
File Systems

Dr. Yingwu Zhu

What is a file system?

• Organization of data and metadata

• What’s metadata?

– Data of data

– Attributes; things that describe the data

– Name, length, type of file,
creation/modification/access times, permissions,
owner, location of data

• File systems usually interact with block devices

Standard Interfaces to Devices

• Block Devices: e.g. disk drives, tape drives, Cdrom
– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports, some USB
devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– different enough from block/character to have own interface
– Unix and Windows include socket interface

• Separates network protocol from network operation
• Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

FS design choices

Mounting
• A file system must be mounted before it can be used by the

operating system
• The mount system call is given the file system type, block

device & mount point
• The mounted file system overlays anything under that

mount point
• Looking up a pathname may involve traversing multiple

mount points

Virtual File System (VFS) Interface

• Abstract interface for a file system object
• Each real file system interface exports a common

interface

VFS and Other Components

• System call interface: APIs for user programs
• VFS: manages the namespace, keeps track of open files,

reference counts, file system types, mount points,
pathname traversal.

• File system module: understands how the file system is
implemented on the disk. Can fetch and store metadata
and data for a file, get directory contents, create and delete
files and directories

• Buffer cache: no understanding of the file system; takes
read and write requests for blocks or parts of a block and
caches frequently used blocks.

• Device drivers: the components that actually know how to
read and write data to the disk.

Keeping track of file system types
• Like drivers, file systems can be built into the kernel or

compiled as loadable modules (loaded at mount)

• Each file system registers itself with VFS

• Kernel maintains a list of file systems

Keeping track of mounted file systems

• Before mounting a file system, first check if we
know the file system type: look through the
file_systems list
– If not found, the kernel daemon will load the file

system module
• /lib/modules/2.6.38-8-server/kernel/fs/ntfs/ntfs.ko!
• /lib/modules/2.6.38-11-server/kernel/fs/jffs2/jffs2.ko!
• /lib/modules/2.6.38-11-server/kernel/fs/minix/minix.ko!

• The kernel keeps a linked list of mounted file
systems:

 current->namespace->list
• Check that the mount point is a directory and

nothing is already mounted there

VFS: Common set of objects
• Superblock: Describes the file system

– Block size, max file size, mount point
– One per mounted file system

• inode: represents a single file
– Unique identifier for every object (file) in a specific file

system
– File systems have methods to translate a name to an inode
– VFS inode defines all the operations possible on it

• dentry: directory entries & contents
– Name of file/directory, inode, a pointer to the parent

dentry
– Directory entries: name to inode mappings

• file: represents an open file
– VFS keeps state: mode, read/write offset, etc.
– Per-process view

VFS Superblock

• Structure that represents info about the file
system

• Includes
– File system name
– Size
– State (clean or dirty)
– Reference to the block device
– List of operations for managing inodes within the file

system:
• alloc_inode, destroy_inode, read_inode, write_inode,

sync_fs, …

VFS Superblock

inode
• Uniquely identifies a file in a file system

• Access metadata (attributes) of the file (except name)

inode operations
• Functions that operate on file & directory names and

attributes
– But not on data

File operations
• Functions that operate on file & directory data

File operations
• Not all functions need to be implemented!

File System Implementation

Some Terminology

• Disk
– Non-volatile block-addressable storage.

• Disk Block = sector
– Smallest chunk of I/O on a disk

– Most disks have 512-byte blocks

– LBA: a unique number known as a logical block address

• Partition
– Subset of all blocks on a disk. A disk has ≥ 1 partitions

• Volume
– Disk, disks, or partition that contains a file system

– A volume may span disks

More Terms

• Superblock

– Area on the volume that contains key file system
information

• Metadata

– Attributes of a file, not the file contents (data)

– E.g., modification time, length, permissions, owner

• inode

– A structure that stores a file’s metadata and location
of its data

Files

• Contents (Data)
– Unstructured (byte stream) or structured

(records)

– Stored in data blocks

– Find a way of allocating and tracking the blocks
that a file uses

• Metadata
– Usually stored in an inode … sometimes in a

directory entry

– Except for the name, which is stored in a directory

Directories

• A directory is just a file containing names &
references
– Name (metadata, data) Unix (UFS) approach
– (Name, metadata) data MS-DOS (FAT) approach

• Linear list
– Search can be slow for large directories.
– Cache frequently-used entries

• Hash table
– Linear list but with hash structure
– Hash(name)

• More exotic structures: B-Tree, HTree

Lay out file data on disks

Block Allocation: Contiguous

• Each file occupies a set of adjacent blocks

• You just need to know the starting block & file
length

• We’d love to have contiguous storage for files!

– Minimize disk seeks when accessing a file

Problems with contiguous allocation
• Storage allocation is a pain

– External fragmentation: free blocks of space scattered
throughout

– vs. Internal fragmentation: unused space within a block
(allocation unit)

– Periodic defragmentation: move files

• Concurrent file creation: how much space do you
need?

• Compromise solution: extents
– Allocate a contiguous chunk of space
– If the file needs more space, allocate another chunk

(extent)
– Need to keep track of all extents
– Not all extents will be the same size: it depends how much

contiguous space you can allocate

Block allocation: Linked Allocation
• A file’s data is a linked list of disk blocks

– Directory contains a pointer to the first block of the file
– Each block contains a pointer to the next block

• Problems
– Only good for sequential access
– Each block uses space for the pointer to the next block

• Clusters
– Multiples of blocks: reduce overhead for block pointer & improve

throughput
– A cluster is the smallest amount of disk space that can be allocated to

a file
– Penalty: increased internal fragmentation

File Allocation Table (DOS/Windows FAT)

Indexed Allocation

• Linked allocation is not efficient for random
access

• FAT requires storing the entire table in memory
for efficient access

• Indexed allocation:

– Store the entire list of block pointers for a file in one
place: the index block (inode)

– One inode per file

– We can read this into memory when we open the file

Indexed Allocation
• Directory entry contains name and inode number
• inode contains file metadata (length, timestamps, owner,

etc.) and a block map
• On file open, read the inode to get the index map

Combined Indexing (Unix File Systems)
• We want inodes to be a fixed size

– Easy to allocate and reuse

– Easy to locate inodes on disks

• Large files get

– Single indirect block

– Double indirect block

– Triple indirect block

• 1024-byte blocks, 32-bit block pointers

Combined Indexing (Unix File Systems)

Unix File Example

• Unix File System
– 1024-byte blocks, 32-bit block pointers

– inode contains
• 10 direct blocks, 1 indirect, 1 double-indirect, 1 triple indirect

• Capacity
– Direct blocks will address : 1K x 10 blocks = 10240 bytes

– 1 level of indirect block: (1K / 4) x 1K = 256K bytes

– 1 double indirect block: (1K/4)x(1K/4)x1K = 64MB

– 1 triple indirect block: (1K/4)x(1K/4)x(1K/4)x1K = 16GB

Extent Lists

• Extents: Instead of listing block addresses
– Each address represents a range of blocks

– Contiguous set of blocks

– E.g., 48-bit block # + 2-byte length (total = 64 bits)

• Why are they attractive?
– Less block numbers to store if we have lots of

contiguous allocation

• Problem: file seek operations
– Locating a specific location requires traversing a list

– Extra painful with indirect blocks

Implementing File Operations

Initialization

• Low-level formatting (file system independent)

– Define blocks (sectors) on a track

– Create spare sectors

– Identify and remap bad blocks

• High-level formatting (file system specific)

– Define the file system structure

– Initialize the free block map

– Initialize sizes of inode and journal areas

– Create a top-level (root) directory

File Open

• Two-step process
– Pathname Lookup (namei function in kernel)

• Traverse directory structure based on the pathname to
find file

• Return the associated inode

• (cache frequently-used directory entries)

– Verify access permissions
• If OK, allocate in-memory structure to maintain state

about access

• (e.g., that file is open read-only)

File Writes

• A write either overwrites data in a file or adds
data to the file, causing it to grow
– Allocate disk blocks to hold data

– Add the blocks to the list of blocks owned by the
file
• Update free block bitmap, the inode, and possibly

indirect blocks

• Write the file data

• Modify inode metadata (file length)

• Change current file offset in kernel

Deleting Files
• Remove name from the directory

– Prevent future access

• If there are no more links to the inode (disk references)
– mark the file for deletion

• … and if there are no more programs with open
handles to the file (in-memory references)
– Release the resources used by the file

• Return data blocks to the free block map

• Return inode to the free inode list

• Example:
– Open temp file, delete it, continue to access it

– OS cleans up the data when the process exits

Additional File System Operations

• Hard links (aliases)
– Multiple directory entries (file names) that refer to the

same inode
– inode contains reference count to handle deletion

• Symbolic links
– File data contains a path name
– Underlying file can disappear or change

• Access control lists (ACLs)
– Classic UNIX approach: user, group, world permissions
– ACL: enumerated list of users and permissions

• Variable size

Additional File System Operations

• Extended attributes (NTFS, HFS+, XFS, etc.)

– E.g., store URL from downloaded web/ftp content,
app creator, icons

• Indexing

– Create a database for fast file searches

• Journaling

– Batch groups of changes. Commit them at once to
a transaction log

UFS (Unix File System)

UFS

• Superblock contains:
– Size of file system

– # of free blocks

– list of free blocks (+ pointer to free block lists)

– index of the next free block in the free block list

– Size of the inode list

– Number of free inodes in the file system

– Index of the next free inode in the free inode list

– Modified flag (clean/dirty)

UFS

• Free space managed as a linked list of blocks

– Eventually this list becomes random

– Every disk block access will require a seek!

• Fragmentation is a big problem

• Typical performance was often:

– 2–4% of raw disk bandwidth!

BSD FFS (Fast File System)
• Try to improve UFS
• Improvement #1: Use larger blocks

– ≥ 4096 bytes instead of UFS’s 512-byte or 1024-byte blocks
• Block size is recorded in the superblock

– Just doubling the block size resulted in > 2x performance!
– 4 KB blocks let you have 4 GB files with only two levels of

indirection
– Problem: increased internal fragmentation

• Lots of files were small

– Solution: Manage fragments within a block (down to 512 bytes)
• A file is 0 or more full blocks and possibly one fragmented block
• Free space bitmap stores fragment data
• As a file grows, fragments are copied to larger fragments and then to a

full block
• Allow user programs to find the optimal block size

– Standard I/O library and others use this

– Also, avoid extra writes by caching in the system buffer cache

FFS
• Improvement #2: Minimize head movement (reduce seek time)

– Seek latency is usually much higher than rotational latency
– Keep file data close to its inode to minimize seek time to fetch data
– Keep related files & directories together
– Cylinder: collection of all blocks on the same track on all heads of a

disk
– Cylinder group: Collection of blocks on one or more consecutive

cylinders

How to find inodes?

• UFS was easy:

– inodes_per_block = sizeof(block)/sizeof(inode)

– inode_block = inode / inodes_per_block

– block_offset = (inode % inodes_per_block) *
sizeof(inode)

• FFS

– We need to know how big each chunk of inodes in
a cylinder group is: keep a table

FFS

• Optimize for sequential access
• Allocate data close together

– Pre-allocate up to 8 adjacent blocks when allocating a
block

– Achieves good performance under heavy loads
– Speeds sequential reads

• Prefetch
– If 2 or more logically sequential blocks are read

• Assume sequential read
• and request one large I/O on the entire range of sequential blocks

– Otherwise, schedule a read-ahead (for the next disk block
in the file)

FFS

• Improve fault tolerance
– Strict ordering of writes of file system metadata
– fsck still requires up to five passes to repair
– All metadata writes are synchronous (not buffered)
– This limits the max # of I/O operations (thruput)

• • Directories
– Max filename length = 256 bytes (vs. 12 bytes of UFS)

• Symbolic links introduced
– Hard links could not point to directories (avoid namespace

cycles) and worked only within the FS

• Performance:
– 14-47% of raw disk bandwidth
– Better than the 2-5% of UFS

Linux ext2
• Similar to BSD FFS
• No fragments

– No need to worry about wasted space in modern disks

• No cylinder groups (not useful in modern disks) – block groups
• Divides disk into fixed-size block groups

– Like FFS, somewhat fault tolerant: recover chunks of disk even if some
parts are not accessible

Linux ex2

Linux ex2

• Improve performance via aggressive caching
– Reduce fault tolerance because of no synchronous writes

– Almost all operations are done in memory until the buffer
cache gets flushed

• Unlike FFS:
– No guarantees about the consistency of the file system

• Don’t know the order of operations to the disk: risky if they don’t
all complete

– No guarantee on whether a write was written to the disk
when a system call completes

• In most cases, ext2 is much faster than FFS

Journaling

File system inconsistencies
Example:

• Writing a block to a file may require:
– inode is

• updated with a new block pointer

• Updated with a new file size

– Data free block bitmap is updated

– Data block contents written to disk

• If all of these are not written, we have a file
system inconsistency

• Consistent update problem

Journaling
• Journaling = write-ahead logging
• Keep a transaction-oriented journal of changes

– Record what you are about to do (along with the data!)

– Once this has committed to the disk then overwrite the
real data

– If all goes well, we don’t need this transaction entry
– If a crash happens any time after the log was committed

• Replay the log on reboot (redo logging)

• This is called full data journaling

Writing the journal

• Writing the journal all at once would be great but
is risky
– We don’t know what order the disk will schedule the

block writes
– Don’t want to risk having a “transaction-end” written

while the contents of the transaction have not been
written yet

– Write all blocks except transaction-end
– Then write transaction-end

• If the log is replayed and a transaction-end is
missing, ignore the log entry

Cost of journaling
• We’re writing everything twice

• …and constantly seeking to the journal area of the disk

• Optimization
– Do not write user data to the journal
– Metadata journaling (also called ordered journaling)

• What about the data?
– Write it to the disk first (not in the journal)
– Write transaction w/o without marking the end
– Only after all previous ops are committed to the disk, then mark

the end of the transaction
– This prevents pointing to garbage after a crash and journal

replay

Linux ex3

• ext3 = ext2 + journaling (mostly)

• Goal: improved fault recovery

– Reduce the time spent in checking file system
consistency & repairing the file system by
journaling

ext3 journaling options

• journal
– full data + metadata journaling
– [slowest]

• ordered
– Data blocks written first, then metadata journaling
– Write a transaction-end only when the other writes

have completed

• writeback
– Metadata journaling with no ordering of data blocks
– Recent files can get corrupted after a crash
– [fastest]

ex3 layout

Linux ext4
• Large file system support

– 1 exabyte (10^18 bytes); file sizes to 16 TB

• Extents used instead of block maps
– Range of contiguous blocks
– 1 extent can map up to 12 MB of space (4 KB block size)
– 4 extents per inode. Additional ones are stored in an HTree

(constant-depth tree similar to a B-tree)

• Ability to pre-allocate space for files
– Increase chance that it will be contiguous

• Delayed allocation
– Allocate on flush – only when data is written to disk
– Improve block allocation decisions because we know the

size

Linux ex4

• Over 64,000 directory entries (vs. 32,000 in ext3)
– HTree structure

• Journal checksums
– Monitor journal corruption

• Faster file system checking
– Ignore unallocated block groups

• Interface for multiple-block allocations
– Increase contiguous storage

• Timestamps in nanoseconds
– Timestamps in an inode (last modified time, last accessed

time, created time)
– one-second granularity in ext3

Acknowledgement

• Some slides are adapted from Dr. Paul
Krzyzanowski

