
Quicksort

Dr. Yingwu Zhu

2

Quicksort

• A more efficient exchange sorting scheme than
bubble sort
– A typical exchange involves elements that are far apart

– Fewer interchanges are required to correctly position an element.

• Quicksort uses a divide-and-conquer strategy
– A recursive approach

– The original problem partitioned into simpler sub-problems,

– Each sub problem considered (conquered) independently.

• Subdivision continues until sub problems obtained
are simple enough to be solved directly
– How simple?

3

Quicksort: Divide/Split

• Choose some element called a pivot

• Perform a sequence of exchanges so that

– All elements that are less than this pivot are to its left.

– All elements that are greater than the pivot are to its right.

• Divides the (sub)list into two smaller sub lists,

• Each of which may then be sorted independently in
the same way.

4

Quicksort

If the list has 0 or 1 elements,

 return. // the list is sorted, simple enough!

Else do:

 Pick an element in the list to use as the pivot.

 Split the remaining elements into two disjoint groups:
 SmallerThanPivot = {all elements <= pivot}

 LargerThanPivot = {all elements > pivot}

 Return the list rearranged as:

 Quicksort(SmallerThanPivot),

 pivot,

 Quicksort(LargerThanPivot).

Split

5

Quicksort Example

• Given to sort:
75, 70, 65, , 98, 78, 100, 93, 55, 61, 81,

• Select, arbitrarily, the first element, 75, as pivot.

• Search from right for elements <= 75, stop at first
element <=75

• Search from left for elements > 75, stop at first
element >75

• Swap these two elements, and then repeat this
process

84 68

6

Quicksort Example

75, 70, 65, 68, 61, 55, 100, 93, 78, 98, 81, 84

• When done, swap with pivot

• This SPLIT operation placed pivot 75 so that all
elements to the left were <= 75 and all
elements to the right were > 75.

• 75 is now placed appropriately

• Need to sort sublists on either side of 75

7

Quicksort Example

• Need to sort (independently):

 55, 70, 65, 68, 61 and

 100, 93, 78, 98, 81, 84

• Let pivot be 55, look from each end for values
larger/smaller than 55, swap

• Same for 2nd list, pivot is 100

• Sort the resulting sublists in the same manner
until sublist is trivial (size 0 or 1)

8

Quicksort

• Note visual example of
a quicksort on an array

etc. …

Reflection of Quicksort

• Perform spilt() operation on a (sub)list, such that:
left-sublist, pivot, right-sublist

• Recursively and independently perform split() on
left-sublist and right-sublist, until their sizes become
0 or 1 (simple enought).

• So, the basic operation is split!

– int split(int x[], int low, int high)

– [low, high] specifies the sublist.

– Returns the final position of the pivot

9

Implementing Quicksort

• Basic operation: split

– Choose the pivot (e.g., the first element)

– Scan the (sub)list from both ends, swap elements
such that the resulting left sublist < pivot and right
sublist >= pivot

– int split (int x[], int first, int last)

Recursive Quicksort

• void quicksort(int x[], int n)

11

12

Quicksort: T(n)

• Best-case ?

• Worst-case ?

13

Quicksort Performance

• O(nlog2n) is the best case computing time
– If the pivot results in sublists of approximately the

same size.

• O(n2) worst-case
– List already ordered, elements in reverse

– When Split() repetitively results, for
example, in one empty sublist

14

Improvements to Quicksort

• An arbitrary pivot gives a poor partition for
nearly sorted lists (or lists in reverse)

• Virtually all the elements go into either
SmallerThanPivot or
LargerThanPivot

– all through the recursive calls.

• Quicksort takes quadratic time to do
essentially nothing at all.

15

Improvements to Quicksort

• Better method for selecting the pivot is the median-
of-three rule,
– Select the median of the first, middle, and last elements in

each sublist as the pivot.

• Often the list to be sorted is already partially ordered

• Median-of-three rule will select a pivot closer to the
middle of the sublist than will the “first-element”
rule.

16

Improvements to Quicksort

• For small files (n <= 20), quicksort is worse
than insertion sort;
– small files occur often because of recursion.

• Use an efficient sort (e.g., insertion sort) for
small files.

• Better yet, use Quicksort() until sublists
are of a small size and then apply an efficient
sort like insertion sort.

17

Non-recursive Quicksort

• Think about non-recursive alg.?

