per-process view 



VFS Superblock 

• Structure that represents info about the file 
system 

•  Includes 
– File system name 
– Size 
– State (clean or dirty) 
– Reference to the block device 
– List of operations for managing inodes within the file 

system: 
• alloc_inode, destroy_inode, read_inode, write_inode, 

sync_fs, … 



VFS Superblock 



inode 
• Uniquely identifies a file in a file system 

• Access metadata (attributes) of the file (except name) 



inode operations 
• Functions that operate on file & directory names and 

attributes  
– But not on data 



File operations 
• Functions that operate on file & directory data 



File operations 
• Not all functions need to be implemented! 



File System Implementation 



Some Terminology 

• Disk 
– Non-volatile block-addressable storage. 

• Disk Block = sector 
– Smallest chunk of I/O on a disk 

– Most disks have 512-byte blocks 

– LBA: a unique number known as a logical block address  

• Partition 
– Subset of all blocks on a disk. A disk has ≥ 1 partitions 

• Volume 
– Disk, disks, or partition that contains a file system 

– A volume may span disks 



More Terms 

• Superblock 

– Area on the volume that contains key file system 
information 

• Metadata 

– Attributes of a file, not the file contents (data) 

– E.g., modification time, length, permissions, owner 

• inode 

– A structure that stores a file’s metadata and location 
of its data 



Files 

• Contents (Data) 
–  Unstructured (byte stream) or structured 

(records) 

– Stored in data blocks 

– Find a way of allocating and tracking the blocks 
that a file uses 

• Metadata 
– Usually stored in an inode … sometimes in a 

directory entry 

– Except for the name, which is stored in a directory 



Directories 

• A directory is just a file containing names & 
references 
– Name   (metadata, data) Unix (UFS) approach 
– (Name, metadata)   data MS-DOS (FAT) approach 

• Linear list 
– Search can be slow for large directories. 
– Cache frequently-used entries 

• Hash table 
– Linear list but with hash structure 
– Hash(name) 

• More exotic structures: B-Tree, HTree 



Lay out file data on disks 



Block Allocation: Contiguous 

• Each file occupies a set of adjacent blocks 

• You just need to know the starting block & file 
length 

• We’d love to have contiguous storage for files! 

– Minimize disk seeks when accessing a file 



Problems with contiguous allocation 
• Storage allocation is a pain  

– External fragmentation: free blocks of space scattered 
throughout 

– vs. Internal fragmentation: unused space within a block 
(allocation unit) 

– Periodic defragmentation: move files 

• Concurrent file creation: how much space do you 
need? 

• Compromise solution: extents 
– Allocate a contiguous chunk of space 
– If the file needs more space, allocate another chunk 

(extent) 
– Need to keep track of all extents 
– Not all extents will be the same size: it depends how much 

contiguous space you can allocate 



Block allocation: Linked Allocation 
• A file’s data is a linked list of disk blocks 

– Directory contains a pointer to the first block of the file 
– Each block contains a pointer to the next block 

• Problems 
– Only good for sequential access 
– Each block uses space for the pointer to the next block 

• Clusters 
– Multiples of blocks: reduce overhead for block pointer & improve 

throughput 
– A cluster is the smallest amount of disk space that can be allocated to 

a file 
– Penalty: increased internal fragmentation 



File Allocation Table (DOS/Windows FAT) 



Indexed Allocation 

• Linked allocation is not efficient for random 
access 

• FAT requires storing the entire table in memory 
for efficient access 

• Indexed allocation: 

– Store the entire list of block pointers for a file in one 
place: the index block (inode) 

– One inode per file 

– We can read this into memory when we open the file 



Indexed Allocation 
• Directory entry contains name and inode number 
• inode contains file metadata (length, timestamps, owner, 

etc.) and a block map 
• On file open, read the inode to get the index map 



Combined Indexing (Unix File Systems) 
• We want inodes to be a fixed size 

– Easy to allocate and reuse 

– Easy to locate inodes on disks 

• Large files get 

– Single indirect block 

– Double indirect block 

– Triple indirect block 

• 1024-byte blocks, 32-bit block pointers 



Combined Indexing (Unix File Systems) 



Unix File Example 

• Unix File System 
– 1024-byte blocks, 32-bit block pointers 

– inode contains 
• 10 direct blocks, 1 indirect, 1 double-indirect, 1 triple indirect 

• Capacity 
– Direct blocks will address : 1K x 10 blocks = 10240 bytes 

– 1 level of indirect block: (1K / 4) x 1K = 256K bytes 

– 1 double indirect block: (1K/4)x(1K/4)x1K = 64MB 

– 1 triple indirect block: (1K/4)x(1K/4)x(1K/4)x1K = 16GB  



Extent Lists 

• Extents: Instead of listing block addresses 
– Each address represents a range of blocks 

– Contiguous set of blocks 

– E.g., 48-bit block # + 2-byte length (total = 64 bits) 

• Why are they attractive? 
– Less block numbers to store if we have lots of 

contiguous allocation 

• Problem: file seek operations 
– Locating a specific location requires traversing a list 

– Extra painful with indirect blocks 



Implementing File Operations 



Initialization 

• Low-level formatting (file system independent) 

– Define blocks (sectors) on a track 

– Create spare sectors 

– Identify and remap bad blocks 

• High-level formatting (file system specific) 

– Define the file system structure 

– Initialize the free block map 

– Initialize sizes of inode and journal areas 

– Create a top-level (root) directory 



File Open 

• Two-step process 
– Pathname Lookup (namei function in kernel) 

• Traverse directory structure based on the pathname to 
find file 

• Return the associated inode 

• (cache frequently-used directory entries) 

– Verify access permissions 
• If OK, allocate in-memory structure to maintain state 

about access 

• (e.g., that file is open read-only) 



File Writes 

• A write either overwrites data in a file or adds 
data to the file, causing it to grow 
– Allocate disk blocks to hold data 

– Add the blocks to the list of blocks owned by the 
file 
• Update free block bitmap, the inode, and possibly 

indirect blocks 

•  Write the file data 

• Modify inode metadata (file length) 

• Change current file offset in kernel 



Deleting Files 
• Remove name from the directory 

– Prevent future access 

• If there are no more links to the inode (disk references) 
– mark the file for deletion 

• … and if there are no more programs with open 
handles to the file (in-memory references) 
– Release the resources used by the file 

• Return data blocks to the free block map 

• Return inode to the free inode list 

• Example: 
– Open temp file, delete it, continue to access it 

– OS cleans up the data when the process exits 



Additional File System Operations 

• Hard links (aliases) 
– Multiple directory entries (file names) that refer to the 

same inode 
– inode contains reference count to handle deletion 

• Symbolic links 
– File data contains a path name 
– Underlying file can disappear or change 

• Access control lists (ACLs) 
– Classic UNIX approach: user, group, world permissions 
– ACL: enumerated list of users and permissions 

• Variable size 



Additional File System Operations 

• Extended attributes (NTFS, HFS+, XFS, etc.) 

– E.g., store URL from downloaded web/ftp content, 
app creator, icons 

• Indexing 

– Create a database for fast file searches 

• Journaling 

– Batch groups of changes. Commit them at once to 
a transaction log 



UFS (Unix File System) 



UFS 

• Superblock contains: 
– Size of file system 

– # of free blocks 

– list of free blocks (+ pointer to free block lists) 

– index of the next free block in the free block list 

– Size of the inode list 

– Number of free inodes in the file system 

– Index of the next free inode in the free inode list 

– Modified flag (clean/dirty) 



UFS 

• Free space managed as a linked list of blocks 

– Eventually this list becomes random 

– Every disk block access will require a seek! 

• Fragmentation is a big problem 

•  Typical performance was often: 

– 2–4% of raw disk bandwidth! 



BSD FFS (Fast File System) 
• Try to improve UFS 
• Improvement #1: Use larger blocks 

– ≥ 4096 bytes instead of UFS’s 512-byte or 1024-byte blocks 
•  Block size is recorded in the superblock 

– Just doubling the block size resulted in > 2x performance! 
– 4 KB blocks let you have 4 GB files with only two levels of 

indirection 
– Problem: increased internal fragmentation 

• Lots of files were small 

– Solution: Manage fragments within a block (down to 512 bytes) 
• A file is 0 or more full blocks and possibly one fragmented block 
• Free space bitmap stores fragment data 
• As a file grows, fragments are copied to larger fragments and then to a 

full block 
• Allow user programs to find the optimal block size 

– Standard I/O library and others use this 

– Also, avoid extra writes by caching in the system buffer cache 



FFS 
• Improvement #2: Minimize head movement (reduce seek time) 

– Seek latency is usually much higher than rotational latency 
– Keep file data close to its inode to minimize seek time to fetch data 
– Keep related files & directories together 
– Cylinder: collection of all blocks on the same track on all heads of a 

disk 
– Cylinder group: Collection of blocks on one or more consecutive 

cylinders 



How to find inodes? 

• UFS was easy: 

– inodes_per_block = sizeof(block)/sizeof(inode) 

– inode_block = inode / inodes_per_block 

– block_offset = (inode % inodes_per_block) * 
sizeof(inode) 

• FFS 

– We need to know how big each chunk of inodes in 
a cylinder group is: keep a table 



FFS 

• Optimize for sequential access 
• Allocate data close together 

– Pre-allocate up to 8 adjacent blocks when allocating a 
block 

– Achieves good performance under heavy loads 
– Speeds sequential reads 

• Prefetch 
– If 2 or more logically sequential blocks are read  

• Assume sequential read  
• and request one large I/O on the entire range of sequential blocks 

– Otherwise, schedule a read-ahead (for the next disk block 
in the file) 



FFS 

• Improve fault tolerance 
– Strict ordering of writes of file system metadata 
– fsck still requires up to five passes to repair 
– All metadata writes are synchronous (not buffered) 
– This limits the max # of I/O operations (thruput) 

• • Directories 
– Max filename length = 256 bytes (vs. 12 bytes of UFS) 

• Symbolic links introduced 
– Hard links could not point to directories (avoid namespace 

cycles) and worked only within the FS 

• Performance: 
– 14-47% of raw disk bandwidth 
– Better than the 2-5% of UFS 



Linux ext2 
• Similar to BSD FFS 
• No fragments 

– No need to worry about wasted space in modern disks 

• No cylinder groups (not useful in modern disks) – block groups 
• Divides disk into fixed-size block groups 

– Like FFS, somewhat fault tolerant: recover chunks of disk even if some 
parts are not accessible 



Linux ex2 



Linux ex2 

• Improve performance via aggressive caching 
– Reduce fault tolerance because of no synchronous writes 

– Almost all operations are done in memory until the buffer 
cache gets flushed 

• Unlike FFS: 
– No guarantees about the consistency of the file system 

• Don’t know the order of operations to the disk: risky if they don’t 
all complete 

– No guarantee on whether a write was written to the disk 
when a system call completes 

• In most cases, ext2 is much faster than FFS 



Journaling 



File system inconsistencies 
Example: 

• Writing a block to a file may require: 
– inode is 

• updated with a new block pointer 

• Updated with a new file size 

– Data free block bitmap is updated 

– Data block contents written to disk 

• If all of these are not written, we have a file 
system inconsistency 

• Consistent update problem 



Journaling 
• Journaling = write-ahead logging 
• Keep a transaction-oriented journal of changes 

– Record what you are about to do (along with the data!) 
 
 
 
 
 

– Once this has committed to the disk then overwrite the 
real data 

– If all goes well, we don’t need this transaction entry 
– If a crash happens any time after the log was committed 

• Replay the log on reboot (redo logging) 

• This is called full data journaling 



Writing the journal 

• Writing the journal all at once would be great but 
is risky 
– We don’t know what order the disk will schedule the 

block writes 
– Don’t want to risk having a “transaction-end” written 

while the contents of the transaction have not been 
written yet 

– Write all blocks except transaction-end 
– Then write transaction-end 

• If the log is replayed and a transaction-end is 
missing, ignore the log entry 



Cost of journaling 
• We’re writing everything twice 

• …and constantly seeking to the journal area of the disk 

• Optimization 
– Do not write user data to the journal 
– Metadata journaling (also called ordered journaling) 

 
 

 
 

• What about the data? 
– Write it to the disk first (not in the journal) 
– Write transaction w/o without marking the end 
– Only after all previous ops are committed to the disk, then mark 

the end of the transaction 
– This prevents pointing to garbage after a crash and journal 

replay 



Linux ex3 

• ext3 = ext2 + journaling (mostly) 

• Goal: improved fault recovery 

– Reduce the time spent in checking file system 
consistency &  repairing the file system by 
journaling 



ext3 journaling options 

• journal 
– full data + metadata journaling 
– [slowest] 

• ordered 
– Data blocks written first, then metadata journaling 
– Write a transaction-end only when the other writes 

have completed 

• writeback 
– Metadata journaling with no ordering of data blocks 
– Recent files can get corrupted after a crash 
– [fastest] 



ex3 layout 



Linux ext4 
• Large file system support 

– 1 exabyte (10^18 bytes); file sizes to 16 TB 

• Extents used instead of block maps 
– Range of contiguous blocks 
– 1 extent can map up to 12 MB of space (4 KB block size) 
– 4 extents per inode. Additional ones are stored in an HTree 

(constant-depth tree similar to a B-tree) 

• Ability to pre-allocate space for files 
– Increase chance that it will be contiguous 

• Delayed allocation 
– Allocate on flush – only when data is written to disk 
– Improve block allocation decisions because we know the 

size 



Linux ex4 

• Over 64,000 directory entries (vs. 32,000 in ext3) 
– HTree structure 

• Journal checksums 
– Monitor journal corruption 

• Faster file system checking 
– Ignore unallocated block groups 

• Interface for multiple-block allocations 
– Increase contiguous storage 

• Timestamps in nanoseconds 
– Timestamps in an inode (last modified time, last accessed 

time, created time) 
– one-second granularity in ext3 
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