GFS: The Google File System

Motivating Application: Google

Crawl| the whole web
Store it all on “one big disk”
Process users’ searches on “one big CPU”

More storage, CPU required than one PC can
offer

Custom parallel supercomputer: expensive (so
much so, not really available today)

Cluster of PCs as Supercomputer

* More than 15,000 commodity-class PC's.
 Multiple clusters distributed worldwide.
 Thousands of queries served per second.
* One query reads 100's of MB of data.

* One query consumes 10's of billions of CPU
cycles.

* Google stores dozens of copies of the entire Web!

Conclusion: Need large, distributed, highly fault-
tolerant file system. 2 GFS

Google Platform Characteristics

100s to 1000s of PCs in cluster
Cheap, commodity parts in PCs

Many modes of failure for each PC:
— App bugs, OS bugs
— Human error

— Disk failure, memory failure, net failure, power
supply failure

— Connector failure

Monitoring, fault tolerance, auto-recovery
essential

Google File System: Design Criteria

Detect, tolerate, recover from failures automatically
Large files, >= 100 MB in size

Large, streaming reads (>= 1 MB in size)

— Read once

Large, sequential writes that append

— Write once

Concurrent appends by multiple clients (e.g.,
producer-consumer queues)

— Want atomicity for appends without synchronization
overhead among clients

GFS: Architecture

* One master server (state replicated on
backups)

 Many chunk servers (100s — 1000s)

— Spread across racks; intra-rack b/w greater than
inter-rack

— Chunk: 64 MB portion of file, identified by 64-bit,
globally unique ID

* Many clients accessing same and different
files stored on same cluster

GFS: Architecture (2)

Application

GFS client

(file name, chunk index) N

-
e

[

{chunk handle,
chunk locations)

chunk handle, byte range)

chunk data

GFS master
o’

. f
File namespace !
]

= [foo/bar
chunk 2ef()

L)

[nstructions to chunkserver

Chunkserver state

[

Legend:

mmm) Daia messages

— Confrol messages

GFS chunkserver

GFS chunkserver

Linux file system

Linux file system

'8 -

9'8 -

Master Server

* Holds all metadata:
— Namespace (directory hierarchy), ACL, file-chunks mapping

Holds all metadata in RAM; very fast operations on file
system metadata

J

— Current locations of chunks (chunkservers), chunk versions

* Manages chunk leases to chunkservers
* Garbage collects orphaned chunks
* Migrates chunks between chunkservers

Chunkserver

Stores 64 MB file chunks on local disk using
standard Linux filesystem, each with version
number and checksum

Read/write requests specify chunk handle and
byte range

Chunks replicated on configurable number of
chunkservers (default: 3)

No caching of file data (beyond standard Linux
buffer cache)

Client

Issues control (metadata) requests to master
server

Issues data requests directly to chunkservers
Caches metadata

Does no caching of data
— No consistency difficulties among clients

— Streaming reads (read once) and append writes
(write once) don’t benefit much from caching at

client

10

Master - Chunkserver Communication:

e Master and chunkserver communicate
regularly to obtain state:

— Is chunkserver down?

— Are there disk failures on chunkserver?

— Are any replicas corrupted?

— Which chunk replicas does chunkserver store?

e Master sends instructions to chunkserver:
— Delete existing chunk.
— Create new chunk.

Serving Requests

* Client retrieves metadata for operation from
master.

* Read/Write data flows between client and
chunkserver.

* Single master is not bottleneck, because its
involvement with read/write operations is
minimized.

Client Read

Client sends master:

— read(file name, chunk index)

Master’s reply:

— chunk ID, chunk version number, locations of replicas
Client sends “closest” chunkserver w/replica:

— read(chunk ID, byte range)

— “Closest” determined by IP address on simple rack-based
network topology

Chunkserver replies with data

13

Client Write

e Some chunkserver is primary for each chunk
— Master grants lease to primary (typically for 60 sec.)

— Leases renewed using periodic heartbeat messages
between master and chunkservers

* Client asks server for primary and secondary replicas
for each chunk
* Client sends data to replicas in daisy chain

— Pipelined: each replica forwards as it receives
— Takes advantage of full-duplex Ethernet links

Client Write (2)

All replicas acknowledge data write to client
Client sends write request to primary

Primary assigns serial number to write request,
providing ordering

Primary forwards write request with same serial
number to secondaries

Secondaries all reply to primary after completing
write

Primary replies to client

15

Write Operation

__Application

1))
e I'\E./"I
(file name, data) (file name,
chunk index)
! Master
GFS Client
(chunk handle,
primary and

secondary replica

locations)

Write Operation

Application

GFS Client

Primary
Chunk
|~ Buffer
(Data) /
Secondary
Buff Chunk
(Data) j 1 Hier
Secondary
____{?a_t_a} Chunk
e Buffer
AT,

Write Operation

Application

GFS Client

(Write
command)

(write command,
serial order)

D1 | D2| D3| D4

/r--ﬂ\l ra "*\‘.
Pri .6) L7
rMmary ~_~ \/
e _'__::§Chu nk -
e D1 | D2| D3| D4 \
H"l;l
Secondary /'I
Chunk ‘
D1 | D2| D3| D4 |
III
III
Secondary /
Chunk | ¥

Write Operation

Application

GFS Client

|

-
|/f9 :I
A

(response)

(o)
Primary &
Chunk | m
4 (empty) \
|II5:|
Secondary 8
Chunk | |g_
(empty) 13
II =
|III
Secondary
Chunk | [
(empty)

Client Record Append

Google uses large files as queues between multiple
producers and consumers

Same control flow as for writes, except...
Client pushes data to replicas of last chunk of file
Client sends request to primary

Common case: request fits in current last chunk:
— Primary appends data to own replica

— Primary tells secondaries to do same at same byte offset in

theirs
— Primary replies with success to client

20

Client Record Append (2)

* When data won’t fit in last chunk:
— Primary fills current chunk with padding
— Primary instructs other replicas to do same
— Primary replies to client, “retry on next chunk”
* If record append fails at any replica, client retries
operation

— So replicas of same chunk may contain different data—
even duplicates of all or part of record data

 What guarantee does GFS provide on success?
— Data written at least once in atomic unit

21

GFS: Consistency Model

Changes to namespace (i.e., metadata) are atomic
— Done by single master server!

— Master uses log to define global total order of namespace-
changing operations

Data changes more complicated

Consistent: file region all clients see as same,
regardless of replicas they read from

Defined: after data mutation, file region that is
consistent, and all clients see that entire mutation

22

GFS: Data Mutation Consistency

Write Record Append
serial defined
SuCcess defined
) interspersed with
concurrent consistent) .
Inconsistent
SUCcess but
undefined
failure inconsistent

* Record append completes at least once, at offset of
GFS’ choosing

* Apps must cope with Record Append semantics

Applications and
Record Append Semantics

* Applications should include checksums in
records they write using Record Append

— Reader can identify padding / record fragments
using checksums

 |f application cannot tolerate duplicated
records, should include unique ID in record

— Reader can use unique IDs to filter duplicates

Fault Tolerance

Fast Recovery: master and chunkservers are designed to
restart and restore state in a few seconds.

Chunk Replication: across multiple machines, across
multiple racks.

Master Mechanisms:

— Log of all changes made to metadata.

— Periodic checkpoints of the log.

— Log and checkpoints replicated on multiple machines.

— Master state is replicated on multiple machines.

— “Shadow” masters for reading data if “real” master is down.
Data integrity:

— Each chunk has an associated checksum.

Logging at Master

Master has all metadata information

— Lose it, and you’ve lost the filesystem!

Master logs all client requests to disk
sequentially

Replicates log entries to remote backup
servers

Only replies to client after log entries safe on
disk on self and backups!

Chunk Leases and Version Numbers

* |f no outstanding lease when client requests
write, master grants new one

* Chunks have version numbers
— Stored on disk at master and chunkservers
— Each time master grants new lease, increments
version, informs all replicas
* Master can revoke leases

— e.g., when client requests rename or snapshot of
file

What If the Master Reboots?

* Replays log from disk
— Recovers namespace (directory) information
— Recovers file-to-chunk-ID mapping

* Asks chunkservers which chunks they hold
— Recovers chunk-ID-to-chunkserver mapping

* If chunk server has older chunk, it’s stale
— Chunk server down at lease renewal

e |f chunk server has newer chunk, adopt its
version number

— Master may have failed while granting lease

What if Chunkserver Fails?

* Master notices missing heartbeats

* Master decrements count of replicas for all
chunks on dead chunkserver

* Master re-replicates chunks missing replicas in
background

— Highest priority for chunks missing greatest
number of replicas

File Deletion

 When client deletes file:
— Master records deletion in its log

— File renamed to hidden name including deletion
timestamp

* Master scans file namespace in background:

— Removes files with such names if deleted for longer than 3
days (configurable)

— In-memory metadata erased

* Master scans chunk namespace in background:

— Removes unreferenced chunks from chunkservers

30

GFS: Summary

* Success: used actively by Google to support search
service and other applications

— Availability and recoverability on cheap hardware
— High throughput by decoupling control and data
— Supports massive data sets and concurrent appends

* Semantics not transparent to apps

— Must verify file contents to avoid inconsistent regions,
repeated appends (at-least-once semantics)

* Performance not good for all apps

— Assumes read-once, write-once workload (no client
caching!)

31

