
Brute Force

Dr. Yingwu Zhu

Brute Force
A straightforward approach, usually based directly on

the problem’s statement and definitions of the
concepts involved

Examples:
1. Computing an (a > 0, n a nonnegative integer)

2. Computing n!

3. Multiplying two matrices

4. Searching for a key of a given value in a list

Outline

• Sorting

– Selection sort

– Bubble sort

• String matching

• Close-pair problem

• Exhaustive search to combinatorial problems

– Travelling salesman problem (TSP)

– Knapsack problem

– Job assignment problem

Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element
and swap it with the first element. Then, starting with
the second element, scan the elements to the right of it
to find the smallest among them and swap it with the
second elements. Generally, on pass i (0 i n-2), find
the smallest element in A[i..n-1] and swap it with A[i]:

A[0] . . . A[i-1] | A[i], . . . , A[min], . . ., A[n-1]

in their final positions

Example: 7 3 2 5

Analysis of Selection Sort

T(n) = ?

Bubble Sort

• Exchange sort, makes n-1 scans over the list. On each
pass, swap two neighbor data items only if they are
out of order. Each pass i will bubbling up the (i+1)-th
largest item to the right position. Pass i (0 i n-2)
can be represented as follows:

A[0], . . . , A[j] A[j+1], . . ., A[n-i-1] | A[n-i] . . . A[n-1]
in their final positions

Bubble Sort

Algorithm BubbleSort(A[0..n-1])

for i 0 to n-2 do

for j 0 to n-2 do //or n-2-i, why ?

if A[j+1] < A[j] swap A[j] and A[j+1]

T(n) = ?

Brute-Force String Matching
• pattern: a string of m characters to search for

• text: a (longer) string of n characters to search in

• problem: find a substring in the text that matches
the pattern

• Examples:

1. Pattern: 001011
Text: 10010101101001100101111010

2. Pattern: happy
Text: It is never too late to have a happy
childhood.

Examples of Brute-Force String Matching

1. Pattern: 001011
Text: 10010101101001100101111010

2. Pattern: happy
Text: It is never too late to have a

happy childhood.

Brute-Force String Matching

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each
character of pattern to the corresponding
character in text until

• all characters are found to match (successful search); or

• a mismatch is detected

Step 3 While pattern is not found and the text is not
yet exhausted, realign pattern one position to the
right and repeat Step 2

Pseudocode and Efficiency

Efficiency:

Closest-Pair Problem

Find the two closest points in a set of n points
(in the two-dimensional Cartesian plane).

Brute-force algorithm

How?

Closest-Pair Problem

Find the two closest points in a set of n points
(in the two-dimensional Cartesian plane).

Brute-force algorithm

Compute the distance between every pair of
distinct points

and return the indexes of the points for which
the distance is the smallest.

Closest-Pair Brute-Force Algorithm (cont.)

Efficiency:

Brute-Force Strengths and Weaknesses

• Strengths
– wide applicability
– simplicity
– yields reasonable algorithms for some important problems

(e.g., matrix multiplication, sorting, searching, string
matching)

• Weaknesses
– rarely yields efficient algorithms
– some brute-force algorithms are unacceptably slow
– not as constructive as some other design techniques

Exhaustive Search
A brute force solution to combinatorial problems. It

suggests generating each and every combinatorial
object (e.g., permutations, combinations, or
subsets of a set) of the problem, selecting those of
them that satisfying all the constraints, and then
finding a desired object.

Method:
– generate a list of all potential solutions to the problem in a

systematic manner
– evaluate potential solutions one by one, disqualifying infeasible

ones and, for an optimization problem, keeping track of the best
one found so far

– when search ends, announce the solution(s) found

Example 1: Traveling Salesman Problem

• Given n cities with known distances between each pair, find
the shortest tour that passes through all the cities exactly
once before returning to the starting city

• Alternatively: Find shortest Hamiltonian circuit in a weighted
connected graph

• Example:

a b

c d

8

2

7

5 3
4

TSP by Exhaustive Search

Problem: v0, v1, …, vn-1, v0 permutations of n vertices

Tour Cost

a→b→c→d→a 2+3+7+5 = 17 optimal
a→b→d→c→a 2+4+7+8 = 21
a→c→b→d→a 8+3+4+5 = 20
a→c→d→b→a 8+7+4+2 = 21
a→d→b→c→a 5+4+3+8 = 20
a→d→c→b→a 5+7+3+2 = 17 optimal

NP-hard problem!

Example 2: Knapsack Problem
Given n items:

– weights: w1 w2 … wn

– values: v1 v2 … vn

– a knapsack of capacity W

Find most valuable subset of the items that fit into the
knapsack

Example: Knapsack capacity W=16

item weight value

1 2 $20

2 5 $30

3 10 $50

4 5 $10

Knapsack Problem by Exhaustive Search
Subset Total weight Total value

{1} 2 $20
{2} 5 $30
{3} 10 $50
{4} 5 $10

{1,2} 7 $50
{1,3} 12 $70
{1,4} 7 $30
{2,3} 15 $80
{2,4} 10 $40
{3,4} 15 $60

{1,2,3} 17 not feasible
{1,2,4} 12 $60
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible

{1,2,3,4} 22 not feasible Efficiency: Ω(2^n)

Example 3: The Assignment Problem
There are n people who need to be assigned to n
jobs, one person per job. The cost of assigning
person i to job j is C[i,j]. Find an assignment that
minimizes the total cost.

Job 0 Job 1 Job 2 Job 3
Person 0 9 2 7 8
Person 1 6 4 3 7
Person 2 5 8 1 8
Person 3 7 6 9 4

Algorithmic Plan: Generate all legitimate assignments
(permutations), compute their costs, and select the
cheapest one.
How many assignments are there?
Pose the problem as the one about a cost matrix:

9 2 7 8

6 4 3 7

5 8 1 8

7 6 9 4

Assignment (col.#s) Total Cost
1, 2, 3, 4 9+4+1+4=18
1, 2, 4, 3 9+4+8+9=30
1, 3, 2, 4 9+3+8+4=24
1, 3, 4, 2 9+3+8+6=26
1, 4, 2, 3 9+7+8+9=33
1, 4, 3, 2 9+7+1+6=23

etc.
(For this particular instance, the optimal assignment can be found by
exploiting the specific features of the number given. It is:)

Assignment Problem by Exhaustive Search

C =

Final Comments on Exhaustive Search

• Exhaustive-search algorithms run in a realistic
amount of time only on very small instances

• In some cases, there are much better
alternatives!
– shortest paths
– minimum spanning tree
– assignment problem

• In many cases, exhaustive search or its variation
is the only known way to get exact solution

