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Note: The purpose of writing this tutor is that I feel there is a need to have easy-to-read yet helpful 

documents in network programming during teaching at SeattleU. In spite of so many books in network 

programming, there are few able to allow students, especially undergraduate students, to quickly 

understand the basic idea in network programming.  Therefore, I compiled this tutor. I hope it can 

serve this purpose.   This tutor will be used in upper-level courses such as Concurrent & Distributed 

Systems, Computer Networks, and Peer-to-Peer Networks. In another tutor, I will also design several 

interesting projects along the thread of network programming. However, this is the first version, 

implying many potential typos or errors. I hope my readers --- the students, will give me the feedback 

to improve the tutor.                          
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1. Internet 

(Skip this if you know what Internet is, what protocols it uses, what kind of addresses are used over 

Internet, etc).  

Preview 

The Internet is a computer communication network. Every computer connected to the Internet is also 

known as a "host", so we could say that Internet's role is to allow hosts to talk amongst themselves. I 

assume you are already familiar with Internet, as a user of programs such as 'Telnet', 'Ftp', 'Irc' and 

others. Let’s first discuss Internet addresses a little, before we talk about the Internet protocols, and 

various programming aspects regarding network uniformity. 

 

 

Internet Addresses 

(Skip this if you know what IP addresses are and what ports in Internet are).  

An Internet address (or an IP address, or an IP number) is a number made of 4 bytes (numbers 

between 0 and 255), written in what is called 'a dot notation'. For example, "128.0.46.1" is a valid 

Internet address. Such an address identifies a computer which is connected to the Internet. Note that a 

computer might have more than one such address, if it has more than one physical connection to the 

Internet (such as having two Ethernet cards connected).  

However, when a normal human being uses Internet, they usually use human-readable (oh, really?) 

addresses of the form "www.seattleu.edu". A system in the Internet called "The Domain Name 

System" or DNS for short, is responsible to translate between human-readable addresses and IP 

addresses. You will not have to know anything about DNS in order to use it in your programs, so do 

not worry about it now.  

OK. We said that IP numbers define a computer. Well, usually there is more than one program that 

wants to use the network that runs on a given computer. For this purpose, the Internet people made up 

some extension for an IP address, called a port number. Each communications address is made up of 

an IP number AND a port number. Port numbers could be any number between 1 and 65535, although 

for certain reasons, you will use port numbers above 1024, unless you have a superuser privileges on 

your machine (also stated sometimes as "having root password").  

For our purposes, we will use addresses of the form: 114.58.1.6:6072 where the "114.58.1.6" part is 

the IP number, and the "6072" part is the port number. Remember this for later usage.  

Internet protocols 

(Skip this if you know what IP, TCP and UDP are).  



 3 

You probably heard the term "TCP/IP" and wondered, or had some vague idea about what it means. 

Let’s make things clearer:  

The Internet is a network. In order to talk on a network, you need some kind of a "language". That 

language is also called "a protocol". The Internet has many kinds of protocols used to talk on it, in a 

manner called "layering".  

Layering means that instead of defining one protocol that will do everything, which will be very hard 

to design and implement, the tasks are divided between several protocols, sitting on top of each other.  

What does this mean? Think about it as sending letters: you write your letter on a paper, and then put it 

in an envelope and write the address on it. The postman doesn't care WHAT you wrote in your letter, 

as long as you wrote the correct address on the envelope.  

The same thing is done when layering protocols. If one protocol contains the data sent and knows how 

to make sure the data is correct, then a lower protocol will contain the address to be used, and will 

know how to transfer the data to the correct target. The lower protocol does not understand the format 

of the data in the upper protocol, and the upper protocol doesn't have to know how to actually transfer 

the data. This way, each protocol becomes much simpler to design and test. Furthermore, If we will 

want to use the same protocol for writing the data, but send the data on a different network, we will 

only need to replace the protocol that knows how to transfer the data over the network, not the whole 

set of protocols.  

(By the way, this sort of packing up several protocols on top of each other is called Encapsulation.)  

One other important notion about the Internet is that it forms something known as a "packet switching 

network". This means that every message sent out is divided into small amounts of information, called 

packets. The different protocols send the data in packets, which might get divided into smaller packets 

while it travels to the target host, due to "Electrical" limitations of physical networks. The target 

machine will eventually combine the small packets (also known as fragments) and build the original 

message again.  

The packets are what allows several connections to use the same physical network simultaneously, in a 

manner transparent to the network users. No machine will take over a line completely, even if it needs 

to send a large message. Instead, it will send the message in small fragments, allowing other machines 

to send their packets too.  

Let us now name out some of the Internet protocols, and explain briefly each one of them:  

 

 

 

IP  

IP is the basic protocol used on the Internet. It is responsible to make it possible to transfer 

packets from one computer to another, given their IP addresses. Most other protocols are 

placed on top of IP. As a programmer you will usually not use IP directly.  
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TCP  

TCP is the most useful Internet protocol for a programmer. Most networking programs you use 

(such as 'Telnet', and 'Ftp') are placed on top of TCP. TCP is placed on top of IP, and adds 3 

functionalities:  

1. The notion of ports (IP supports only Internet addresses, as mentioned above).  

2. The notion of a 'safe' protocol, i.e. no errors will be encountered in packets sent using 

TCP, so no error correcting mechanisms are required in programs using TCP (well, this 

is almost true, but lets assume so for now).  

3. Connection-mode link. After you make a connection between two programs using TCP, 

you have a steadily open connection on which you can send data without having to 

specify who you want the data to be sent to. This works very similar to reading or 

writing on a pipeline, or on a regular file.  

UDP  

UDP is another protocol that is placed on top of IP. It is used for services that send small 

amounts of data between programs that do not require a long-time connection, or that send 

only little amount of data at a time. The 'talk' program uses the UDP protocol.  

UDP adds only port numbers to the functionality IP gives, so the programmer needs to worry 

about checking for errors in messages (that come due to line noises and such), making sure the 

data sent using UDP arrives in the right order (which is not automatically achieved, due to IP's 

nature of not having a constantly open connection), and such.  

There are various other protocols used in conjunction with IP, such as ARP, RARP, ICMP, SNMP and 

others, but those won't be dealt with in this document.  

 

Network uniformity 

(Skip this if you already know what byte ordering means, and what are 'well known ports' across 

Internet)  

It is important to understand that protocols need to define some low-level details, in order to be able to 

talk to each other. We will discuss two such aspects here, in order to understand the example programs 

given later on.  

Byte Order  

It is an old argument amongst different computer manufacturers how numbers should be kept 

in a computer.  

As all computers divide memory into bytes (or octets) of information, each 8 bit long, there is 

no problem with dealing with byte-sized numbers. The problem arises as we use larger 
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numbers: short integers (2 bytes long) and long integers (4 bytes long). Suppose we have a 

short integer number, FE4Ch (that is, FE4C in hexadecimal notation). Suppose also that we say 

this number is kept in memory address 100h. This could mean one of two things, let’s draw 

them out:  

1. Big Endian:  

                         --------------- 

     Address:   | 100h | 101h | 

                --------------- 

              Contents:  |  FEh |  4Ch | 

                         --------------- 

    

2. Little Endian:  

                         --------------- 

              Address:   | 100h | 101h | 

                         --------------- 

              Contents:  |  4Ch |  FEh | 

                         --------------- 

    

In the first form, also called 'Big Endian', The Most Significant Byte (MSB) is kept in the 

lower address, while the Least significant Byte (LSB) is kept in the higher address.  

In the second form, also called 'Little Endian', the MSB is kept in the higher address, while the 

LSB is kept in the lower address.  

Different computers used different byte ordering (or different endianess), usually depending on 

the type of CPU they have. The same problem arises when using a long integer: which word (2 

bytes) should be kept first in memory? the least significant word, or the most significant word?  

In a network protocol, however, there must be a predetermined byte and word ordering. The IP 

protocol defines what is called 'the network byte order', which must be kept on all packets sent 

across the Internet. The programmer on a Unix machine is not saved from having to deal with 

this kind of information, and we'll see how the translation of byte orders is solved when we get 

down to programming.  

Well Known Ports  

When we want two programs to talk to each other across Internet, we have to find a way to 

initiate the connection. So at least one of the 'partners' in the conversation has to know where to 

find the other one. This is done by letting one partner know the address (IP number + port 

number) of the other side.  

However, a problem could arise if one side's address is randomly taken over by a third 

program. Then we'll be in real trouble. In order to avoid that, there are some port numbers 
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which are reserved for specific purposes on any computer connected to the Internet. Such ports 

are reserved for programs such as 'Telnet', 'Ftp' and others.  

These port numbers are specified in the file /etc/services on any decent Unix machine. 

Following is an excerpt from that file:  

 

      daytime       13/tcp 

      daytime       13/udp 

      netstat       15/tcp 

      qotd          17/tcp     quote 

      chargen       19/tcp     ttytst source 

      chargen       19/udp     ttytst source 

      ftp-data      20/tcp 

      ftp           21/tcp 

      telnet        23/tcp 

      smtp          25/tcp     mail 

   

Read that file to find that Telnet, for example, uses port 23, and Ftp uses port 21. Note that for 

each kind of service, not only a port number is given, but also a protocol name (usually TCP or 

UDP). Note also that two services may use the same port number, provided that they use 

different protocols. This is possible due to the fact that different protocols have what is called 

different address spaces: port 23 of a one machine in the TCP protocol address space, is not 

equivalent to port 23 on the same machine, in the UDP protocol address space.  

So how does this relate to you? When you will write your very own programs that need to 

'chat' over Internet, you will need to pick an unused port number that will be used to initiate the 

connection.  
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2. Client and Server model 

(Skip this if you already know what clients and servers are, and what are the relations between them).  

This section will discuss the most common type of interaction across the Internet - the Client and 

Server model. Note that this discussion is relevant to other types of networks too, and a few examples 

will be mentioned along the text.  

We will first explain what the client-server model is, then detail the roles of the client, the roles of the 

server, and give examples of some famous servers and clients used.  

 

The Client-Server model 

(Skip this if you know what the client-server model basically means)  

The client-server model is used to divide the work of Internet programs into two parts. One part knows 

how to do a certain task, or to give a certain service. This part is called the Server. The other part 

knows how to talk to a user, and connect that user to the server. This part is called the Client. One 

server may give service to many different clients, either simultaneously, or one after the other (the 

server designer decides upon that). On the other hand, a Client talks to a single user at a time, although 

it might talk to several servers, if it's nature requires that. There are other such complex possibilities, 

but we will discuss only clients that talk to a single server.  

 

Roles of Clients 

(Skip this if you already know what clients are supposed to do)  

A client's main feature is giving a convenient User interface, hiding the details of how the server 'talks' 

from the user. Today, people are trying to write mostly graphical clients, using windows, pop-up-

menus and other such fancy stuff. We will leave this to someone else to explain, and concentrate on 

the networking part. The client needs to first establish a connection with the server, given its address. 

After the connection is established, The Client needs to be able to do two things:  

1. Receive commands from the user, translate them to the server's language (protocol) and send 

them to the server.  

2. Receive messages from the server, translate them into human-readable form, and show them to 

the user. Some of the messages will be dealt with by the client automatically, and hidden from 

the user. This time, the Client designer's choice.  

This forms the basic loop a client performs:  
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    get the server's address 

    form a working address that can be used to talk over Internet. 

    connect to the server 

    while (not finished) do: 

      wait until there's either information from the server, or from the 

          user. 

      If (information from server) do 

        parse information 

        show to user, update local state information, etc. 

      else {we've got a user command} 

        parse command 

        send to server, or deal with locally. 

    done 

In the end of this tutorial you will be able to write such clients.  

 

Roles of Servers 

(Skip this if you already know what servers are supposed to do)  

A server main feature is to accept requests from clients, handle them, and send the results back to the 

clients. We will discuss two kinds of servers: a single-client server, and a multi-client server.  

Single Client Servers  

These are servers that talk to a single client at a time. They need to be able to:  

1. Accept connection requests from a Client.  

2. Receive requests from the Client and return results.  

3. Close the connection when done, or clear it if it's broken from some reason.  

this forms the main loop a Single-Client Server performs:  

 

    bind a port on the computer, so Clients will be able to connect 

    forever do: 

      listen on the port for connection requests. 

      accept an incoming connection request 

      if (this is an authorized Client) 

        while (connection still alive) do: 

          receive request from client 

          handle request 

          send results of request, or error messages 

        done 

      else 

        abort the connection 

    done 
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Multi Client Servers  

 

These are servers that talk to a several Clients at the same time. They need to be able to:  

1. Accept new connection requests from Clients.  

2. Receive requests from any Client and return results.  

3. Close any connection that the client wants to end.  

this forms the main loop a Multi-Client Server performs:  

 

  bind a port on the computer, so Clients will be able to connect 

  listen on the port for connection requests. 

  forever do: 

    wait for either new connection requests, or requests from existing 

            Clients. 

    if (this is a new connection request) 

      accept connection 

      if (this is an un-authorized Client) 

        close the connection 

    else if (this is a connection close request) 

      close the connection 

    else { this is a request from an existing Client connection} 

      receive request from client 

      handle request 

      send results of request, or error messages 

  done 

  

 

"Famous" Servers and Clients 

(Skip this if you already know about too many server types, or if you're not interested in knowing 

about them)  

In this section we will give short descriptions of some "famous" servers and clients that are used daily 

over Internet, and over some other famous kinds of networks. This is simply an illustrative section that 

can be safely skipped by a rushing reader.  

Internet Clients  

FTP  

Ftp is a Client program used to transfer files across the Internet. The Client connects to an 

FTPD Server (see below) and allows a user to scan a tree-structure of files and directories on 

the remote machine, retrieve and transmit files, etc. It uses two connections - one to exchange 

commands, and another to exchange data (the files themselves).  

TELNET  

Telnet is a Client program that enables working on a remote machine, using the keyboard and 

screen of the local one. It allows connecting from one type of machine to a completely 



 10 

different type. The Telnet Client could be used to connect to any ASCII services, although it 

might be more convenient to use specialized Clients for that.  

TALK  

talk is a Client that allows two users across the Internet to carry out a real-time chat. The screen 

is split into two halves, and the user sees what he types in the upper half, and what the other 

user types in the upper half.  

IRC  

Another chat Client, which allows connecting to Internet-wide network of users and carry out 

both private conversations and conference talks.  

LYNX  

An information-retrieval Client. Lynx knows a wide set of information retrieval protocols, 

including some hyper-text protocols (which allow a plain text file to contain pointers to 

relevant information that lynx can follow), ftp, and so on.  

 

Internet Servers  

FTPD  

The server that normally accepts connections from Ftp Clients. It works off the well-known Ftp 

port number 21. This server is a Single-Client server, i.e. it handles one connection only, and 

then terminates. The operating system has to make sure one running copy of the server will be 

created for each interested client.  

TELNETD  

The Server that talks to the Telnet client. Uses the well-known Telnet port number 23. 

TELNETD is a Single-Client Server, i.e. one TELNETD server is used for each Telnet 

connection request that should be handled.  

TALKD  

Used to receive talk requests from a remote machine, and notify the user that such a request 

has arrived. It has a role only in the initiation of the connection, not during the conversation 

itself, which is carried directly between the two Clients.  

HTTPD  

A server that serves information for hyper-text Clients such as Lynx, or graphical-based ones 

(Netscape, Internet Explorer.... or have you heard of Mosaic?).  

IRCD  

A server that cooperates with other servers of its kind to form the IRC network. Allows 

exchanging of information, along with state information about channels used for conferencing, 

and such.  
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3. Preparing an Internet address. 

(Skip this if you know how to obtain the address of a given machine, prepare the structures involved, 

and deal with byte order translations)  

 

Preview 

The first thing you need to do when writing network applications, is obtain the addresses of the two 

involved machines: your address, and the remote host's address. This process is made up of several 

stages:  

1. Address Resolution - Translating the host name into an IP address.  

2. Byte Ordering - Translating host byte order into network byte order.  

3. Address Formation - Forming up the remote address in the right structure.  

 

Address Resolution 

Given a host name, we want to find it's IP address. We do that using the function gethostbyname(). 

This function is defined in the file /usr/include/netdb.h (or the equivalent for your system) as follows:  

 
struct hostent *gethostbyname(char *hostname);  
 

The input to the function will be the name of the host whose address we want to resolve. The function 

returns a pointer to a structure hostent, whose definition is as follows:  

  struct    hostent { 

       char*   h_name;          /* official name of host */ 

       char**  h_aliases;       /* alias list */ 

       int     h_addrtype;      /* host address type */ 

       int     h_length;        /* length of address */ 

       char**  h_addr_list;     /* list of addresses from name server */ 

  #define h_addr h_addr_list[0] /* address, for backward compatibility */ 

  }; 

Lets see what each field in the hostent structure means:  

• h_name: This is the official name of the host, i.e. the full address.  

• h_aliases: a pointer to the list of aliases (other names) the host might have.  

• h_addrtype: The type of address this host uses.  

• h_length: The length of the address. Different address types might have different lengths.  

• h_addr_list: A pointer to the list of addresses of the host. Note that a host might have more 

than one address, as explained earlier.  

• h_addr: In older systems, there was only the h_addr field, so it is defined here so old programs 

could compile without change on newer systems.  
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Byte Ordering 

As explained earlier, we need to form addresses using the network byte order. Luckily, most 

networking functions accept addresses in host byte order, and return their results in network byte 

order. This means only a few fields will need conversions. These will include the port numbers only, 

as the addresses are already supplied by the system.  

We normally have several functions (or macros) to form 4 types of translations:  

• htons() - short integer from host byte order to network byte order.  

• ntohs() - short integer from network byte order to host byte order.  

• htonl() - long integer from host byte order to network byte order.  

• ntohl() - long integer from network byte order to host byte order.  

For example, since a port number is represented by a short integer, we could convert it from host byte 

order to network byte order by doing:  

 

  short host_port = 1234; 

  net_port = htons(host_port); 

 

The other functions are used in a similar way.  

 

Address Formation 

Forming addresses for Internet protocols is done using a structure named sockaddr_in, whose 

definition, as given in the file /usr/include/netinet/in.h, is as follows:  

 

  struct sockaddr_in { 

       short int        sin_family; /* Address family    */ 

       unsigned short   sin_port;    /* Port number      */ 

       struct in_addr   sin_addr;    /* Internet address */ 

 

       /* Pad to size of `struct sockaddr'. */ 

       /* Pad definition deleted */ 

  }; 

The fields have the following meanings:  

• sin_family: Family of protocols for this address. We will want the Internet family.  

• sin_port: The port part of the address.  

• sin_addr: The IP number part of the address.  

• Pad: This will be explained in the next section.  
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After seeing the structure used for address formation, and having resolved the host name into an IP 

number, forming the address is done as follows:  

 
 

  char*                hostname;  /* name part of the address */ 

  short                host_port; /* port part of the address */ 

  struct hostent*      hen;       /* server's DNS entry */ 

  struct sockaddr_in   sa;        /* address formation structure */ 

 

  /* get information about the given host, using some the system's */ 

  /* default name resolution mechanism (DNS, NIS, /etc/hosts...).  */ 

  hen = gethostbyname(hostname_ser); 

  if (!hen) { 

      perror("couldn't locate host entry"); 

  } 

 

  /* create machine's Internet address structure  */ 

  /* first clear out the struct, to avoid garbage */ 

  memset(&sa, 0, sizeof(sa)); 

 

  /* Using Internet address family */ 

  sa.sin_family = AF_INET; 

  /* copy port number in network byte order */ 

  sa.sin_port = htons(host_port); 

  /* copy IP address into address struct */ 

  memcpy(&sa.sin_addr.s_addr, hen->h_addr_list[0], hen->h_length); 

 

Notes:  

• perror() is a function that prints an error message based on the global errno variable, and 

exits the process.  

• memset() is a function used to set all bytes in a memory area of a specified size, to a specified 

value. On some (older) systems there is a different function that should be used instead named 

bzero(). Read your local manual page for additional information on it's usage. Note that 

memcpy is a part of the standard C library, so it should be used whenever possible in place of 

bzero.  

• memcpy() is a function used to copy the contents of one memory area into another area. On 

some systems there is a different function with the same effect, named bcopy(). Like the 

bzero function, it should be avoided whenever memcpy is available.  
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4. The socket interface 

We will now describe the interface used to write network applications in Unix systems (Especially 

Unix flavors derived from the BSD4.3 system). This interface is used throughout all kinds of 

networking software, but we will concentrate on the Internet protocol family.  

We will first describe what a socket is, and how it relates to normal files, then explain what kinds of 

sockets exist on most Unix systems, how they are created using the socket() system call, and finally, 

how they are associated with a specific network connection, and how data is passed through them.  

 

What is a socket? 

A socket is formally defined as an endpoint for communication between an application program, and 

the underlying network protocols. This odd collection of words simply means that the program reads 

information from a socket in order to read from the network, writes information to it in order to write 

to the network, and sets sockets options in order to control protocol options. From the programmer's 

point of view, the socket is identical to the network. Just like a file descriptor is the endpoint of disk 

operations.  

 

Types of sockets 

In general, 3 types of sockets exist on most Unix systems: Stream sockets, Datagram sockets and 

Raw sockets.  

Stream sockets are used for stream connections, i.e. connections that exist for a long duration. TCP 

connections use stream sockets.  

Datagram sockets are used for short-term connections that transfer a single packet across the network 

before terminating. The UDP protocol uses such sockets, due to its connection-less nature.  

Raw sockets are used to access low-level protocols directly, bypassing the higher protocols. They are 

the means for a programmer to use the IP protocol, or the physical layer of the network, directly. Raw 

sockets can therefore be used to implement new protocols on top of the low-level protocols. Naturally, 

they are out of our scope.  

 

Creating sockets 

Creation of sockets is done using the socket() system call. This system call is defined as follows:  
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  int socket(int address_family, int socket_type, int proto_family); 

 

address_family defines the type of addresses we want this socket to use, and therefore defines what 

kind of network protocol the socket will use. We will concentrate on the Internet address family, 

because we want to write Internet applications.  

socket_type could be one of the socket types we mentioned earlier, or any other socket type that exists 

on your system. We choose the socket type according to the kind of interaction (and type or protocol) 

we want to use.  

proto_family selects which protocol we want to socket to use. We will usually leave this value as 0 (or 

the constant PF_UNSPEC on some systems), and let the system choose the most suitable protocol for us. 

As for the protocol itself, In the Internet address family, a socket type of SOCK_STREAM will cause the 

protocol type to be set to TCP. A socket type of SOCK_DGRAM (Datagram socket) will cause the 

protocol type to be set to UDP.  

The socket system call returns a file descriptor which will be used to reference the socket in later 

requests by the application program. If the call fails, however (due to lack of resources) the value 

returned will be negative (note that file descriptors have to be non-negative integers).  

As an example, suppose that we want to write a TCP application. This application needs at least one 

socket in order to communicate across the Internet, so it will contain a call such as this:  

 
 

  int s;    /* descriptor of socket */ 

 

  /* Internet address family, Stream socket */ 

  s = socket(AF_INET, SOCK_STREAM, 0); 

  if (s < 0) { 

      perror("socket: allocation failed"); 

  } 

 

 

Associating a socket with a connection 

After a socket is created, it still needs to be told between which two end points it will communicate. It 

needs to be bound to a connection. There are two steps to this binding. The first is binding the socket 

to a local address. The second is binding it to a remote (foreign) address.  

Binding to a local address could be done either explicitly, using the bind() system call, or implicitly, 

when a connecting is established. Binding to the remote address is done only when a connection is 

established. To bind a socket to a local address, we use the bind() system call, which is defined as 

follows:  

 

  int bind(int socket, struct sockaddr *address, int addrlen); 
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Note the usage of a different type of structure, namely struct sockaddr, than the one we used earlier 

(struct sockaddr_in). Why is the sudden change? This is due to the generality of the socket 

interface: sockets could be used as endpoints for connections using different types of address 

families. Each address family needs different information, so they use different structures to form their 

addresses. Therefore, a generic socket address type, struct sockaddr, is defined in the system, and for 

each address family, a different variation of this structure is used. For those who know, this means that 

struct sockaddr_in, for example, is an overlay of struct sockaddr (i.e. it uses the same memory 

space, just divides it differently into fields).  

There are 4 possible variations of address binding that might be used when binding a socket in the 

Internet address family.  

The first is binding the socket to a specific address, i.e. a specific IP number and a specific port. This 

is done when we know exactly where we want to receive messages. Actually this form is not used in 

simple servers, since usually these servers wish to accept connections to the machine, no matter which 

IP interface it came from.  

The second form is binding the socket to a specific IP number, but letting the system choose an unused 

port number. This could be done when we don't need to use a well-known port.  

The third form is binding the socket to a wild-card address called INADDR_ANY (by assigning it to 

the sockaddr_in variable), and to a specific port number. This is used in servers that are supposed to 

accept packets sent to this port on the local host, regardless of through which physical network 

interface the packet has arrived (remember that a host might have more than one IP address).  

The last form is letting the system bind the socket to any local IP address and to pick a port number by 

itself. This is done by not using the bind() system call on the socket. The system will make the local 

bind when a connection through the socket is established, i.e. along with the remote address binding. 

This form of binding is usually used by clients, which care only about the remote address (where they 

connect to) and don't need any specific local port or local IP address. However, there are exceptions 

here too.  

 

Sending and receiving data over a socket 

After a connection is established (We will explain that when talking about Client and Server writing), 

There are several ways to send information over the socket. We will only describe one method for 

reading and one for writing.  

The read() system call 

The most common way of reading data from a socket is using the read() system call, which is defined 

like this:  
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int read(int socket, char *buffer, int buflen);  

• socket - The socket from which we want to read.  

• buffer - The buffer into which the system will write the data bytes.  

• buflen - Size of the buffer, in bytes (actually, how much data we want to read).  

The read system call returns one of the following values:  

• 0 - The connection was closed by the remote host.  

• -1 - The read system call was interrupted, or failed for some reason.  

• n - The read system call put 'n' bytes into the buffer we supplied it with.  

Note that read() might read less than the number of bytes we requested, due to unavailability of 

buffer space in the system.  

The write() system call 

The most common way of writing data to a socket is using the write() system call, which is defined 

like this:  

 
int write(int socket, char *buffer, int buflen);  

• socket - The socket into which we want to write.  

• buffer - The buffer from which the system will read the data bytes.  

• buflen - Size of the buffer, in bytes (actually, how much data we want to write).  

The write system call returns one of the following values:  

• 0 - The connection was closed by the remote host.  

• -1 - The write system call was interrupted, or failed for some reason.  

• n - The write system call wrote 'n' bytes into the socket.  

Note that the system keeps internal buffers, and the write system call write data to those buffers, not 

necessarily directly to the network. thus, a successful write() doesn't mean the data arrived at the 

other end, or was even sent onto the network. Also, it could be that only some of the bytes were 

written, and not the actual number we requested. It is up to us to try to send the data again later on, 

when it's possible, and we'll show several methods for doing just that.  

 

Closing a socket. 

When we want to abort a connection, or to close a socket that is no longer needed, we can use the 

close() system call. it is defined simply as:  

 
int close(int socket);  
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• socket - The socket that we wish to close. If it is associated with an open connection, the 

connection will be closed.  
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5. Writing Clients 

This section describes how to write simple client applications, using the socket interface described 

earlier. As you remember (hmm, do you?) from the second section, a classic Client makes a 

connection to the server, and goes into a loop of reading commands from the user, parsing them, 

sending requests to the server, receiving responses from the server, parsing them and echoing them 

back at the user.  

We will begin by showing the C code of a simple Client without user-interaction. This Client connects 

to the standard time server of a given host, reads the time, and prints it on the screen. Most (Unix) 

Internet hosts have a standard server called daytime, that awaits connections on the well-known port 

number 13, and when it receives a connection request, accepts it, writes the time to the Client, and 

closes the connection.  

Let’s see how the Client looks. Note the usage of a new system call, connect(), which is used to 

establish a connection to a remote machine, and will be further explained immediately following the 

program text.  

 
 

#include <stdio.h>         /* Basic I/O routines          */ 

#include <sys/types.h>     /* standard system types       */ 

#include <netinet/in.h>    /* Internet address structures */ 

#include <sys/socket.h>    /* socket interface functions  */ 

#include <netdb.h>         /* host to IP resolution       */ 

 

#define  HOSTNAMELEN   40   /* maximal host name length */ 

#define  BUFLEN        1024   /* maximum response size  */ 

#define  PORT          13   /* port of daytime server   */ 

 

int main(int argc, char *argv[]) 

{ 

    int                 rc;            /* system calls return value storage */ 

    int                 s;             /* socket descriptor                 */ 

    char                buf[BUFLEN+1]; /* buffer server answer              */ 

    char*               pc;            /* pointer into the buffer           */ 

    struct sockaddr_in  sa;            /* Internet address struct           */ 

    struct hostent*     hen;           /* host-to-IP translation            */ 

 

    /* check there are enough parameters */ 

    if (argc < 2) { 

        fprintf(stderr, "Missing host name\n"); 

        exit (1); 

    } 

 

    /* Address resolution stage */ 

    hen = gethostbyname(argv[1]); 

    if (!hen) { 

        perror("couldn't resolve host name"); 

    } 

 

    /* initiate machine's Internet address structure */ 
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    /* first clear out the struct, to avoid garbage  */ 

    memset(&sa, 0, sizeof(sa)); 

 

    /* Using Internet address family */ 

    sa.sin_family = AF_INET; 

    /* copy port number in network byte order */ 

    sa.sin_port = htons(PORT); 

    /* copy IP address into address struct */ 

    memcpy(&sa.sin_addr.s_addr, hen->h_addr_list[0], hen->h_length); 

 

    /* allocate a free socket                 */ 

    /* Internet address family, Stream socket */ 

    s = socket(AF_INET, SOCK_STREAM, 0); 

    if (s < 0) { 

        perror("socket: allocation failed"); 

    } 

 

    /* now connect to the remote server. the system will */ 

    /* use the 4th binding method (see section 3)        */ 

    /* note the cast to a struct sockaddr pointer of the */ 

    /* address of variable sa.                           */ 

    rc = connect(s, (struct sockaddr *)&sa, sizeof(sa)); 

 

    /* check there was no error */ 

    if (rc) { 

        perror("connect"); 

    } 

 

    /* now that we are connected, start reading the socket */ 

    /* till read() returns 0, meaning the server closed    */ 

    /* the connection.                                     */ 

    pc = buf; 

 

    while (rc = read(s, pc, BUFLEN - (pc-buf))) { 

        pc += rc; 

    } 

 

    /* close the socket */ 

    close(s); 

 

    /* pad a null character to the end of the result */ 

    *pc = '\0'; 

 

    /* print the result */ 

    printf("Time: %s\n", buf); 

 

     /* and terminate */ 

    return 0; 

} 

 

The complete source code for this client may be found in the daytime-client.c file.  

The Client's code should be pretty easy to understand now. All we did was combine the features we 

have seen so far into one program. The only new feature introduced here is the connect() system call.  
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This system call is responsible to making the connection to the specified address of the remote 

machine, using the specified socket. Note that the address is being type-cast into the general address 

type, struct sockaddr, because this same system call is used to establish connections in various 

address families, not just the Internet address family. How will the system then know we want an 

Internet connection? The answer is given in the socket's information. If you remember, we specified 

this socket will be used in the Internet address family (AF_INET) when we created it.  

Note also how the reading loop is performed. We are asking the system to read as much data as 

possible in the read() system call. However, the system might need several reads before it has 

consumed all the bytes sent by the server, that's why we used the while loop. Remember, never assume 

a read() system call will return the exact number of bytes you specified in the call. If less is available, 

the call will return quickly, and will not wait for the rest of the data. On the other hand, if no data is 

available, the call will block (not return) until data is available. Thus, when writing "Real" Clients and 

Servers, some measures have to be taken in order to avoid that blocking.  

We will not discuss right now Clients that read user input. This subject will be differed until we learn 

how to read information efficiently from several input devices.  
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6. Single-Clients Servers 

Now that we have seen how a Client is written, let’s give it a different server to talk to. We will write 

the "hello world" (didn't you wait for this?) server.  

The "hello world" Server listens to a predefined port of our choice, and accepts incoming connections. 

It then writes the message "hello world" to the remote Client, and closes the connection. This will be 

done in an infinite loop, so we can serve a new Client after finishing with the current.  

Note the introduction of two new system calls, listen() and accept(). The listen() system call 

asks the system to listen for new connections coming to our port. The accept() system call is used to 

accept (how obvious) such incoming connections. Both system calls will be explained further 

following the "hello world" Server's code.  

 
 

#include <stdio.h>       /* Basic I/O routines          */ 

#include <sys/types.h>   /* standard system types       */ 

#include <netinet/in.h>  /* Internet address structures */ 

#include <sys/socket.h>  /* socket interface functions  */ 

#include <netdb.h>       /* host to IP resolution       */ 

 

 

#define  PORT   5050           /* port of "hello world" server */ 

#define  LINE   "hello world"  /* what to say to our clients   */ 

 

void main() 

{ 

    int                rc;       /* system calls return value storage  */ 

    int                s;        /* socket descriptor                  */ 

    int                cs;       /* new connection's socket descriptor */ 

    struct sockaddr_in sa;       /* Internet address struct            */ 

    struct sockaddr_in csa;      /* client's address struct            */ 

    int                size_csa; /* size of client's address struct    */ 

 

    /* initiate machine's Internet address structure */ 

    /* first clear out the struct, to avoid garbage  */ 

    memset(&sa, 0, sizeof(sa)); 

    /* Using Internet address family */ 

    sa.sin_family = AF_INET; 

    /* copy port number in network byte order */ 

    sa.sin_port = htons(PORT); 

    /* we will accept connections coming through any IP */ 

    /* address that belongs to our host, using the      */ 

    /* INADDR_ANY wild-card.                            */ 

    sa.sin_addr.s_addr = INADDR_ANY; 

 

    /* allocate a free socket */ 

    /* Internet address family, Stream socket */ 

    s = socket(AF_INET, SOCK_STREAM, 0); 

    if (s < 0) { 

        perror("socket: allocation failed"); 

    } 
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    /* bind the socket to the newly formed address */ 

    rc = bind(s, (struct sockaddr *)&sa, sizeof(sa)); 

 

    /* check there was no error */ 

    if (rc) { 

        perror("bind"); 

    } 

 

    /* ask the system to listen for incoming connections   */ 

    /* to the address we just bound. specify that up to    */ 

    /* 5 pending connection requests will be queued by the */ 

    /* system, if we are not directly awaiting them using  */ 

    /* the accept() system call, when they arrive.         */ 

    rc = listen(s, 5); 

 

    /* check there was no error */ 

    if (rc) { 

        perror("listen"); 

    } 

 

    /* remember size for later usage */ 

    size_csa = sizeof(csa); 

 

    /* enter an accept-write-close infinite loop */ 

    while (1) { 

        /* the accept() system call will wait for a     */ 

        /* connection, and when one is established, a   */ 

        /* new socket will be created to handle it, and */ 

        /* the csa variable will hold the address       */ 

        /* of the Client that just connected to us.     */ 

        /* the old socket, s, will still be available   */ 

        /* for future accept() statements.              */ 

        cs = accept(s, (struct sockaddr *)&csa, &size_csa); 

 

        /* check for errors. if any, enter accept mode again */ 

        if (cs < 0) 

            continue; 

 

        /* oak, we got a new connection. do the job... */ 

        write(cs, LINE, sizeof(LINE)); 

 

        /* now close the connection */ 

        close(cs); 

    } 

} 

 

The complete source code for this server may be found in the hello-world-server.c file.  

Look how little we had to add to the basic stuff in order to form our first server. The only two 

additions were the listen() and the accept() system calls. Lets examine them a little more.  

If we want to serve incoming connections, we need to ask the system to listen on the specified port. If 

we don't do that, the remote Client will get a "connection refused" error. Once the system listens on 
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the port, It could happen that more than one Client will ask for service simultaneously. We can tell the 

system how many Clients may "wait in line". This will be the second parameter to the listen() 

system call.  

After issuing the listen() system call, we still need to actively accept incoming connections. This is 

done using the accept() system call. We tell it which socket is bound to the port we want to accept 

connection from, and give it the address of a variable in which the call will give us the address of the 

remote Client, once a connection is established. It will also update the size of the address, based on the 

address family used, in the variable whose address we pass as the third argument. We are not using the 

Client's address in our simple server, but other servers that might want to authenticate their Clients (or 

just to know where they are coming from), will use it.  

Finally, the accept() system call returns a number of a new socket, which is allocated for the new 

established connection. This gives us a socket bound to the correct local and remote addresses, while 

not destroying the binding of the original socket that we can later use to accept new connections.  
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7. Multi-Clients Servers 

If single-Client Servers were a rather simple case, the multi-Client ones are a tougher nut. There are 

two main approaches to designing such servers.  

Approach 1. 

The first approach is using one process that awaits new connections, and one more process (or thread) 

for each Client already connected. This approach makes design quite easy, cause then the main process 

does not need to differ between servers, and the sub-processes are each a single-Client server process, 

hence, easier to implement.  

However, this approach wastes too many system resources (if child processes are used), and 

complicates inter-Client communication: If one Client wants to send a message to another through the 

server, this will require communication between two processes on the server, or locking mechanisms, 

if using multiple threads.  

Approach 2. 

The second approach is using a single process for all tasks: waiting for new connections and accepting 

them, while handling open connections and messages that arrive through them. This approach uses 

less system resources, and simplifies inter-Client communication, although making the server process 

more complex.  

Luckily, the Unix system provides a system call that makes these tasks much easier to handle: the 

select() system call.  

The select() system call puts the process to sleep until any of a given list of file descriptors 

(including sockets) is ready for reading, writing or is in an exceptional condition. When one of these 

things happen, the call returns, and notifies the process which file descriptors are waiting for service.  

The select system call is defined as follows:  

 

  int select(int numfds, 

             fd_set *rfd, 

             fd_set *wfd, 

             fd_set *efd, 

             struct timeval *timeout); 

• numfds - highest number of file descriptor to check.  

• rfd - set of file descriptors to check for reading availability.  

• wfd - set of file descriptors to check for writing availability.  

• efd - set of file descriptors to check for exceptional condition.  

• timeout - how long to wait before terminating the call in case no file descriptor is ready.  
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select() returns the number of file descriptors that are ready, or -1 if some error occurred.  

We give select() 3 sets of file descriptors to check upon. The sockets in the rfd set will be checked 

whether they sent data that can be read. The file descriptors in the wfd set will be checked to see 

whether we can write into any of them. The file descriptors in the efd set will be checked for 

exceptional conditions (you may safely ignore this set for now, since it requires a better understanding 

of the Internet protocols in order to be useful). Note that if we don't want to check one of the sets, we 

send a NULL pointer instead.  

We also give select() a timeout value - if this amount of time passes before any of the file 

descriptors is ready, the call will terminate, returning 0 (no file descriptors are ready).  

NOTE - We could use the select() system call to modify the Client so it could also accept user input, 

Simply by telling it to select() on a set comprised of two descriptors: the standard input descriptor 

(descriptor number 0) and the communication socket (the one we allocated using the socket() system 

call). When the select() call returns, we will check which descriptor is ready: standard input, or our 

socket, and this way will know which of them needs service.  

There are three more things we need to know in order to be able to use select. One - how do we know 

the highest number of a file descriptor a process may use on our system? Two - how do we prepare 

those sets? Three - when select returns, how do we know which descriptors are ready - and what they 

are ready for?  

As for the first issue, we could use the getdtablesize() system call. It is defined as follows:  

 
int getdtablesize();  
 

This system call takes no arguments, and returns the number of the largest file descriptor a process 

may have. On modern systems, we could instead use the getrlimit() system call, using the 

RLIMIT_NOFILE parameter. Refer to the relevant manual page for more information.  

As for the second issue, the system provides us with several macros to manipulate fd_set type 

variables.  

FD_ZERO(fd_set *xfd)  

Clear out the set pointed to by 'xfd'.  
FD_SET(fd, fd_set *xfd)  

Add file descriptor 'fd' to the set pointed to by 'xfd'.  
FD_CLR(fd, fd_set *xfd)  

Remove file descriptor 'fd' from the set pointed to by 'xfd'.  
FD_ISSET(fd, fd_set *xfd)  

check whether file descriptor 'fd' is part of the set pointed to by 'xfd'.  

An important thing to note is that select() actually modifies the sets passed to it as parameters, to 

reflect the state of the file descriptors. This means we need to pass a copy of the original sets to 

select(), and manipulate the original sets according to the results of select(). In our example 
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program, variable 'rfd' will contain the original set of sockets, and 'c_rfd' will contain the copy passed 

to select().  

Here is the source code of a Multi-Client echo Server. This Server accepts connection from several 

Clients simultaneously, and echoes back at each Client any byte it will send to the Server. This is a 

service similar to the one give by the Internet Echo service, that accepts incoming connections on the 

well-known port 7. Compare the code given here to the algorithm of a Multi-Client Server presented in 

the Client-Server model section.  

 
 

#include <stdio.h>         /* Basic I/O routines          */ 

#include <sys/types.h>     /* standard system types       */ 

#include <netinet/in.h>    /* Internet address structures */ 

#include <sys/socket.h>    /* socket interface functions  */ 

#include <netdb.h>         /* host to IP resolution       */ 

#include <sys/time.h>      /* for timeout values          */ 

#include <unistd.h>        /* for table size calculations */ 

 

#define  PORT    5060            /* port of our echo server */ 

#define  BUFLEN  1024            /* buffer length           */ 

 

void main() 

{ 

    int                i;             /* index counter for loop operations  */ 

    int                rc;            /* system calls return value storage  */ 

    int                s;             /* socket descriptor                  */ 

    int                cs;            /* new connection's socket descriptor */ 

    char               buf[BUFLEN+1]; /* buffer for incoming data           */ 

    struct sockaddr_in sa;            /* Internet address struct            */ 

    struct sockaddr_in csa;           /* client's address struct            */ 

    int                size_csa;      /* size of client's address struct    */ 

    fd_set             rfd;           /* set of open sockets                */ 

    fd_set             c_rfd;         /* set of sockets waiting to be read  */ 

    int                dsize;         /* size of file descriptors table     */ 

 

    /* initiate machine's Internet address structure */ 

    /* first clear out the struct, to avoid garbage  */ 

    memset(&sa, 0, sizeof(sa)); 

    /* Using Internet address family */ 

    sa.sin_family = AF_INET; 

    /* copy port number in network byte order */ 

    sa.sin_port = htons(PORT); 

    /* we will accept connections coming through any IP */ 

    /* address that belongs to our host, using the      */ 

    /* INADDR_ANY wild-card.                            */ 

    sa.sin_addr.s_addr = INADDR_ANY; 

 

    /* allocate a free socket */ 

    /* Internet address family, Stream socket */ 

    s = socket(AF_INET, SOCK_STREAM, 0); 

    if (s < 0) { 

        perror("socket: allocation failed"); 

    } 
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    /* bind the socket to the newly formed address */ 

    rc = bind(s, (struct sockaddr *)&sa, sizeof(sa)); 

 

    /* check there was no error */ 

    if (rc) { 

        perror("bind"); 

    } 

 

    /* ask the system to listen for incoming connections   */ 

    /* to the address we just bound. specify that up to    */ 

    /* 5 pending connection requests will be queued by the */ 

    /* system, if we are not directly awaiting them using  */ 

    /* the accept() system call, when they arrive.         */ 

    rc = listen(s, 5); 

 

    /* check there was no error */ 

    if (rc) { 

        perror("listen"); 

    } 

 

    /* remember size for later usage */ 

    size_csa = sizeof(csa); 

 

    /* calculate size of file descriptors table */ 

    dsize = getdtablesize(); 

 

    /* close all file descriptors, except our communication socket */ 

    /* this is done to avoid blocking on tty operations and such.  */ 

    for (i=0; i<dsize; i++) 

        if (i != s) 

            close(i); 

 

    /* we initially have only one socket open,   */ 

    /* to receive new incoming connections.      */ 

    FD_ZERO(&rfd); 

    FD_SET(s, &rfd); 

    /* enter an accept-write-close infinite loop */ 

    while (1) { 

        /* the select() system call waits until any of  */ 

        /* the file descriptors specified in the read,  */ 

        /* write and exception sets given to it, is     */ 

        /* ready to give data, send data, or is in an   */ 

        /* exceptional state, in respect. the call will */ 

        /* wait for a given time before returning. in   */ 

        /* this case, the value is NULL, so it will     */ 

        /* not timeout. dsize specifies the size of the */ 

        /* file descriptor table.                       */ 

        c_rfd = rfd; 

        rc = select(dsize, &c_rfd, NULL, NULL, NULL); 

 

        /* if the 's' socket is ready for reading, it   */ 

        /* means that a new connection request arrived. */ 

        if (FD_ISSET(s, &c_rfd)) { 

            /* accept the incoming connection */ 

            cs = accept(s, (struct sockaddr *)&csa, &size_csa); 
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            /* check for errors. if any, ignore new connection */ 

            if (cs < 0) 

                continue; 

 

            /* add the new socket to the set of open sockets */ 

            FD_SET(cs, &rfd); 

 

            /* and loop again */ 

            continue; 

        } 

 

        /* check which sockets are ready for reading, */ 

        /* and handle them with care.                 */ 

        for (i=0; i<dsize; i++) { 

            if (i != s && FD_ISSET(i, &c_rfd)) { 

                /* read from the socket */ 

                rc = read(i, buf, BUFLEN); 

 

                /* if client closed the connection... */ 

                if (rc == 0) { 

                    /* close the socket */ 

                    close(i); 

                    FD_CLR(i, &rfd); 

                } 

                /* if there was data to read */ 

                else { 

                    /* echo it back to the client        */ 

                    /* NOTE: we SHOULD have checked that */ 

                    /* indeed all data was written...    */ 

                    write(i, buf, rc); 

                } 

            } 

        } 

    } 

} 

 

The complete source code for this server may be found in the multi-client-echo-server.c file.  
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8. Conclusions 

That's it. If you got as far as here, and hopefully tried playing a little with the code examples, you 

probably got the basic notion of what it takes to write simple clients and servers that communicate 

using the TCP protocol. We didn't cover UDP-based clients and servers, but hopefully, you'll manage 

getting there by referring to one of the more advanced resources mentioned below.  

And remember: clients, and especially servers, are expected to be robust creatures. Yet, the network is 

a too shaky ground to assume everything will work smoothly. Expect the unexpected. Check the return 

value of any system call you use, and act upon it. If a system call failed, try to figure out why it failed 

(using the returned error code and possibly the errno variable), and if you cannot write code to bypass 

that kind of failure - at least give your users an error message they can understand.  

 

 

9. See Also - or, where to go from here 

The following references might be good places to continue exploring socket programming:  

• Internetworking with TCP/IP - Volume I, by Douglas Comer 

This fine book explains in great details the internals of the TCP/IP protocol suite: what 

protocols comprise the TCP/IP protocol family; how each protocol performs its chores and 

how its packets are ordered. It also explains about local area networks (LANs), such as 

Ethernet and Token-Ring, as well as the history of the Internet.  

• Unix Network Programming - By W. Richard Stevens 

The "bible" for this subject. Teaches how to write programs that communicate, Not only via 

sockets and TCP/IP, but also using other types of IPC (Inter-Process Communications). A 

"Must Read" for every serious network programmer. If you're interested in simply writing 

network programs, without delving into too much theory, this should be your next stop.  
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Part II Non-blocking I/O 

 
1.1 The O_NONBLOCK flag 

 

The finger client in Project 1 is only as fast as the server to which it talks. When the program calls 

connect, read, and sometimes even write, it must wait for a response from the server before making 

any further progress. This doesn't ordinarily pose a problem; if finger blocks, the operating system will 

schedule another process so the CPU can still perform useful work. 

 

On the other hand, suppose you want to finger some huge number of users. Some servers may take a 

long time to respond (for instance, connection attempts to unreachable servers will take over a minute 

to time out). Thus, your program itself may have plenty of useful work to do, and you may not want to 

schedule another process every time a server is slow to respond. 

 

For this reason, Unix allows file descriptors to be placed in a non-blocking mode. A bit associated 

with each file descriptor O_NONBLOCK, determines whether it is in non-blocking mode or not. We 

can set the O NONBLOCK bit of a file descriptor non-blocking with the fcntl system call. 

 
if ((n = fcntl (s, F_GETFL)) < 0 || fcntl (s, F_SETFL, n | O_NONBLOCK) < 0)…. 

 

 

There are a number of ways to achieve this goal other than placing sockets in non-blocking mode. For 

instance, a threads package could be used to spawn a process for each request; requests would then be 

made in concurrently in blocking mode. An alternative, signal-driven asynchronous socket interface 

also exists in a number of Unix operating systems. The method described here, however, avoids the 

common pitfalls of preemptive concurrency and is more portable than signal driven methods. 

 

Many system calls behave slightly differently on file descriptors which have O_NONBLOCK set: 

 

read.  
When there is data to read, read behaves as usual. When there is an end of file, read still returns 0. If, 

however, a process calls read on a non-blocking file descriptor when there is no data to be read yet, 

instead of waiting for data, read will return -1 and set errno to EAGAIN. In general, a read call to a 

non-blocking socket will return return immediately. Under this definition, data is available to be read 

when it has been loaded into a kernel buffer by the OS and is ready to be copied into the user-specified 

buffer. 
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write.  

Like read, write will return -1 with an errno of EAGAIN if there is no buffer space available for the 

operating system to copy data to. If, however, there is some buffer space but not enough to contain the 

entire write request, write will take as much data as it can and return a value smaller than the length 

specified as its third argument. Code must handle such “short writes” by calling write again later on 

the rest of the data. 

 

connect.  

A TCP connection request requires a response from the listening server. When called on a non-

blocking socket, connect cannot wait for such a response before returning. For this reason, connect on 

a non-blocking socket usually returns -1 with errno set to EINPROGRESS. Occasionally, however, 

connect succeeds or fails immediately even on a non-blocking socket, so you must be prepared to 

handle this case. 

 

accept.  

When there are connections to accept, accept will behave as usual. If there are no pending connections, 

however, accept will return -1 and set errno to EWOULDBLOCK. It's worth noting that, on some 

operating systems, file descriptors returned by accept have O_NONBLOCK clear, whether or not the 

listening socket is non-blocking. In a asynchronous servers, one often sets O_NONBLOCK 

immediately on any file descriptors accept returns. 
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1.2 select: Finding out when sockets are ready 
 

O_NONBLOCK allows an application to keep the CPU when an I/O system call would ordinarily 

block. However, programs can use several non-blocking file descriptors and still find none of them 

ready for I/O. Under such circumstances, programs need a way to avoid wasting CPU time by 

repeatedly polling individual file descriptors. The select system call solves this problem by letting 

applications sleep until one or more file descriptors in a set is ready for I/O. 

 

select usage: 

   int select (int nfds, fd_set *rfds, fd_set *wfds, fd_set *efds, struct timeval *timeout); 

 

select takes pointers to sets of file descriptors and a timeout. It returns when one or more of the file 

descriptors are ready for I/O, or after the specified timeout. Before returning, select modifies the file 

descriptor sets so as to indicate which file descriptors actually are ready for I/O. select returns the 

number of ready file descriptors, or -1 on an error. 

 

select represents sets of file descriptors as bit vectors --- one bit per descriptor. The first bit of a vector 

is 1 if that set contains file descriptor 0, the second bit is 1 if it contains descriptor 1, and so on. The 

argument nfds specifies the number of bits in each of the bit vectors being passed in. Equivalently, 

nfds is one more than highest file descriptor number select must check on. 

 

These file descriptor sets are of type fd_set. Several macros in system header files allow easy 

manipulation of this type. If fd is an integer containing a file descriptor, and fds is a variable of type 

fd_set, the following macros can manipulate fds: 

 

-- FD_ZERO (&fds); 

Clears all bits in a fds 

 

-- FD_SET (fd, &fds); 

Sets the bit corresponding to file descriptor fd in fds. 

 

-- FD_CLR (fd, &fds); 

Clears the bit corresponding to file descriptor fd in fds. 
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-- FD_ISSET (fd, &fds); 

Returns a true if and only if the bit for file descriptor fd is set in fds. 

 

select takes three file descriptor sets as input. rfds specifies the set of file descriptors on which the 

process would like to perform a read or accept. wfds specifies the set of file descriptors on which the 

process would like to perform a write. efds is a set of file descriptors for which the process is 

interested in exceptional events such as the arrival of out of band data. In practice, people rarely use 

efds. Any of the fd_set * arguments to select can be NULL to indicate an empty set. 

 

 

The argument timeout specifies the amount of time to wait for a file descriptor to become ready. It is a 

pointer to a structure of the following form: 

 

struct timeval { 

   long tv_sec; /* seconds */ 

   long tv_usec; /* and microseconds */ 

}; 

 

timeout can also be NULL, in which case select will wait indefinitely. 

 

 

Tips and subtleties 
 
File descriptor limits.  

Programmers using select may be tempted to write code capable of using arbitrarily many file 

descriptors. Be aware that the operating system limits the number of file descriptors a process can 

have. If you don't bound the number of descriptors your program uses, you must be prepared for 

system calls like socket and accept to fail with errors like EMFILE. By default, a modern Unix system 

typically limits processes to 64 file descriptors (though the setrlimit system call can sometimes raise 

that limit substantially). Don't count on using all 64 file descriptors, either. All processes inherit at 

least three file descriptors (standard input, output, and error), and some C library functions need to use 

file descriptors, too. It should be safe to assume you can use 56 file descriptors, though.  

 

 

 

 

 

 



 35 

 

 

 

 

 

 

 

 

 

If you do raise the maximum number of file descriptors allowed to your process, there is another 

problem to be aware of. The fd_set type defines a vector with FD_SETSIZE bits in it (typically 256). 

If your program uses more than FD_SETSIZE file descriptors, you must allocate more memory for 

each vector than an fd_set contains, and you can no longer use the FD_ZERO macro. 

 

Using select with connect.  
After connecting a non-blocking socket, you might like to know when the connect has completed and 

whether it succeeded or failed. TCP servers can accept connections without writing to them (for 

instance, our finger server waited to read a username before sending anything back over the socket). 

Thus, selecting for readability will not necessarily notify you of a connect's completion; you must 

check for writability. 

 

When select does indicate the writability of a non-blocking socket with a pending connect, how can 

you tell if that connect succeeded? The simplest way is to try writing some data to the file descriptor to 

see if the write succeeds. This approach has two small complications. First, writing to an unconnected 

socket does more than simply return an error code; it kills the current process with a SIGPIPE signal. 

Thus, any program that risks writing to an unconnected socket should tell the operating system that it 

wants to ignore SIGPIPE. The signal system call accomplishes this: 

 

signal (SIGPIPE, SIG_IGN); 
 

The second complication is that you may not have any data to write to a socket, yet still wish to know 

if a non-blocking connect has succeeded. In that case, you can find out whether a socket is connected 

with the getpeername system call. getpeername takes the same argument types as accept, but expects a 

connected socket as its first argument. If getpeername returns 0 (meaning success), then you know the 

non-blocking connect has succeeded. If it returns -1, then the connect has failed. 

 

Trick on timeout: 
/* Enable keepalives to make sockets time out if servers go away. */ 
n = 1; 
if (setsockopt (s, SOL_SOCKET, SO_KEEPALIVE, (void *) &n, sizeof (n)) < 0)…. 

 

 

 

1.3 Putting all together 

 

Write an asynchronous fingerclient program that fingers multiple users from multiple servers. 


