DISTRIBUTED FILE SYSTEMS & NFS

Dr. Yingwu Zhu

File Service Types in Client/Server

* File service

— a specification of what the file system offers to
clients

* File server

— The implementation of a file service and runs on
one or more machines.

e How to access files?

— Upload/download model (entire files)
— Remote access model (remote file operations)

Client-Server Architectures

1. File moved to client

Client Server Client / Server
) ®
< f// Old file
= » \ / T» New file
Requests from \ /
clientto access File stays 2. Accesses are 3. When client is done,
remote file on server done on client file is returned to

server

(@) (b)

(a) The remote access model.
(b) The upload/download model.

Distributed Computing

Upload/Download Model

* How:
— Read file:copy file from server to client
— Write file:copy file from client to server
* Advantage
— Simple

* Problems
— Wasteful: what if client needs small piece?
— Problematic: what if client doesn’t have enough space?
— Consistency: what if others need to modify the same file?

Remote Access Model

* File service provides functional interface:
— create, delete, read bytes, write bytes, etc...

* Advantages:
— Client gets only what’s needed
— Server can manage coherent view of file system

* Problem:

— Possible server and network congestion
» Servers are accessed for duration of file access
e Same data may be requested repeatedly

— State in server?

File Service Components

* File Directory Service

— Maps textual names for file to internal locations
that can be used by file service

* File service
— Provides file access interface to clients

* Client modular (driver)
— Client-side interface for file and directory service

— if done right, helps provide access transparency
e.g. under vnode layer

Semantics of File Sharing

* Sequential Semantics
* Session Semantics
e Other solutions

Sequential Semantics

e Read returns result of last write

* Easily achieved if
— Only one server
— Clients do not cache data

* BUT...

— Performance problems if no cache
* Obsolete data if w/ cache

— We can write-through to the server w/ cache, but
* Must notify clients holding copies
* Requires extra state, generates extra traffic

Sequential Semantics

(a) On a single processor,
when a read follows a write,
the value returned by the
read is the value just
written.

Original file

Single machine /

Process
A

[

alb

Process
B

Vs
1. Write "c"

Distributed Computing

\
2. Read gets "abc

(a)

Session Semantics

Relax the rules (not same as the local FS)

 Changes to an open file are initially visible only to the
process (or machine) that modified it.

e Last process to modify the file wins.

Session Semantics

(b) In a distributed system
with caching, obsolete
values may be returned.

Distributed Computing

Client machine #1

abq\

Process
A ?‘
alb|c

2. Write/ *e" 1. Read "ab"

File server

3. Read gets "ab"

Client machine #2

ab4/

Process
B

Other Solutions

Make files immutable

— Modification is achieved by creating a new file under
the old name

— Aids in replication
— Does not help with detecting modification

Or... Use atomic transactions
— Each file access is an atomic transaction
— |If multiple transactions start concurrently
— Resulting modification is serial

Semantics of File Sharing

Method Comment
UNIX semantics Every operation on a file is instantly visible to all processes
Session semantics | No changes are visible to other processes until the file is closed
Immutable files No updates are possible; simplifies sharing and replication
Transactions All changes occur atomically

Four ways of dealing with the shared filesin a
distributed system.

Distributed Computing

File Usage Patterns

We can’t have the best of all worlds
Where to compromise?

— Semantics vs. efficiency

— Efficiency = client performance, network traffic,
server load

Understand how files are used
1981 study by Satyanarayanan

File Usage

e Most files are <10 KB

— Feasible to transfer entire files (simpler)
— Still have to support long files

* Most files have short lifetimes
— Many temporary files created by editors and compilers
— Perhaps keep them local

* Few files are shared
— Overstated problem
— Session semantics will cause no problem most of the time

System Design Issues

How do you access them?

e Access remote files as local files

* Remote FS name space should be syntactically
consistent with local name space

1. redefine the way all files are named and provide a
syntax for specifying remote files
» e.g.//server/dir/file
e Can cause legacy applications to fail
2. use a file system mounting mechanism

* Overlay portions of another FS name space over local name

space
* This makes the remote name space look like it’s part of the
local name space

Should servers maintain state?
Stateless vs. Stateful

e A stateless system is:

— one in which the client sends a request to a
server, the server carries it out, and returns the
result. Between these requests, no client-specific
information is stored on the server.

e A stateful system is:

— ohe where information about client connections
is maintained on the server.

Stateless

Each request must identify file and offsets

Server can crash and recover

— No state to lose

Client can crash and recover
No open/close needed

— They only serve to establish state

No server space used for state
— Don’t worry about supporting many clients

Problems if file is deleted on server
File locking not possible

Caching

* Hide latency to improve performance for
repeated accesses, driven by access locality!

* Four places
— Server’s disk
— Server’s buffer cache

— Client’s buffer cache Warning:

: T Cache consistenc
—{Client’s disk Y
problem!

Distributed Computing

Approaches to Cache Consistency

* Write-through

— What if another client reads its own (out-of-date) cached
copy?

— All accesses will require checking with server
— Or ... server maintains state and sends invalidations

* Delayed writes (write-behind)

— Data can be buffered locally (watch out for consistency —
others won’t see updates!)

— Remote files updated periodically
— One bulk wire is more efficient than lots of little writes
— Problem: semantics become ambiguous

Approaches to Cache Consistency

 Read-ahead (prefetch)
— Request chunks of data before it is needed.
— Minimize wait when it actually is needed.

* Write on close
— Admit that we have session semantics.

 Centralized control

— Keep track of who has what open and cached on
each node.

— Stateful file system with signaling traffic.

Case Study

* SUN NFS (Network File Systems)

NFS Design Goals (1)

Any machine can be a client or server

Must support diskless workstations

— Diskless workstations were Sun’s major product line.
Heterogeneous systems must be supported

— Different HW, OS, underlying file system

Access transparency

— Remote files accessed as local files through normal file system
calls (via VFS in UNIX)

Recovery from failure

— Stateless, UDP, client retries
High Performance

— use caching and read-ahead

NFS Design Goals (2)

* No migration transparency

— If resource moves to another server, client must
remount resource.

* No support for UNIX file access semantics
— Stateless design: file locking is a problem.
— All UNIX file system controls may not be available.

* Devices

— must support diskless workstations where every file
IS remote.

— Remote devices refer back to local devices.

NFS Design Goals (3)

* Transport Protocol

— Initially NFS ran over UDP using Sun RPC
e Why UDP?

— Slightly faster than TCP

— No connection to maintain (or lose)

— NFS is designed for Ethernet LAN environment —
relatively reliable

— Error detection but no correction.
* NFS retries requests

NFS Architecture

Client

System call layer

v

Virtual file system
(VFS) layer

v

v

Server

Local file
system interface

NFS client

RPC client
stub

System call layer

v

Virtual file system
(VFS) layer

A

v

NFS server

Local file
system interface

A

stub

.

RPC server %

J

Network

The basic NFS architecture for UNIX systems.

Distributed Computing

Two NFS Protocols

 Mounting protocol

— Request access to exported directory tree

* Directory & File access protocol
— Access files and directories
— (read, write, mkdir, readdir, ...)

Mounting Protocols

pathname to server

» Request permission to access contents

client: parses pathname
contacts server for file handle

- Server returns file handle
- File device #, inode #, instance #

client: create in- core ynode at
mount point.
(points to inode for local files)
points to rnode for remote files
- stores state on client

Mounting Protocols

* static mounting

— mount request contacts server
e Server: edit /etc/exports

* Client: mount fluffy:/users/paul /home/paul

Directory and File Access Control

* First, perform a lookup RPC
— returns file handle and attributes

* Not like open

— No information is stored on server

 Handle passed as a parameter for other file
access functions

— e.g. read(handle, offset, count)

NFS File Access Control

Operation | v3 v4 Description

Create Yes | No | Create a regular file

Create No | Yes | Create a nonregular file

Link Yes | Yes | Create a hard link to a file

Symlink Yes | No | Create a symbolic link to a file

Mkdir Yes | No | Create a subdirectory in a given directory
Mknod Yes | No | Create a special file

Rename Yes | Yes | Change the name of a file

Remove Yes | Yes | Remove a file from a file system

Rmdir Yes | No | Remove an empty subdirectory from a directory

Distributed Computing

NFS File Access Control

Operation v3 v4 Description

Open No | Yes | Open afile

Close No | Yes | Close afile

Lookup Yes | Yes | Look up a file by means of a file name
Readdir Yes | Yes | Read the entries in a directory

Readlink Yes | Yes | Read the path name stored in a symbolic link
Getattr Yes | Yes | Get the attribute values for a file

Setattr Yes | Yes | Set one or more attribute values for a file
Read Yes | Yes | Read the data contained in a file

Write Yes | Yes | Write data to a file

Distributed Computing

NFS Performance

e Usually slower than local

* |Improve by caching at client
— Goal: reduce number of remote operations

— Cache results of
* read, readlink, getattr, lookup, readdir

— Cache file data at client (buffer cache)
— Cache file attribute information at client
— Cache pathname bindings for faster lookups

e Server side

— Caching is “automatic” via buffer cache

— All NFS writes are write-through to disk to avoid
unexpected data loss if server dies

Inconsistencies may arise

* Try to resolve by validation

— Save timestamp of file (assume clock
synchronization)

— When file opened or server contacted for new
block

* Compare last modification time
* If remote is more recent, invalidate cached data

Validation

* Always invalidate data after some time
— After 3 seconds for open files (data blocks)
— After 30 seconds for directories

e |f data block is modified, it is:
— Marked dirty
— Scheduled to be written
— Flushed on file close

Improving read performance

* Transfer data in large chunks
— 8K bytes by default

e Read-ahead

— Optimize for sequential file access

— Send requests to read disk blocks before they are
requested by the application

Problems with NFS

File consistency
Assumes clocks are synchronized

Open with append cannot be guaranteed to
work

Locking cannot work
— Separate lock manager added (stateful)

No reference counting of open files
— You can delete a file you (or others) have open!

Global UID space assumed

Problems with NFS

* File permissions may change
— Invalidating access to file

— Stateless, still can access the cached copy even
after being revoked

* No encryption
— Requests via unencrypted RPC

— Authentication methods available
* Diffie-Hellman, Kerberos, Unix-style

— Rely on user-level software to encrypt

Improving NFS: version 2

e User-level lock manager

— Monitored locks
 status monitor: monitors clients with locks
* Informs lock manager if host inaccessible
* If server crashes: status monitor reinstates locks on recovery
* If client crashes: all locks from client are freed

* NV RAM support

— Improves write performance

— Normally NFS must write to disk on server before
responding to client write requests

— Relax this rule through the use of non-volatile RAM

Improving NFS: version 2

* Adjust RPC retries dynamically

— Reduce network congestion from excess RPC
retransmissions under load

— Based on performance

* Client-side disk caching
— cachefFS (due to limited RAM for cache)
— Extend buffer cache to disk for NFS

e Cache in memory first
e Cache on disk in 64KB chunks

More improvements... NFS v3

Updated version of NFS protocol
Support 64-bit file sizes

TCP support and large-block transfers
— UDP caused more problems on WANs (errors)

— All traffic can be multiplexed on one connection
* Minimizes connection setup

— No fixed limit on amount of data that can be
transferred between client and server

Negotiate for optimal transfer size
Server checks access for entire path from client

More improvements... NFS v3

* New commit operation

— Check with server after a write operation to see if
data is committed

— If commit fails, client must resend data
— Reduce number of write requests to server
— Speeds up write requests
* Don’t require server to write to disk immediately
* Return file attributes with each request
— Saves extra RPCs

