
DISTRIBUTED FILE SYSTEMS & NFS

Dr. Yingwu Zhu

Distributed Computing

File Service Types in Client/Server

• File service
– a specification of what the file system offers to

clients

• File server
– The implementation of a file service and runs on

one or more machines.

• How to access files?
– Upload/download model (entire files)

– Remote access model (remote file operations)

Distributed Computing

Client-Server Architectures

(a) The remote access model.
(b) The upload/download model.

Distributed Computing

Upload/Download Model

• How:
– Read file:copy file from server to client

– Write file:copy file from client to server

• Advantage
– Simple

• Problems
– Wasteful: what if client needs small piece?

– Problematic: what if client doesn’t have enough space?

– Consistency: what if others need to modify the same file?

Distributed Computing

Remote Access Model

• File service provides functional interface:
– create, delete, read bytes, write bytes, etc…

• Advantages:
– Client gets only what’s needed
– Server can manage coherent view of file system

• Problem:
– Possible server and network congestion

• Servers are accessed for duration of file access
• Same data may be requested repeatedly

– State in server?

Distributed Computing

File Service Components

• File Directory Service
– Maps textual names for file to internal locations

that can be used by file service

• File service
– Provides file access interface to clients

• Client modular (driver)
– Client-side interface for file and directory service

– if done right, helps provide access transparency
e.g. under vnode layer

Distributed Computing

Semantics of File Sharing

• Sequential Semantics

• Session Semantics

• Other solutions

Distributed Computing

Sequential Semantics

• Read returns result of last write
• Easily achieved if

– Only one server
– Clients do not cache data

• BUT…
– Performance problems if no cache

• Obsolete data if w/ cache

– We can write-through to the server w/ cache, but
• Must notify clients holding copies
• Requires extra state, generates extra traffic

Distributed Computing

Sequential Semantics

• (a) On a single processor,
when a read follows a write,
the value returned by the
read is the value just
written.

Distributed Computing

Session Semantics

Relax the rules (not same as the local FS)

• Changes to an open file are initially visible only to the
process (or machine) that modified it.

• Last process to modify the file wins.

Distributed Computing

Session Semantics

(b) In a distributed system
with caching, obsolete
values may be returned.

Distributed Computing

Other Solutions

Make files immutable
– Modification is achieved by creating a new file under

the old name

– Aids in replication

– Does not help with detecting modification

Or... Use atomic transactions
– Each file access is an atomic transaction

– If multiple transactions start concurrently

– Resulting modification is serial

Distributed Computing

Semantics of File Sharing

Four ways of dealing with the shared files in a
distributed system.

Distributed Computing

File Usage Patterns

• We can’t have the best of all worlds

• Where to compromise?

– Semantics vs. efficiency

– Efficiency = client performance, network traffic,
server load

• Understand how files are used

• 1981 study by Satyanarayanan

Distributed Computing

File Usage

• Most files are <10 KB
– Feasible to transfer entire files (simpler)
– Still have to support long files

• Most files have short lifetimes
– Many temporary files created by editors and compilers
– Perhaps keep them local

• Few files are shared
– Overstated problem
– Session semantics will cause no problem most of the time

Distributed Computing

System Design Issues

Distributed Computing

How do you access them?

• Access remote files as local files
• Remote FS name space should be syntactically

consistent with local name space
1. redefine the way all files are named and provide a

syntax for specifying remote files
• e.g. //server/dir/file
• Can cause legacy applications to fail

2. use a file system mounting mechanism
• Overlay portions of another FS name space over local name

space
• This makes the remote name space look like it’s part of the

local name space

Distributed Computing

Should servers maintain state?
Stateless vs. Stateful

• A stateless system is:

– one in which the client sends a request to a
server, the server carries it out, and returns the
result. Between these requests, no client-specific
information is stored on the server.

• A stateful system is:

– one where information about client connections
is maintained on the server.

Distributed Computing

Stateless

• Each request must identify file and offsets
• Server can crash and recover

– No state to lose

• Client can crash and recover
• No open/close needed

– They only serve to establish state

• No server space used for state
– Don’t worry about supporting many clients

• Problems if file is deleted on server
• File locking not possible

Distributed Computing

Caching

• Hide latency to improve performance for
repeated accesses, driven by access locality!

• Four places

– Server’s disk

– Server’s buffer cache

– Client’s buffer cache

– Client’s disk

Warning:
Cache consistency
problem!

Distributed Computing

Approaches to Cache Consistency

• Write-through
– What if another client reads its own (out-of-date) cached

copy?
– All accesses will require checking with server
– Or … server maintains state and sends invalidations

• Delayed writes (write-behind)
– Data can be buffered locally (watch out for consistency –

others won’t see updates!)
– Remote files updated periodically
– One bulk wire is more efficient than lots of little writes
– Problem: semantics become ambiguous

Distributed Computing

Approaches to Cache Consistency

• Read-ahead (prefetch)
– Request chunks of data before it is needed.

– Minimize wait when it actually is needed.

• Write on close
– Admit that we have session semantics.

• Centralized control
– Keep track of who has what open and cached on

each node.

– Stateful file system with signaling traffic.

Distributed Computing

Case Study

• SUN NFS (Network File Systems)

Distributed Computing

NFS Design Goals (1)

• Any machine can be a client or server
• Must support diskless workstations

– Diskless workstations were Sun’s major product line.

• Heterogeneous systems must be supported
– Different HW, OS, underlying file system

• Access transparency
– Remote files accessed as local files through normal file system

calls (via VFS in UNIX)

• Recovery from failure
– Stateless, UDP, client retries

• High Performance
– use caching and read-ahead

Distributed Computing

NFS Design Goals (2)

• No migration transparency
– If resource moves to another server, client must

remount resource.

• No support for UNIX file access semantics
– Stateless design: file locking is a problem.

– All UNIX file system controls may not be available.

• Devices
– must support diskless workstations where every file

is remote.

– Remote devices refer back to local devices.

Distributed Computing

NFS Design Goals (3)

• Transport Protocol
– Initially NFS ran over UDP using Sun RPC

• Why UDP?
– Slightly faster than TCP

– No connection to maintain (or lose)

– NFS is designed for Ethernet LAN environment –
relatively reliable

– Error detection but no correction.
• NFS retries requests

Distributed Computing

NFS Architecture

The basic NFS architecture for UNIX systems.

Distributed Computing

Two NFS Protocols

• Mounting protocol

– Request access to exported directory tree

• Directory & File access protocol

– Access files and directories

– (read, write, mkdir, readdir, …)

Distributed Computing

Mounting Protocols

core

Distributed Computing

Mounting Protocols

• static mounting

– mount request contacts server

• Server: edit /etc/exports

• Client: mount fluffy:/users/paul /home/paul

Distributed Computing

Directory and File Access Control

• First, perform a lookup RPC

– returns file handle and attributes

• Not like open

– No information is stored on server

• Handle passed as a parameter for other file
access functions

– e.g. read(handle, offset, count)

Distributed Computing

NFS File Access Control

• Figure 11-3. An incomplete list of file system
operations supported by NFS.

Distributed Computing

NFS File Access Control

• Figure 11-3. An incomplete list of file system
operations supported by NFS.

Distributed Computing

NFS Performance

• Usually slower than local
• Improve by caching at client

– Goal: reduce number of remote operations
– Cache results of

• read, readlink, getattr, lookup, readdir

– Cache file data at client (buffer cache)
– Cache file attribute information at client
– Cache pathname bindings for faster lookups

• Server side
– Caching is “automatic” via buffer cache
– All NFS writes are write-through to disk to avoid

unexpected data loss if server dies

Distributed Computing

Inconsistencies may arise

• Try to resolve by validation

– Save timestamp of file (assume clock
synchronization)

– When file opened or server contacted for new
block

• Compare last modification time

• If remote is more recent, invalidate cached data

Distributed Computing

Validation

• Always invalidate data after some time

– After 3 seconds for open files (data blocks)

– After 30 seconds for directories

• If data block is modified, it is:

– Marked dirty

– Scheduled to be written

– Flushed on file close

Distributed Computing

Improving read performance

• Transfer data in large chunks

– 8K bytes by default

• Read-ahead

– Optimize for sequential file access

– Send requests to read disk blocks before they are
requested by the application

Distributed Computing

Problems with NFS

• File consistency

• Assumes clocks are synchronized

• Open with append cannot be guaranteed to
work

• Locking cannot work
– Separate lock manager added (stateful)

• No reference counting of open files
– You can delete a file you (or others) have open!

• Global UID space assumed

Distributed Computing

Problems with NFS

• File permissions may change
– Invalidating access to file

– Stateless, still can access the cached copy even
after being revoked

• No encryption
– Requests via unencrypted RPC

– Authentication methods available
• Diffie-Hellman, Kerberos, Unix-style

– Rely on user-level software to encrypt

Distributed Computing

Improving NFS: version 2

• User-level lock manager
– Monitored locks

• status monitor: monitors clients with locks
• Informs lock manager if host inaccessible
• If server crashes: status monitor reinstates locks on recovery
• If client crashes: all locks from client are freed

• NV RAM support
– Improves write performance
– Normally NFS must write to disk on server before

responding to client write requests
– Relax this rule through the use of non-volatile RAM

Distributed Computing

Improving NFS: version 2

• Adjust RPC retries dynamically

– Reduce network congestion from excess RPC
retransmissions under load

– Based on performance

• Client-side disk caching

– cacheFS (due to limited RAM for cache)

– Extend buffer cache to disk for NFS

• Cache in memory first

• Cache on disk in 64KB chunks

Distributed Computing

More improvements… NFS v3

• Updated version of NFS protocol
• Support 64-bit file sizes
• TCP support and large-block transfers

– UDP caused more problems on WANs (errors)
– All traffic can be multiplexed on one connection

• Minimizes connection setup

– No fixed limit on amount of data that can be
transferred between client and server

• Negotiate for optimal transfer size
• Server checks access for entire path from client

Distributed Computing

More improvements… NFS v3

• New commit operation
– Check with server after a write operation to see if

data is committed

– If commit fails, client must resend data

– Reduce number of write requests to server

– Speeds up write requests
• Don’t require server to write to disk immediately

• Return file attributes with each request
– Saves extra RPCs

Distributed Computing

