
Distributed Computing

Remote Procedure Calls
(RPC)

Dr. Yingwu Zhu

Problems with Sockets

• Sockets interface is straightforward
– [connect]

– read/write

– [disconnect]

• BUT … it forces read/write mechanism
– We usually use a procedure call

• To make distributed computing look more like
centralized:
– I/O is not the way to go

RPC

• 1984, Birrell & Nelson

– Mechanism to call procedures on other machines

• Goal:

– It should appear to the programmer that a
conventional (local) call is taking place

Big Question

 How do conventional procedure calls
work in programming languages?

Conventional Procedure Calls

• Machine instructions for call & return but the
complier really makes the procedure call
abstract work:

– Parameter passing

– Local variables

– Return data

Conventional Procedure Calls

You write: x = fun(a, “test”, 5);
The complier parses this and generate code to

1. Push 5 on the stack
2. Push the addr. of “test” on the stack
3. Push the current value of a on the stack
4. Generate a call to the function f

In compiling f, the compiler generates code to:
1. Push the registers that will be clobbered on the stack to save

the values
2. Adjust the stack to make room for local and temporal variables

(also return address)
3. Before a return, unadjust the stack (undo step 2), put the

return data in a register, and issue a return instruction.

Implementing RPC

• No architectural support for RPC

• Simulate RPC with tools we have (local
procedure calls)

– Simulation make RPC a language-level construct

– Instead of operating system construct

Implementing RPC

• The trick
– Create stub functions to make it appear to the

user that the call is local

– Stub function contains the function’s interface

Steps in RPC

Step 1. The client calls the client stub which packaging the arguments into a
network message (marshaling)
Step 2. The network message is forwarded to the network routines (local kernel
by system call)

Steps in RPC

Step 3. The network message is sent to the remote server via some protocol
(TCP/UDP)
Step 4. The sever stub unmarshals the arguments from the message & convert
them into machine-specific format (big-endian, little-endian)

Steps in RPC

Step 5. The sever stub executes a local procedure call to the actual server
function, by passing the arguments received
Step 6. When the call completes, it returns values back to the server stub

Steps in RPC

Step 7. The sever stub converts the return values (if necessary) and marshals
them into one or more network messages to send to the client stub
Step 8. Messages are sent to the client stub

Steps in RPC

Step 9. The client stub reads the message from the local kernel
Step 10. It returns the results back to the client (possibly convert them first!)

RPC: Benefits

• Procedure call interface: we are familiar

• Writing applications is simplified

– RPC hides all network code into stub functions

– Application programmers don’t have to worry
about details

• Sockets, port numbers, byte ordering

RPC: Issues

Parameter passing

• Pass by value

– Easy, just copy data into network messages

• Pass by reference

– Make no sense without shared memory

Pass by reference?

How
1. Copy items referenced to message buffer

2. Ship them over

3. Unmarshal data at server

4. Pass local pointer to server stub function

5. Send new values back

To support complex structures
– Copy structure into pointerless representation

– Transmit

– Reconstruct structure with local pointers on server

Representing Data

• On local system: no incompatibility problems

• Remote machine may have

– Different byte ordering

– Different sizes of integers and other types

– Different float point representations

– Different character sets

– Alignment requirement

Representing Data

Representing Data

• Need standard encoding to enable
communication between heterogeneous
systems

– Sun’s RPC uses XDR (eXternal Data
Representation)

– ASN.1 (ISO Abstract Syntax Notation)

Representing Data

• Implicit typing

– Only values are transmitted, no data types or
parameter info

– E.g., Sun XDR

• Explicit typing

– Type is transmitted with each value

– E.g., ISO’s ASN.1, XML

Where to bind

• Need to locate host and correct server process

• Solution 1

– Maintain centralized DB that can locate a host that
provides a particular service (Birrel & Nelson
1984)

• Solution 2

– A sever on each host maintains a DB of locally
provided services

Transport protocols

• Some implementations may offer only one,
e.g., TCP

• Most support several

– Allow programmers to choose

When things go wrong

• Local procedure calls do not fail

– If they core dump, entire process dies

• More opportunities for error with RPC

• Transparency breaks here!

– Applications should be prepared to deal with RPC
failures

When things go wrong

• Local procedure call: exactly once when we
call it

• A remote procedure call may be called:

– 0 times: server crashed or process died before
executing server code

– 1 time: every worked well

– 1 or more: excess latency or lost reply from server
and client retransmission

RPC Semantics

• Most RPC systems will offer either

– At least once semantics

– Or at most once semantics

• Understand application:

– idempotent functions: may be run any number of
times without harm (e.g., return date)

– Non-idempotent functions: side effects

• Modify or append a file

More issues

• Performance

– RPC is slower… a lot slower than local procedure
call

• Security

– Messages visible over network

– Authenticate client

– Authenticate server

Programming with RPC

• Language support

– Most programming languages (C/C++, Java,…)
have no concept of remote procedure calls

– Language compliers will not generate client and
server stubs

Common solution:

– Use a separate complier to generate stubs (pre-
complier: rpcgen)

Interface Definition Language (IDL)

• Allow programmers to specify remote procedure
interfaces
(names, parameters, return values)

• Pre-compiler can use this to generate client and
server stubs:
– Marshaling code

– Unmarshaling code

– Network transport routines

– Conform to defined interface

• Similar to function prototypes

RPC Complier

Write the Program

• Client code has to be modified

– Initialized RPC-related options

• Transport type

• Local server/service

– Handle failures of remote procedure calls

• Server functions

– Generally need little or no modification

RPC API

What kind of services does a RPC system need?

• Name service operations
– Export/lookup binding info. (ports, machines)

– Support dynamic ports

• Binding operations
– Establishing c/s communication using appropriate

protocol (establish endpoints)

• Endpoint operations
– Listen for requests, export endpoint to name server

RPC API

What kind of services does a RPC system need?

• Security operations

– Authenticate C/S

• Marshaling/Data conversion operations

• Stub memory management

– Dealing with “reference” data, temporary buffers

• Program ID operations

– Allow app. to access IDs of RPC interfaces

Case Study: SUN RPC

• RPC for Unix System V, Linux, BSD, OS X

– Also known as ONC RPC(Open Network
Computing)

• Interfaces defined in an Interface Definition
Language (IDL)

– IDL compiler is rpcgen

IDL

IDL Program: RPC interfaces

• Each IDL program contains the following
structure:

– optional constant definitions and typedefs may be
present

– the entire interface is enveloped in a program block.

– within the program block, one or more sets of
versions may be defined, {program#, version#} tuple

– within each version block, a set of functions is defined

Each collection of RPC interfaces is
defined by a 32-bit value

• Unique value

– 0x00000000-0x1fffffff: defined by sun

– 0x20000000-0x3fffffff: defined by the user

– 0x40000000-0x5fffffff: transient processes

– 0x60000000-0x7fffffff: reserved

Data Types

Writing procedures using Sun RPC

• create a procedure whose name is the name of the RPC definition
– in lowercase
– followed by an underscore, version number, underscore, “svc”
– for example, BLIP → blip_1_svc

• argument to procedure is a pointer to the argument data type
specified in the IDL

• default behavior: only one parameter to each function
– if you want more, use a struct
– this was relaxed in later versions of rpcgen but remains the default

• procedure must return a pointer to the data type specified in the IDL
• the server stub uses the procedure’s return value after the

procedure returns, so the return address must be that of a static
variable

Step-by-Step for a
RPC program

Step by Step for a RPC program

• Start with stand-alone program that has two
functions:

– bin_date returns system date as # seconds since
Jan 1 1970 0:00 GMT

– str_date takes the # of seconds as input and
returns a formatted data string

• Goal

– move bin_date and str_date into server functions
and call them via RPC.

Standalone program

Step 1: IDL to define interface

Step 2: Pre-complier

rpcgen -C date.x
– -C is to produce ANSI C function declarations

We get

• date_clnt.c : client stub

• date.h : header file

• date_svc.c : server stub

• date_xdr.c: (possible)

Step 3: Generate server functions: template from rpcgen

Step 4: plug the server function code

Step 5: generate the client code

rpcgen -C -Sc date.x > client.c

Modify the client code:
– Need to handle the server name
– Before we can make any remote procedure calls, we need to

initialize the RPC connection via clnt_create:
CLIENT *cl; /* rpc handle */
cl = clnt_create(server, DATE_PROG, DATE_VERS, “netpath”);

– “netpath” directs to read the NETPATH environment variable to
decide on using TCP or UDP

– The server’s RPC name server (port mapper) is contacted to find
the port for the requested program/version/transport.

– Check for RPC errors for RPC calls! (if the pointer returned is
null, then the call failed.)

Putting together: compile-link-run

• Generate stubs and client.c & server.c: rpcgen -a -C date.x
• Compile & link the client and client stub

cc -o client client.c date_clnt.c -lnsl
• Compile & link the server and server stub

cc -o server -DRPC_SVC_FG server.c date_svc.c -lnsl
– Note: defining RPC_SVC_FG compiles the server such that it will
run in the foreground instead of running as a background process

• Run the server (e.g. on remus)
 $./server
• Run the client

$./client localhost
time on localhost is 970457832
date is Sun Oct 1 23:37:12 2000

