File Systems

Dr. Yingwu Zhu

What is a file system?

* Organization of data and metadata

 What’s metadata?
— Data of data
— Attributes; things that describe the data

— Name, length, type of file,
creation/modification/access times, permissions,
owner, location of data

* File systems usually interact with block devices

Standard Interfaces to Devices

Block Devices: e.g. disk drives, tape drives, Cdrom

— Access blocks of data

— Commands include open (), read(), write (), seek()
— Raw I/O or file-system access

— Memory-mapped file access possible

Character Devices: e.g. keyboards, mice, serial ports, some USB
devices

— Single characters at a time

— Commands include get (), put ()

— Libraries layered on top allow line editing

Network Devices: e.g. Ethernet, Wireless, Bluetooth
— different enough from block/character to have own interface

— Unix and Windows include socket interface
* Separates network protocol from network operation
* Includes select () functionality

— Usage: pipes, FIFOs, streams, queues, mailboxes

FS design choices

Namespace Multiple volumes File types

Flat, hierarchical, or Explicit device Unstructured
other? identification (byte streams)

(A:, B:, C:, D)

or structured
or integrate into one (e.g., indexed files)”
namespace?

File system types VEEREE Implementation

Support one type of What kind of attributes How is the data laid
file system should the file system out on the disk?

have?
or multiple types

(is09660, NTFS,
ext3)?

Mounting

A file system must be mounted before it can be used by the
operating system

The mount system call is given the file system type, block
device & mount point

The mounted file system overlays anything under that
mount point

Looking up a pathname may involve traversing multiple
mount points

mount point

dev bin

Virtual File System (VFS) Interface

* Abstract interface for a file system object

* Each real file system interface exports a common
interface

Virtual File System
FAT32 1509660

Buffer cache & disk (block) drivers
Block device Block device Block device

VES and Other Components

System call interface: APIs for user programs

VFS: manages the namespace, keeps track of open files,
reference counts, file system types, mount points,
pathname traversal.

File system module: understands how the file system is
implemented on the disk. Can fetch and store metadata
and data for a file, get directory contents, create and delete
files and directories

Buffer cache: no understanding of the file system; takes
read and write requests for blocks or parts of a block and
caches frequently used blocks.

Device drivers: the components that actually know how to
read and write data to the disk.

Keeping track of file system types

e Like drivers, file systems can be built into the kernel or
compiled as loadable modules (loaded at mount)

e Each file system registers itself with VFS
* Kernel maintains a list of file systems

1le system Lype {
const char *name; name of file system type
int fs flags; requires device, fs handles moves, kemel-only mount, ...
struct super block *(*get sb)(struct file system type ¥,
int, char *, void *, struct vfsmount *); setup superblock

void (*kill sb) (struct super block *); clean up at unmount
struct module *owner; module that owns this

struct file system type *next; nextfile system type in list
struct list head fs supers; [istof all superblocks of this type
struct lock class key s lock key; wused forlock validation
struct lock class key s umount key; wused forlock validation

Keeping track of mounted file systems

* Before mounting a file system, first check if we

know the file system type: look through the
file_systems list

— If not found, the kernel daemon will load the file
system module

e /lib/modules/2.6.38-8-server/kernel/fs/ntfs/ntfs.ko!
* /lib/modules/2.6.38-11-server/kernel/fs/jffs2/jffs2.ko!
e /lib/modules/2.6.38-11-server/kernel/fs/minix/minix.ko!

* The kernel keeps a linked list of mounted file
systems:

current->namespace->list

* Check that the mount point is a directory and
nothing is already mounted there

VES: Common set of objects

Superblock: Describes the file system
— Block size, max file size, mount point
— One per mounted file system

inode: represents a single file

— Unique identifier for every object (file) in a specific file
system

— File systems have methods to translate a name to an inode
— VFS inode defines all the operations possible on it

dentry: directory entries & contents

— Name of file/directory, inode, a pointer to the parent
dentry

— Directory entries: name to inode mappings
file: represents an open file

— VFS keeps state: mode, read/write offset, etc.
— Per-process view

VES Superblock

* Structure that represents info about the file
system

* |ncludes
— File system name
— Size
— State (clean or dirty)
— Reference to the block device

— List of operations for managing inodes within the file
system:

* alloc_inode, destroy inode, read inode, write inode,
sync _fs, ...

VES Superblock

struct super_operations {
struct inode *(*¥alloc_inode) (struct super_block *sh);
vold (*destroy_inode) (struct inode *);
vold (*read_inode) (struct inode *);
volid (*dirty_inode) (struct inode *);
vold (*Fwrite_inode) (struct inode *, int);
vold (*put_inode) (struct inode *);
volid (*drop_inode) (struct inode *);
vold (*delete inode) (struct inode *);
vold (*put_super) (struct super_block *);
vold (Fwrite _super) (struct super_block *);
int (*sync_¥s) (struct super_block *, int);
vold (*Fwrite super lockfs) (struct super_block *);
vold (*unlockfs) (struct super_block *);
int (*statfs) (struct super_block *, struct statfs *);
int (*remount_+s) (struct super_block *, int *, char *);
vold (*clear_inode) (struct inode *);
vold (*umount_begin) (struct super_block *);

int (*show_options) (struct seq file *, struct vfsmount *);

Is

inode

* Uniquely identifies a file in a file system
e Access metadata (attributes) of the file (except name)

struct inode {
unsigned long i1i_ino;
umode € i1 mode;
uid t i uid;
gid t i gid;
kdev t i1 rdev;
loff £t i size;
struct timespec i atime;
struct timespec 1 ctime;
struct timespec 1 mtime;

inode operations
struct super block *i sb; H#H#,#fﬂ?
struct inode operations *i op;

struct address space *i mapping;
struct list head i1 dentry;

inode operations

* Functions that operate on file & directory names and
attributes

struct inode operations {
int (*create) (struct ineode *, struct dentry *, int);
struct dentry * (*lockup) (struct inede *, struct dentry *);
int (*link) (struct dentry *, struct inode *, struct dentry *);
int (*unlink) (struct ineode *, struct dentry *);
int (*symlink) (struct inede *, struct dentry *, const char *);
int (*mkdir) (struct incde *, struct dentry *, int);
int (*rmdir) (struct inocde *, struct dentry *);
int (*mknod) (struct inode *, struct dentry *, int, dev t);
int (*rename) (struct inode *, struct dentry *, struct inode *, struct dentry *);
int (*readlink) (struct dentry *, char *,int);
int (*follow link) (struct dentry *, struct nameidata *);
vold (*truncate) (struct inode *);
int (*permission) (struct inode *, int);
int (*setattr) (struct dentry *, struct iattr *);
int (*getattr) (struct wvifsmount *mnt, struct dentry *, struct kstat *);

i

int (*setxattr) (struct dentry *, const char *, const weoid *, size t, int);

gssize t (*getxattr) (struct dentry *, const char *, veid ¥, size t);

L

ssize t (*listxattr) (struct dentry *, char *, size t);
int (*removexattr) (struct dentry *, const char *);

File operations
* Functions that operate on file & directory data

struct file operations {
struct module *owner;
loff £t (*llseek) (struct file *, loff t, int);
sgize t (*read) (struct file *, char *, size t, loff t *);
sgize t (*aio read) (struct kioch *, char *, size t, loff t);
ssize t (*write) (struct file *, const char *, size t, loff t *);
ssize t (*aio write) (struct kiocb *, const char *, size t, loff t);
int (*readdir) (struct file *, wvoid *, filldir t);
unsigned int (*poll) (struct file *, struct poll table struct *);
int (*icctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm area struct *);
int (*open) (struct incde *, struct file *);
int (*flush) (struct file *);
int (*release) (struct incde *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aioc fsync) (struct kiecbhb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file lock *);
sgize t (*readv) (struct file *, const struct iovec *, unsigned long, loff t *);
ssize t (*writev) (struct file *, const struct iovec *, unsigned long, leoff t *);

ssize t (*sendfile) (struct file *, loff t *, size t, read actor t, woid *);

ssize t (*sendpage) (struct file *, struct page *, int, size t, loff t *, int);

unsigned long (*get unmapped area)(struct file *, unsigned long, unsigned long,

unsigned long, unsigned leng);

File operations

* Not all functions need to be implemented!
struct file operations mydriver fops = {

.owner = MYDRIVER MODULE;

.open = mydriver open; /* allocate resources */

.read = mydriver read;

.Write = mydriver write;

.loctl = mydriver loctl;

.release = mydriver release; /* release resources */

/* llseek, readdir, poll, mmap, readv, etc. not implemented */

}i

register chrdev(MYDRIVER MAJOR NUM, "mydriver", &mydriver fops)

File System Implementation

Some Terminology

Disk

— Non-volatile block-addressable storage.

Disk Block = sector

— Smallest chunk of I/O on a disk

— Most disks have 512-byte blocks

— LBA: a unique number known as a logical block address
Partition

— Subset of all blocks on a disk. A disk has > 1 partitions
Volume

— Disk, disks, or partition that contains a file system

— A volume may span disks

More Terms

e Superblock

— Area on the volume that contains key file system
information

* Metadata

— Attributes of a file, not the file contents (data)

— E.g., modification time, length, permissions, owner
* inode

— A structure that stores a file’s metadata and location
of its data

Files

e Contents (Data)

— Unstructured (byte stream) or structured
(records)

— Stored in data blocks

— Find a way of allocating and tracking the blocks
that a file uses

e Metadata

— Usually stored in an inode ... sometimesin a
directory entry

— Except for the name, which is stored in a directory

Directories

A directory is just a file containing names &
references

— Name - (metadata, data) Unix (UFS) approach
— (Name, metadata) = data MS-DOS (FAT) approach
Linear list

— Search can be slow for large directories.
— Cache frequently-used entries

Hash table

— Linear list but with hash structure
— Hash(name)

More exotic structures: B-Tree, HTree

Lay out file data on disks

Block Allocation: Contiguous

* Each file occupies a set of adjacent blocks
* You just need to know the starting block & file
length

* We'd love to have contiguous storage for files!
— Minimize disk seeks when accessing a file

Problems with contiguous allocation

e Storage allocation is a pain

— External fragmentation: free blocks of space scattered
throughout

— vs. Internal fragmentation: unused space within a block
(allocation unit)

— Periodic defragmentation: move files

e Concurrent file creation: how much space do you
need?

 Compromise solution: extents
— Allocate a contiguous chunk of space

— If the file needs more space, allocate another chunk
(extent)

— Need to keep track of all extents

— Not all extents will be the same size: it depends how much
contiguous space you can allocate

Block allocation: Linked Allocation

 Afile’s data is a linked list of disk blocks
— Directory contains a pointer to the first block of the file
— Each block contains a pointer to the next block
* Problems
— Only good for sequential access
— Each block uses space for the pointer to the next block
* Clusters

— Multiples of blocks: reduce overhead for block pointer & improve
throughput

— A cluster is the smallest amount of disk space that can be allocated to
a file

— Penalty: increased internal fragmentation

Block 15 I Block 200 I Block & I

Cluster 203 I Cluster 199 I Cluster 338 I

File Allocation Table (DOS/Windows FAT)

Variation of Linked Allocation

Section of disk at beginning of the volume contains a file allocation
table

The table has one entry per block. Contents contain Clusters

the next logical block (cluster) in the file. 00 |
01

Directory entry: myfile txt metadata | 06 02

03

FAT table: one per file system 04
[oJoJol2JToJoJosJoJoTJo gg
07

+ FAT-16: 16-bit block pointers 08
- 16-bit cluster numbers; up to 64 sectors/cluster 09
- Max file system size = 2 GB (with 512 byte sectors) 10

11
» FAT-32: 32-bit block pointers 12

- 32-bit cluster numbers; up to 64 sectors/cluster 13
- Max file system size = 8 TB (with 512 byte sectors) 14
- Maxfile size = 4 GB

Indexed Allocation

e Linked allocation is not efficient for random
access

* FAT requires storing the entire table in memory
for efficient access

* Indexed allocation:

— Store the entire list of block pointers for a file in one
place: the index block (inode)

— One inode per file
— We can read this into memory when we open the file

Indexed Allocation

* Directory entry contains name and inode number

* inode contains file metadata (length, timestamps, owner,
etc.) and a block map

* Onfile open, read the inode to get the index map
Disk blocks

Dhirectory entry:

Index block 99:;

Combined Indexing (Unix File Systems)

 We want inodes to be a fixed size
— Easy to allocate and reuse
— Easy to locate inodes on disks
e Large files get
— Single indirect block
— Double indirect block
— Triple indirect block

* 1024-byte blocks, 32-bit block pointers

Combined Indexing (Unix File Systems)

Indiract block
Double indirect block
Triphe indirect block

-
: [

I

Direc{fblock pointers
single Indirect blog

Direct block

Unix File Example

e Unix File System
— 1024-byte blocks, 32-bit block pointers

— inode contains
* 10 direct blocks, 1 indirect, 1 double-indirect, 1 triple indirect

* Capacity
— Direct blocks will address : 1K x 10 blocks = 10240 bytes
— 1 level of indirect block: (1K / 4) x 1K = 256K bytes
— 1 double indirect block: (1K/4)x(1K/4)x1K = 64MB
— 1 triple indirect block: (1K/4)x(1K/4)x(1K/4)x1K = 16GB

Extent Lists

* Extents: Instead of listing block addresses

— Each address represents a range of blocks

— Contiguous set of blocks

— E.g., 48-bit block # + 2-byte length (total = 64 bits)
 Why are they attractive?

— Less block numbers to store if we have lots of
contiguous allocation

* Problem: file seek operations
— Locating a specific location requires traversing a list
— Extra painful with indirect blocks

Implementing File Operations

Initialization

* Low-level formatting (file system independent)
— Define blocks (sectors) on a track
— Create spare sectors
— ldentify and remap bad blocks

* High-level formatting (file system specific)
— Define the file system structure
— Initialize the free block map
— Initialize sizes of inode and journal areas

— Create a top-level (root) directory

File Open

* Two-step process

— Pathname Lookup (namei function in kernel)

* Traverse directory structure based on the pathname to
find file

* Return the associated inode
 (cache frequently-used directory entries)

— Verify access permissions

* If OK, allocate in-memory structure to maintain state
about access

* (e.g., that file is open read-only)

File Writes

* A write either overwrites data in a file or adds
data to the file, causing it to grow

— Allocate disk blocks to hold data

— Add the blocks to the list of blocks owned by the
file
e Update free block bitmap, the inode, and possibly
indirect blocks
* Write the file data
* Modify inode metadata (file length)
e Change current file offset in kernel

Deleting Files

Remove name from the directory
— Prevent future access

If there are no more links to the inode (disk references)
— mark the file for deletion

... and if there are no more programs with open
handles to the file (in-memory references)

— Release the resources used by the file
e Return data blocks to the free block map
e Return inode to the free inode list

Example:
— Open temp file, delete it, continue to access it
— OS cleans up the data when the process exits

Additional File System Operations

* Hard links (aliases)

— Multiple directory entries (file names) that refer to the
same inode

— inode contains reference count to handle deletion
* Symbolic links

— File data contains a path name

— Underlying file can disappear or change
e Access control lists (ACLs)

— Classic UNIX approach: user, group, world permissions

— ACL: enumerated list of users and permissions
* Variable size

Additional File System Operations

* Extended attributes (NTFS, HFS+, XFS, etc.)

— E.g., store URL from downloaded web/ftp content,
app creator, icons

* Indexing
— Create a database for fast file searches

* Journaling

— Batch groups of changes. Commit them at once to
a transaction log

UFS (Unix File System)

Inodes

Data blocks

Indirect block
Double indirect block
Triple indirect block

Data block Data block

Direct block

Direct block

 e—

lock pointers Single Indirect blogk —_—
3 |]
|

| | |
| | |
|=| [Data viock_]
| | |
| | |

entries =
——1 0CK SiZe/(4 Dytes per block pointer)

UFS

e Superblock contains:
— Size of file system
— # of free blocks
— list of free blocks (+ pointer to free block lists)
— index of the next free block in the free block list
— Size of the inode list
— Number of free inodes in the file system
— Index of the next free inode in the free inode list
— Modified flag (clean/dirty)

UFS

* Free space managed as a linked list of blocks
— Eventually this list becomes random
— Every disk block access will require a seek!

* Fragmentation is a big problem

* Typical performance was often:
— 2-4% of raw disk bandwidth!

BSD FFS (Fast File System)

* Trytoimprove UFS

 Improvement #1: Use larger blocks
— 24096 bytes instead of UFS’s 512-byte or 1024-byte blocks

* Block size is recorded in the superblock
— Just doubling the block size resulted in > 2x performance!

— 4 KB blocks let you have 4 GB files with only two levels of
indirection
— Problem: increased internal fragmentation
* Lots of files were small

— Solution: Manage fragments within a block (down to 512 bytes)
* Afileis 0 or more full blocks and possibly one fragmented block
* Free space bitmap stores fragment data

* Asa file grows, fragments are copied to larger fragments and then to a
full block

e Allow user programs to find the optimal block size
— Standard I/0 library and others use this

— Also, avoid extra writes by caching in the system buffer cache

FFS

* Improvement #2: Minimize head movement (reduce seek time)

— Seek latency is usually much higher than rotational latency

— Keep file data close to its inode to minimize seek time to fetch data

— Keep related files & directories together

— Cylinder: collection of all blocks on the same track on all heads of a
disk

— Cylinder group: Collection of blocks on one or more consecutive
cylinders

superblock Data blocks
: Cylinder Cylinder Cylinder Cylinder Cylinder Cylinder Cylinder
' group 1 group 2 group 3 group 4 group & group 6 group 7

: . | Superblock | FS Block | inode |
l|I = =
Cylinder group: redundant) | descriptors | bitmap | bimap | 0c table Data blocks

How to find inodes?

* UFS was easy:
— inodes_per_block = sizeof(block)/sizeof(inode)
— inode_block = inode / inodes_per block

— block_offset = (inode % inodes_per_block) *
sizeof(inode)

* FFS

— We need to know how big each chunk of inodes in
a cylinder group is: keep a table

FFS

e Optimize for sequential access

e Allocate data close together

— Pre-allocate up to 8 adjacent blocks when allocating a
block

— Achieves good performance under heavy loads
— Speeds sequential reads

* Prefetch

— If 2 or more logically sequential blocks are read
* Assume sequential read
* and request one large I/O on the entire range of sequential blocks

— Otherwise, schedule a read-ahead (for the next disk block
in the file)

FFS

Improve fault tolerance

— Strict ordering of writes of file system metadata

— fsck still requires up to five passes to repair

— All metadata writes are synchronous (not buffered)
— This limits the max # of |/O operations (thruput)

e Directories
— Max filename length = 256 bytes (vs. 12 bytes of UFS)

Symbolic links introduced

— Hard links could not point to directories (avoid namespace
cycles) and worked only within the FS

Performance:

— 14-47% of raw disk bandwidth
— Better than the 2-5% of UFS

Linux ext2

e Similar to BSD FFS
 No fragments
— No need to worry about wasted space in modern disks
* No cylinder groups (not useful in modern disks) — block groups
e Divides disk into fixed-size block groups

— Like FFS, somewhat fault tolerant: recover chunks of disk even if some
parts are not accessible

.| Block group | Block group | Block group | Block group | Block group | Block group | Block group
ext 1 . 3 4 3 B 7

.| Superblock | Block inode : .

LiInux ex2

Data block Data block

Direct block

Direct block

- 12 Direct plock pointers

Single Indirect blogk

Indirect block Data block
Double indirect block
Triple indirect block & entries =

block size/(4 bytes per block pointer)

LiInux ex2

* |mprove performance via aggressive caching
— Reduce fault tolerance because of no synchronous writes

— Almost all operations are done in memory until the buffer
cache gets flushed

e Unlike FFS:

— No guarantees about the consistency of the file system

 Don’t know the order of operations to the disk: risky if they don’t
all complete

— No guarantee on whether a write was written to the disk
when a system call completes

* |n most cases, ext2 is much faster than FFS

Journaling

File system inconsistencies

Example:

* Writing a block to a file may require:

— inodeis
e updated with a new block pointer
* Updated with a new file size

— Data free block bitmap is updated
— Data block contents written to disk

* If all of these are not written, we have a file
system inconsistency

* Consistent update problem

Journaling

* Journaling = write-ahead logging

* Keep a transaction-oriented journal of changes
— Record what you are about to do (along with the data!)

Transaction-begin
New inode 779
New block bitmap, group 4
New data block 24120
Transaction-end

— Once this has committed to the disk then overwrite the
real data

— If all goes well, we don’t need this transaction entry

— If a crash happens any time after the log was committed
* Replay the log on reboot (redo logging)

* This is called full data journaling

Writing the journal

* Writing the journal all at once would be great but
is risky

— We don’t know what order the disk will schedule the
block writes

— Don’t want to risk having a “transaction-end” written
while the contents of the transaction have not been
written yet

— Write all blocks except transaction-end
— Then write transaction-end

* |fthe logis replayed and a transaction-end is
missing, ignore the log entry

Cost of journaling

 We're writing everything twice
e ...and constantly seeking to the journal area of the disk
* Optimization
— Do not write user data to the journal
— Metadata journaling (also called ordered journaling)

Transaction-begin

New inode 779
New block bitmap, group 4

Transaction-end

e What about the data?
— Write it to the disk first (not in the journal)
— Write transaction w/o without marking the end

— Only after all previous ops are committed to the disk, then mark
the end of the transaction

— This prevents pointing to garbage after a crash and journal
replay

Linux ex3

e ext3 = ext2 + journaling (mostly)

* Goal: improved fault recovery

— Reduce the time spent in checking file system
consistency & repairing the file system by
journaling

ext3 journaling options

e journal
— full data + metadata journaling
— [slowest]

* ordered
— Data blocks written first, then metadata journaling

— Write a transaction-end only when the other writes
have completed

e writeback
— Metadata journaling with no ordering of data blocks
— Recent files can get corrupted after a crash
— [fastest]

ex3 layout

.| Block group | Block group | Block group | Block group | Block group | Block group | Block group
ext2: 1 9 3 4 5 6 7

Block group: inode table Data blocks

The journal is new.
Everything else is from ext2.

ext3 also supports HTree structure for
directory entries up to 32,000 entries

Linux ext4

Large file system support
— 1 exabyte (10718 bytes); file sizes to 16 TB

Extents used instead of block maps
— Range of contiguous blocks
— 1 extent can map up to 12 MB of space (4 KB block size)

— 4 extents per inode. Additional ones are stored in an HTree
(constant-depth tree similar to a B-tree)

Ability to pre-allocate space for files
— Increase chance that it will be contiguous
Delayed allocation

— Allocate on flush — only when data is written to disk

— Improve block allocation decisions because we know the
Size

Linux ex4

Over 64,000 directory entries (vs. 32,000 in ext3)
— HTree structure
Journal checksums
— Monitor journal corruption
Faster file system checking
— lgnore unallocated block groups
Interface for multiple-block allocations
— Increase contiguous storage
Timestamps in hanoseconds

— Timestamps in an inode (last modified time, last accessed
time, created time)

— one-second granularity in ext3

Acknowledgement

* Some slides are adapted from Dr. Paul
KrzyzanowsKi

