
Data Communication: Socket
Programming

Dr. Yingwu Zhu

1

2

Socket Programming

What is a socket?

Using sockets
 Types (Protocols)

 Associated functions

 Styles

We will look at using sockets in C

3

What is a socket?

An interface between application and
network
 The application creates a socket
 The socket type dictates the style of

communication
• reliable vs. best effort
• connection-oriented vs. connectionless

Once configured the application can
 pass data to the socket for network

transmission
 receive data from the socket (transmitted

through the network by some other host)
 Use it like a file descriptor for reads/writes

4

Socket

A socket is an abstract representation of
a communication endpoint.

 Sockets work with Unix I/O services just
like files, pipes & FIFOs.
 Treat me as a file, please!

 Sockets (obviously) have special needs:
 establishing a connection

 specifying communication endpoint addresses

5

Unix Descriptor Table

Descriptor Table

0

1

2

3

4

Data structure for file 0

Data structure for file 1

Data structure for file 2

6

Socket Descriptor Data
Structure

Descriptor Table

0

1

2

3

4

Family: PF_INET

Service: SOCK_STREAM

Local IP: 111.22.3.4

Remote IP: 123.45.6.78

Local Port: 2249

Remote Port: 3726

7

Two essential types of sockets
 SOCK_STREAM

 a.k.a. TCP

 reliable delivery

 in-order guaranteed

 connection-oriented

 bidirectional

 SOCK_DGRAM

 a.k.a. UDP

 unreliable delivery

 no order guarantees

 no notion of “connection” –
app indicates dest. for each
packet

 can send or receive
App

socket
3 2 1

Dest.
App

socket
3 2 1

D1

D3

D2

Q: why have type SOCK_DGRAM?

8

Socket Creation

 int s = socket(domain, type, protocol);
 s: socket descriptor, an integer (like a file-handle)
 domain: integer, communication domain

• e.g., PF_INET (IPv4 protocol) – typically used
• Now in Linux: #define PF_INET AF_INET (value of 2)

 type: communication type
• SOCK_STREAM: reliable, 2-way, connection-based

service
• SOCK_DGRAM: unreliable, connectionless,
• other values: need root permission, rarely used, or

obsolete

 protocol: specifies protocol (see file /etc/protocols
for a list of options) - usually set to 0

 NOTE: socket call does not specify where data will be coming
from, nor where it will be going to – it just creates the
interface!

9

socket()

 The socket() system call returns a socket
descriptor (small integer) or -1 on error.

 socket() allocates resources needed for a
communication endpoint - but it does not
deal with endpoint addressing.

10

Ports

Port 0

Port 1

Port 65535

 Each host has 65,536
ports (limited!)

 Some ports are
reserved for specific
apps
 20,21: FTP

 23: Telnet

 80: HTTP

 see RFC 1700 (about
2000 ports are
reserved)

 A socket provides an interface
to send data to/from the
network through a port

11

Addresses, Ports and Sockets

 Like apartments and mailboxes
 You are the application

 Your apartment building address is the address

 Your mailbox is the port

 The post-office is the network

 The socket is the key that gives you access to the right
mailbox (one difference: assume outgoing mail is placed
by you in your mailbox)

 Q: How do you choose which port a socket
connects to?

12

The bind function

 associates and (can exclusively) reserves a port
for use by the socket

 int status = bind(sockid, &addrport, size);

 status: error status, = -1 if bind failed

 sockid: integer, socket descriptor

 addrport: struct sockaddr, the (IP) address and port of the
machine (address usually set to INADDR_ANY – chooses a
local address)

 size: the size (in bytes) of the addrport structure

 bind can be skipped for both types of sockets.
When and why?

13

Assigning an address to a
socket

 The bind() system call is used to assign an
address to an existing socket.

int bind(int sockfd,

 const struct sockaddr *myaddr,

 int addrlen);

 bind returns 0 if successful or -1 on error.

const!

14

bind()

 calling bind() assigns the address
specified by the sockaddr structure to
the socket descriptor.

 You can give bind() a sockaddr_in
structure:

 bind(mysock,
 (struct sockaddr*) &myaddr,

 sizeof(myaddr));

15

bind() Example

int mysock,err;

struct sockaddr_in myaddr;

 mysock = socket(PF_INET,SOCK_STREAM,0);

 myaddr.sin_family = AF_INET;

 myaddr.sin_port = htons(portnum);

 myaddr.sin_addr = htonl(ipaddress);

 err=bind(mysock, (sockaddr *) &myaddr,

 sizeof(myaddr));

16

Uses for bind()

 There are a number of uses for bind():
 Server would like to bind to a well known address

(port number).

 Client can bind to a specific port.

 Client can ask the O.S. to assign any available
port number.

17

Port schmort - who cares ?

 Clients typically don’t care what port they
are assigned.

When you call bind you can tell it to assign
you any available port:

 myaddr.port = htons(0);

18

What is my IP address ?

 How can you find out what your IP address is so
you can tell bind() ?

 There is no realistic way for you to know the right
IP address to give bind() - what if the computer
has multiple network interfaces?

 specify the IP address as: INADDR_ANY, this
tells the OS to take care of things.

19

Skipping the bind

 SOCK_DGRAM:
 if only sending, no need to bind. The OS finds a

port each time the socket sends a pkt

 if receiving, need to bind

 SOCK_STREAM:
 destination determined during connection setup

 don’t need to know port sending from (during
connection setup, receiving end is informed of
port)

20

Connection Setup (SOCK_STREAM)

 Recall: no connection setup for SOCK_DGRAM

 A connection occurs between two kinds of
participants
 passive: waits for an active participant to request

connection

 active: initiates connection request to passive side

 Once connection is established, passive and active
participants are “similar”
 both can send & receive data

 either can terminate the connection

21

Connection setup cont’d

 Passive participant
 step 1: listen (for

incoming requests)
 step 3: accept (a

request)
 step 4: data transfer

 The accepted
connection is on a new
socket

 The old socket
continues to listen for
other active
participants

 Why?

 Active participant

 step 2: request &
establish connection

 step 4: data transfer

Passive Participant

 l-sock a-sock-1 a-sock-2

Active 1

socket

Active 2

socket

22

Connection setup: listen & accept
 Called by passive participant
 int status = listen(sock, queuelen);

 status: 0 if listening, -1 if error
 sock: integer, socket descriptor
 queuelen: integer, # of active participants that can

“wait” for a connection
 listen is non-blocking: returns immediately

 int s = accept(sock, &name, &namelen);
 s: integer, the new socket (used for data-transfer)
 sock: integer, the orig. socket (being listened on)
 name: struct sockaddr, address of the active participant
 namelen: sizeof(name): value/result parameter

• must be set appropriately before call
• adjusted by OS upon return

 accept is blocking: waits for connection before returning

23

connect call

 int status = connect(sock, &name, namelen);

 status: 0 if successful connect, -1 otherwise

 sock: integer, socket to be used in connection

 name: struct sockaddr: address of passive
participant

 namelen: integer, sizeof(name)

 connect is blocking

24

Sending / Receiving Data

 With a connection (SOCK_STREAM):
 int count = write(sock, &buf, len);

• count: # bytes transmitted
– 0: The connection was closed by the remote host.

– -1:The read system call was interrupted, or failed for some reason.

– n: The write system call wrote 'n' bytes into the socket..

• buf: char*, buffer to be transmitted
• len: integer, length of buffer (in bytes) to transmit

 int count = read(sock, &buf, len);

• count: # bytes received (-1 if error)
– 0: The connection was closed by the remote host.

– -1:The read system call was interrupted, or failed for some reason.

– n: The read system call put 'n' bytes into the buffer we supplied it with.

• buf: char*, stores received bytes
• len: integer, length of buffer (in bytes) to receive

 Calls are blocking [returns only after data is sent (to socket
buffer) / received]

25

Sending / Receiving Data

With a connection (SOCK_STREAM):
 int count = send(sock, &buf, len, flags);

• count: # bytes transmitted (-1 if error)
• buf: char[], buffer to be transmitted
• len: integer, length of buffer (in bytes) to transmit
• flags: integer, special options, usually just 0

 int count = recv(sock, &buf, len, flags);
• count: # bytes received (-1 if error)
• buf: void[], stores received bytes
• len: integer, length of buffer (in bytes) to receive
• flags: integer, special options, usually just 0

 Calls are blocking [returns only after data is sent
(to socket buffer) / received]

26

Sending / Receiving Data (cont’d)

Without a connection (SOCK_DGRAM):
 int count = sendto(sock, &buf, len, flags, &addr, addrlen);

• count, sock, buf, len, flags: same as send

• addr: struct sockaddr, address of the destination

• addrlen: sizeof(addr)

 int count = recvfrom(sock, &buf, len, flags, &addr,

 &addrlen);

• count, sock, buf, len, flags: same as recv

• name: struct sockaddr, address of the source

• namelen: sizeof(name): value/result parameter

 Calls are blocking [returns only after data is sent (to
socket buffer) / received]

27

close

When finished using a socket, the socket
should be closed:

 status = close(s);

 status: 0 if successful, -1 if error

 s: the file descriptor (socket being closed)

 Closing a socket
 closes a connection (for SOCK_STREAM)

 frees up the port used by the socket

28

The struct sockaddr

 The generic:
struct sockaddr {

u_short sa_family;

char sa_data[14];

};

 sa_family
• specifies which

address family is
being used

• determines how the
remaining 14 bytes
are used

 The Internet-specific:
struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

 sin_family = AF_INET

 sin_port: port # (0-65535)

 sin_addr: IP-address

 sin_zero: unused

29

TCP/IP Addresses

We don’t need to deal with sockaddr
structures since we will only deal with a
real protocol family.

We can use sockaddr_in structures.

BUT: The C functions that make up the

sockets API expect structures of type
sockaddr.

30

Network Byte Order

All values stored in a sockaddr_in must
be in network byte order.
 sin_port a TCP/IP port number.

 sin_addr an IP address.

31

Address and port byte-ordering
 Address and port are stored as

integers
 u_short sin_port; (16 bit)

 in_addr sin_addr; (32 bit)

struct in_addr {

 u_long s_addr;

};

 Problem:
 different machines / OS’s use different word orderings

• little-endian: lower bytes first

• big-endian: higher bytes first

 these machines may communicate with one another over the
network

 128.119.40.12

128 119 40 12

12.40.119.128

128 119 40 12

Big-Endian
machine Little-Endian

machine

32

Solution: Network Byte-Ordering
Definitions:

Host Byte-Ordering: the byte ordering used by
a host (big or little)

Network Byte-Ordering: the byte ordering used
by the network – always big-endian

 Any words sent through the network should be
converted to Network Byte-Order prior to
transmission (and back to Host Byte-Order once
received)

 Q: should the socket perform the conversion
automatically?

 Q: Given big-endian machines don’t need
conversion routines and little-endian machines do,
how do we avoid writing two versions of code?

33

UNIX’s byte-ordering funcs

 u_long htonl(u_long x);

 u_short htons(u_short x);

 u_long ntohl(u_long x);

 u_short ntohs(u_short x);

 On big-endian machines, these routines do nothing

 On little-endian machines, they reverse the byte
order

 Same code would have worked regardless of endian-
ness of the two machines

128.119.40.12

128 119 40 12

128.119.40.12

128 119 40 12

Big-Endian
machine Little-Endian

machine n
to

h
l

128 119 40 12 128 119 40 12

34

Address Resolution

 struct hostent *gethostbyname(char
*hostname);
 struct hostent {

 char* h_name; /* official name of host */

 char** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char** h_addr_list; /* list of addresses from name server */
 #define h_addr h_addr_list[0]

 /* address, for backward compatibility */
};

35 35

Socket programming with TCP

Example client-server app:

 client reads line from
standard input, sends to
server via socket; server
reads line from socket

 server converts line to
uppercase, sends back to
client

 client reads, prints modified
line from socket

Input stream: sequence of
bytes into process

Output stream: sequence of
bytes out of process

client socket

36 36

Client/server socket interaction: TCP

wait for incoming

connection request
int cs =

accept(s,….)

create socket,
port=x, for

incoming request:
int s = socket(…); bind(s,…)

listen(s,5);

create socket,
connect to A, port=x

int cli_socket = socket(..);

connect(s,…);

close

cs

read reply from

cli_socket

close

cli_socket

Server (running in A) Client

send request using

cli_socket read request from

cs

write reply to

cs

TCP
connection setup

37 37

Example: C++ client (TCP)
#include <stdio.h> /* Basic I/O routines */
#include <sys/types.h> /* standard system types */
#include <netinet/in.h> /* Internet address structures */
#include <sys/socket.h> /* socket interface functions */
#include <netdb.h> /* host to IP resolution */

 int main(int argc, char *argv[]) {
 /* Address resolution stage */
 struct hostent* hen = gethostbyname(argv[1]);
 if (!hen) {
 perror("couldn't resolve host name");
 }
 struct sockaddr_in sa;
 memset(&sa, 0, sizeof(sa);
 sa.sin_family = AF_INET;
 sa.sin_port = htons(PORT); //server port number
 memcpy(&sa.sin_addr.s_addr, hen->h_addr_list[0], hen->h_length);

 int cli_socket = socket(AF_INET, SOCK_STREAM, 0);
 assert(cli_socket >= 0); //I am just lazy here!!
 connect(s, (struct sockaddr *)&sa, sizeof(sa));

 write(s, “hello”, 5); //send it to server, better use while
 char buf[BUFLEN];
 int rc;
 memset(buf, 0, BUFLEN);
 char* pc = buf;
 while(rc = read(cli_socket, pc, BUFLEN – (pc - buf)))
 pc += rc;
 write(1, buf, strlen(buf));
 close(cli_socket);
}

Create
client socket,

connect to server

38 38

Example: C++ server (TCP)
//include header files

#define PORT 6789

int main(int argc, char* argv[]) {

 struct sockaddr_in sa, csa;

 memset(&sa, 0, sizeof(sa);

 sa.sin_family = AF_INET;

 sa.sin_port = htons(PORT);

 sa.sin_addr.s_addr = INADDR_ANY; //any IP addr. Is accepted

 int s = socket(AF_INET,SOCK_STREAM, 0);

 assert(s>=0);

 int rc = bind(s, (struct sockaddr *)& sa, sizeof(sa)); //hook s with port

 rc = listen(s, 5);

 int cs_socket = accept(s, (struct sockaddr*)&csa, sizeof(csa));

 char buf[BUFLEN];

 memset(buf, 0, BUFLEN);
 char* pc = buf; int bcount = 0;
 while(bcount < 5) {
 if (rc = read(cs_socket, pc, BUFLEN – (pc - buf)) > 0)) {
 pc += rc; bcount += rc;
 } else return -1;
 upper_case(buf); // covert it into upper case
 write(cs_socket, buf, strlen(buf));
 close(cs_socket);
 close(s);
}

39 39

Multi-Clients Servers
 Two main approaches to designing such servers.
 Approach 1.
 The first approach is using one process that awaits new

connections, and one more process (or thread) for each
Client already connected. This approach makes design quite
easy, cause then the main process does not need to differ
between servers, and the sub-processes are each a single-
Client server process, hence, easier to implement.

 However, this approach wastes too many system resources
(if child processes are used), and complicates inter-Client
communication: If one Client wants to send a message to
another through the server, this will require communication
between two processes on the server, or locking mechanisms,
if using multiple threads.

 Other approaches not included here

40 40

Socket programming with UDP

UDP: no “connection” between
client and server

 no handshaking

 sender explicitly attaches
IP address and port of
destination

 server must extract IP
address, port of sender
from received datagram

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

41 41

Summary

 application service
requirements:
 reliability, bandwidth,

delay

 client-server paradigm

 Internet transport
service model
 connection-oriented,

reliable: TCP

 unreliable, datagrams:
UDP

Our study of network apps now complete!

 specific protocols:
 http

 ftp

 smtp, pop3

 dns

 socket programming
 client/server

implementation

 using tcp, udp sockets

42 42

Summary

 typical request/reply
message exchange:
 client requests info or

service

 server responds with
data, status code

 message formats:
 headers: fields giving

info about data

 data: info being
communicated

Most importantly: learned about protocols

 control vs. data msgs

 in-based, out-of-band

 centralized vs. decentralized

 stateless vs. stateful

 reliable vs. unreliable msg
transfer

 “complexity at network
edge”

 security: authentication

43

Dealing with blocking calls

 Many of the functions we saw block until a certain
event
 accept: until a connection comes in

 connect: until the connection is established

 recv, recvfrom: until a packet (of data) is received

 send, sendto: until data is pushed into socket’s buffer
• Q: why not until received?

 For simple programs, blocking is convenient

 What about more complex programs?
 multiple connections

 simultaneous sends and receives

 simultaneously doing non-networking processing

44

Dealing w/ blocking (cont’d)

 Options:
 create multi-process or multi-threaded code

 turn off the blocking feature (e.g., using the fcntl file-
descriptor control function)

 use the select function call.

 What does select do?
 can be permanent blocking, time-limited blocking or non-

blocking

 input: a set of file-descriptors

 output: info on the file-descriptors’ status

 i.e., can identify sockets that are “ready for use”: calls
involving that socket will return immediately

45

select function call

 int status = select(nfds, &readfds, &writefds,

&exceptfds, &timeout);

 status: # of ready objects, -1 if error

 nfds: 1 + largest file descriptor to check

 readfds: list of descriptors to check if read-ready

 writefds: list of descriptors to check if write-ready

 exceptfds: list of descriptors to check if an
exception is registered

 timeout: time after which select returns, even if
nothing ready - can be 0 or

 (point timeout parameter to NULL for)

46

To be used with select:

 Recall select uses a structure, struct fd_set
 it is just a bit-vector
 if bit i is set in [readfds, writefds, exceptfds],

select will check if file descriptor (i.e. socket) i
is ready for [reading, writing, exception]

 Before calling select:
 FD_ZERO(&fdvar): clears the structure
 FD_SET(i, &fdvar): to check file desc. i

After calling select:
 int FD_ISSET(i, &fdvar): boolean returns TRUE

iff i is “ready”

47

Other useful functions

 bzero(char* c, int n): 0’s n bytes starting at c
 gethostname(char *name, int len): gets the name of

the current host
 gethostbyaddr(char *addr, int len, int type): converts

IP hostname to structure containing long integer
 inet_addr(const char *cp): converts dotted-decimal

char-string to long integer
 inet_ntoa(const struct in_addr in): converts long to

dotted-decimal notation

 Warning: check function assumptions about byte-
ordering (host or network). Often, they assume
parameters / return solutions in network byte-
order

48

Release of ports

 Sometimes, a “rough” exit from a program (e.g.,
ctrl-c) does not properly free up a port

 Eventually (after a few minutes), the port will be
freed

 To reduce the likelihood of this problem, include
the following code:

 #include <signal.h>

 void cleanExit(){exit(0);}

 in socket code:

 signal(SIGTERM, cleanExit);

 signal(SIGINT, cleanExit);

49

Final Thoughts

Make sure to #include the header files that
define used functions

 Check man-pages and course web-site for
additional info

