Distributed Computing

Remote Procedure Calls
(RPC)

Dr. Yingwu Zhu

Problems with Sockets

* Sockets interface is straightforward
— [connect]
— read/write
— [disconnect]
e BUT ... it forces read/write mechanism
— We usually use a procedure call
* To make distributed computing look more like
centralized:
— |/O is not the way to go

RPC

e 1984, Birrell & Nelson

— Mechanism to call procedures on other machines

e Goal:

— It should appear to the programmer that a
conventional (local) call is taking place

Big Question

How do conventional procedure calls
work in programming languages?

Conventional Procedure Calls

e Machine instructions for call & return but the
complier really makes the procedure call
abstract work:

— Parameter passing
— Local variables
— Return data

Conventional Procedure Calls

You write: x = fun(a, “test”, 5);

The complier parses this and generate code to

1. Push 5 on the stack

2. Push the addr. of “test” on the stack

3. Push the current value of a on the stack
4. Generate a call to the function f

In compiling f, the compiler generates code to:

1. Push the registers that will be clobbered on the stack to save
the values

2. Adjust the stack to make room for local and temporal variables
(also return address)

3. Before a return, unadjust the stack (undo step 2), put the
return data in a register, and issue a return instruction.

Implementing RPC

* No architectural support for RPC
e Simulate RPC with tools we have (local
procedure calls)

— Simulation make RPC a language-level construct
— Instead of operating system construct

Implementing RPC

 The trick

— Create stub functions to make it appear to the
user that the call is local

— Stub function contains the function’s interface

Steps in RPC

Client client functions server functions
Process
| [0 6 | 5
client stub server stub
2) 7 i
kernel = ‘ *- .
network routines) > hetwork routines
8

Server
process

kernel

Step 1. The client calls the client stub which packaging the arguments into a

network message (marshaling)

Step 2. The network message is forwarded to the network routines (local kernel

by system call)

Steps in RPC

Client client functions server functions
Process
| [0 6 | 5
client stub server stub
2 0 7 L
kernel = ‘ *- ‘
network routines) > hetwork routines
8

Server
process

kernel

Step 3. The network message is sent to the remote server via some protocol

(TCP/UDP)

Step 4. The sever stub unmarshals the arguments from the message & convert
them into machine-specific format (big-endian, little-endian)

Client
process

kernel

Steps in RPC

client functions

[0

client stub

Y

network routines

server functions
h,
O | 7
server stub
h,
2 [| 4
- > hetwork routines
8

Server
process

kernel

Step 5. The sever stub executes a local procedure call to the actual server
function, by passing the arguments received
Step 6. When the call completes, it returns values back to the server stub

Client
process

kernel

Steps in RPC

client functions

[0

client stub

Y

network routines

server functions
X
6 | 5
server stub
X
3 [4
- > hetwork routines
8

Server
process

kernel

Step 7. The sever stub converts the return values (if necessary) and marshals

them into one or more network messages to send to the client stub

Step 8. Messages are sent to the client stub

Client
process

kernel

Steps in RPC

client functions

[0

client stub

Y

network routines

server functions
X
6 | 5
server stub
X
3 [4
- > hetwork routines
8

Step 9. The client stub reads the message from the local kernel
Step 10. It returns the results back to the client (possibly convert them first!)

Server
process

kernel

RPC: Benefits

* Procedure call interface: we are familiar
* Writing applications is simplified
— RPC hides all network code into stub functions

— Application programmers don’t have to worry
about details

* Sockets, port numbers, byte ordering

RPC: Issues

Parameter passing
* Pass by value

— Easy, just copy data into network messages

* Pass by reference

— Make no sense without shared memory

Pass by reference?

How
1. Copy items referenced to message buffer
2. Ship them over
3. Unmarshal data at server
4. Pass local pointer to server stub function

5. Send new values back

To support complex structures
— Copy structure into pointerless representation
— Transmit
— Reconstruct structure with local pointers on server

Representing Data

* On local system: no incompatibility problems

* Remote machine may have
— Different byte ordering
— Different sizes of integers and other types
— Different float point representations
— Different character sets
— Alignment requirement

Representing Data

IP (headers) forced all to use big endian byte
ordering for 16 and 32 bit values

- Most significant byte in low memory

* Sparc, 680x0, MIPS5, PowerPC G5
* Intel I-32 (x86/Pentium) use little endian

Output on a Pentium:
44, 33, 22, 11

Output on a PowerPC:
n = 0x11223344; 11, 22, 33, 44
printf("%02x, %02x, %02x, %02x\n",
a[0], a[l]., a[2], al[3]):

Representing Data

* Need standard encoding to enable
communication between heterogeneous
systems

— Sun’s RPC uses XDR (eXternal Data
Representation)

— ASN.1 (ISO Abstract Syntax Notation)

Representing Data

* |Implicit typing
— Only values are transmitted, no data types or
parameter info
— E.g., Sun XDR
* Explicit typing
— Type is transmitted with each value
— E.g., ISO’s ASN.1, XML

Where to bind

* Need to locate host and correct server process
e Solution 1

— Maintain centralized DB that can locate a host that
provides a particular service (Birrel & Nelson
1984)

e Solution 2

— A sever on each host maintains a DB of locally
provided services

Transport protocols

* Some implementations may offer only one,
e.g., TCP

* Most support several

— Allow programmers to choose

When things go wrong

* Local procedure calls do not fail

— If they core dump, entire process dies
* More opportunities for error with RPC

* Transparency breaks here!

— Applications should be prepared to deal with RPC
failures

When things go wrong

* Local procedure call: exactly once when we
call it

* A remote procedure call may be called:

— 0 times: server crashed or process died before
executing server code

— 1 time: every worked well

— 1 or more: excess latency or lost reply from server
and client retransmission

RPC Semantics

* Most RPC systems will offer either
— At least once semantics
— Or at most once semantics

* Understand application:

— idempotent functions: may be run any number of
times without harm (e.g., return date)

— Non-idempotent functions: side effects
* Modify or append a file

More issues

e Performance

— RPC is slower... a lot slower than local procedure
call

* Security
— Messages visible over network
— Authenticate client
— Authenticate server

Programming with RPC

* Language support

— Most programming languages (C/C++, Java,...)
have no concept of remote procedure calls

— Language compliers will not generate client and
server stubs

Common solution:

— Use a separate complier to generate stubs (pre-
complier: rpcgen)

Interface Definition Language (IDL)

* Allow programmers to specify remote procedure
interfaces

(names, parameters, return values)
* Pre-compiler can use this to generate client and
server stubs:
— Marshaling code
— Unmarshaling code
— Network transport routines
— Conform to defined interface

* Similar to function prototypes

RPC Complier

RPC compiler

client code (main)

client stub

‘ data conv. ' client
IDL RP(.: headers
mmp'lepH
server

data conv.

server skeleton

- Code you write server functions

Code RPC compiler generates

Write the Program

* Client code has to be modified

— Initialized RPC-related options
* Transport type
* Local server/service

— Handle failures of remote procedure calls

e Server functions
— Generally need little or no modification

RPC API

What kind of services does a RPC system need?

* Name service operations
— Export/lookup binding info. (ports, machines)
— Support dynamic ports

* Binding operations

— Establishing ¢/s communication using appropriate
protocol (establish endpoints)

* Endpoint operations
— Listen for requests, export endpoint to name server

RPC API

What kind of services does a RPC system need?

* Security operations
— Authenticate C/S
* Marshaling/Data conversion operations
e Stub memory management
— Dealing with “reference” data, temporary buffers

* Program ID operations

— Allow app. to access IDs of RPC interfaces

Case Study: SUN RPC

 RPC for Unix System V, Linux, BSD, OS X

— Also known as ONC RPC(Open Network
Computing)

* |Interfaces defined in an Interface Definition
Language (IDL)
— IDL compiler is rpcgen

IDL

Interface Definition Language

» Used by rpcgen to generate stub functions
* defines an RPC program: collection of RPC procedures
* structure:

tvpe definitions
program identifier { program PROG {
version version id { version PROGI {
procedure list void PROC A(nt) = 1;
b =value; y=1:

} = 0x3a3afeeb:;
Y =value;

IDL Program: RPC interfaces

 Each IDL program contains the following
structure:

— optional constant definitions and typedefs may be
present

— the entire interface is enveloped in a program block.

— within the program block, one or more sets of
versions may be defined, {program#, version#} tuple

— within each version block, a set of functions is defined

Each collection of RPC interfaces is
defined by a 32-bit value

* Unique value
— 0x00000000-0x 1fffffff: defined by sun
— 0x20000000-0x3fffffff: defined by the user
— 0x40000000-0x5fffffff: transient processes
— 0x60000000-0x7fffffff: reserved

Data Types

Data types

* constants

— may be used 1n place of an integer value - converted to #define
statement by rpcgen

* structures

— similar to C structures - rpcgen transfers structure definition and
adds a typedef for the name of the structure
struct intpalr { int a, b };
is translated to:
struct intpair { int a, b };
typedef struct intpalr 1ntpair;

Data types

. enumerations

— similarto C
enum =state { BUSY=1, IDLE=Z, TRANSIT=3

* unions

— mnot like C

— aunion 1s a specification of data types based on some criteria:
union identifier switch (declaration) {
cas= 1ist

— for example:
conat MAXBUE=30;

union time results switch (int statusz)

caaé_ﬂ: char timeval [MAXBUF] ;
case 1l: woid;

J-kl -

case Z: int reason:

Data types

« type definitions
— like C:
typedef long counter;
* arrays

— like C but may have a fixed or variable length:
int proc hits[100];
defines a fixed size array of 100 integers.

long x vals<50>
defines a variable-size array of a maximum of 50 longs
* pointers

— like C. but nit sent over the network. What 1s sent 1s a boolean
value (true for pointer, false for null) followed by the data to which
the pointer points.

Data types

* strings
— declared as if they were variable length arrays
string name<50>;
declares a string of at most 50 characters.
string anyname<:>;
declares a string of any number of characters.

* boolean

— can have the value of TRUE or FALSE:
bool busy:

* opaque data

— untyped data that contains an arbitrary sequence of bytes - may be fixed or variable
length:
opaque extra bytes[512];
opadque more<31Z2=;
— latter definition is translated to C as:
struct |
uint more len; /* length of array */

char *more val; /* space used by array */

Writing procedures using Sun RPC

create a procedure whose name is the name of the RPC definition
— in lowercase
— followed by an underscore, version number, underscore, “svc”
— for example, BLIP = blip_1 svc

argument to procedure is a pointer to the argument data type
specified in the IDL

default behavior: only one parameter to each function

— if you want more, use a struct
— this was relaxed in later versions of rpcgen but remains the default

procedure must return a pointer to the data type specified in the IDL

the server stub uses the procedure’s return value after the
procedure returns, so the return address must be that of a static
variable

Step-by-Step for a
RPC program

Step by Step for a RPC program

e Start with stand-alone program that has two
functions:

— bin_date returns system date as # seconds since
Jan 11970 0:00 GMT

— str_date takes the # of seconds as input and
returns a formatted data string

e Goal

— move bin_date and str_date into server functions
and call them via RPC.

Standalone program

tinclude <stdio.h»
/* bin date returns the systen time 1n hinary format */
Long bin date(vold
Long tineval;
long time(); /* Unix tine function; returns time */

long bin date(void):
char *str date(long bintine);

[
1

nain(int arge, char **argv) {
long lresult; /* return from bin date */

char *sresult; /* return from str date */ tineval = time((long *)0);
if farge 1= 1) | return tineval;

fprintf (stderr, "usage: %s\n", argv[0] |
exit(1);
[* str date converts a binary time into a date string ¥/

/* call the procedure bin date */ char *str date(long bintine) |

Lresult = bin date(); char *ptr;

printf("time iz %1d\n", lresult); char *ctime(); /* Unix Lhrary function that does the work */
/* convert the result to a date string */

sresult = str date(lresult); ptr = cting(ehintine);

printf("date 1s %5", sresult); return ptr;

exit (0);

Step 1: IDL to define interface

* Define two functions that run on server:
— bin_date has no input parameters and returns a long.

— str_date accepts a long as mput and returns a string

« IDL: function
program DATE PROG ({ numbers
version DATE VERS { /
long BIN DATE (void) = 1;
string STR DATE (long) = Z;
o= 1 version number
I = 0x31423456; <« program number

« IDL convention 1s to suffix the file with x
— we name the file date.x

— 1t can be compiled with:
rpcgen —-C date.x

Step 2: Pre-complier

rocgen -C date.x

— -Cis to produce ANSI C function declarations

We get

* date _clInt.c: client stub
e date.h: header file

e date_svc.c: server stub
* date xdr.c: (possible)

Step 3: Generate server functions: template from rpcgen

We can have rpcgen generate a template for the server code using the interface
we defined:
rpcgen —-C —-Ss5 date.®x »server.c
This produces:
#include “date.h”
long *
bin date 1 svc(vold *argp, struct svc req *rgstp)

static long result;
/* insert server code here */
return &result;

char **
str date 1 svc(long *argp, struct svc redq *rgstp)

static char *result:
/* insert server code here */
return a&result:

Step 4: plug the server function code

Now just copy the functions from the original stand-alone code

long *
bin date 1 svc(void *argp, struct svc reqg *rgstp)
{

static long result;

long time():

result = time((long *)0);

return &result;

}

char **
str date 1 svc(long *bintime, struct svc req *rgstp)
static char *result;

char *ctime () J oy
we don’'t need ro use &bintime here

result = ctime (bintime); Decause we get the address as a paraneter
return &result;

Step 5: generate the client code

rocgen -C -Sc date.x > client.c

Modify the client code:
— Need to handle the server name

— Before we can make any remote procedure calls, we need to

initialize the RPC connection via cInt_create:

CLIENT *cl; /* rpc handle */
cl = cInt_create(server, DATE_PROG, DATE_VERS, “netpath”);

— “netpath” directs to read the NETPATH environment variable to
decide on using TCP or UDP

— The server’s RPC name server (port mapper) is contacted to find
the port for the requested program/version/transport.

— Check for RPC errors for RPC calls! (if the pointer returned is
null, then the call failed.)

Putting together: compile-link-run

Generate stubs and client.c & server.c: rpcgen -a -C date.x
Compile & link the client and client stub

cc -o client client.c date_clnt.c -Insl
Compile & link the server and server stub

cc -o server -DRPC_SVC_FG server.c date_svc.c -Insl
— Note: defining RPC_SVC_FG compiles the server such that it will
run in the foreground instead of running as a background process

Run the server (e.g. on remus)

S ./server

Run the client
S ./client localhost
time on localhost is 970457832
date is Sun Oct 1 23:37:12 2000

