Quicksort

Dr. Yingwu Zhu



Quicksort

* A more efficient exchange sorting scheme than
bubble sort

— A typical exchange involves elements that are far apart
— Fewer interchanges are required to correctly position an element.

* Quicksort uses a divide-and-conquer strategy
— A recursive approach
— The original problem partitioned into simpler sub-problems,
— Each sub problem considered (conquered) independently.
e Subdivision continues until sub problems obtained

are simple enough to be solved directly
— How simple?



Quicksort: Divide/Split

Choose some element called a pivot

Perform a sequence of exchanges so that
— All elements that are less than this pivot are to its left.
— All elements that are greater than the pivot are to its right.

Divides the (sub)list into two smaller sub lists,

Each of which may then be sorted independently in
the same way.



Quicksort

If the list has O or 1 elements,

return. // the list is sorted, simple enough!
Else do:
T Pick an element in the list to use as the pivot.

Split Split the remaining elements into two disjoint groups:
SmallerThanPivot = {all elements <= pivot}
l LargerThanPivot = {all elements > pivot}

Return the list rearranged as:
Quicksort(SmallerThanPivot),
pivot,
Quicksort(LargerThanPivot).



Quicksort Example

Given to sort:
75,70,65, 84 ,98, 78, 100,93, 55,61,81, 68

Select, arbitrarily, the first ele , 75, as pivot.

Search from right foretéments <= 75, stop at first

element <=75

Search from left for elements > 75, stop at first

element >75
Swap these two elements, and then repeat this

process



Quicksort Example

TN

75,70, 65, 68, 61, 55, 100, 93, 78, 98, 81, 84

* When done, swap with pivot

* This SPLIT operation placed pivot 75 so that all
elements to the left were <= 75 and all
elements to the right were > 75.

 75is now placed appropriately
* Need to sort sublists on either side of 75




Quicksort Example

Need to sort (independently):
55, 70, 65, 68,61 and
100, 93, 78, 98, 81, 84

Let pivot be 55, look from each end for values
larger/smaller than 55, swap

Same for 29 [ist, pivot is 100

Sort the resulting sublists in the same manner
until sublist is trivial (size O or 1)



Quicksort

* Note visual example of
a quicksort on an array

2205 = 14,13

fd

]
i |
=

3275 3 14,13

F-d

]
-J
o

etc. ...



Reflection of Quicksort

* Perform spilt() operation on a (sub)list, such that:
left-sublist, pivot, right-sublist

e Recursively and independently perform split() on
left-sublist and right-sublist, until their sizes become
0 or 1 (simple enought).

* So, the basic operation is split!
— int split(int x[], int low, int high)
— [low, high] specifies the sublist.
— Returns the final position of the pivot



Implementing Quicksort

* Basic operation: split
— Choose the pivot (e.g., the first element)

— Scan the (sub)list from both ends, swap elements
such that the resulting left sublist < pivot and right
sublist >= pivot

— int split (int x[], int first, int last)



Recursive Quicksort

* void quicksort(int x[], int n)



Quicksort: T(n)

e Best-case ?
e \WWorst-case ?



Quicksort Performance

* O(nlog,n) is the best case computing time

— If the pivot results in sublists of approximately the
same size.

* O(n?) worst-case
— List already ordered, elements in reverse

— When Split () repetitively results, for
example, in one empty sublist



Improvements to Quicksort

* An arbitrary pivot gives a poor partition for
nearly sorted lists (or lists in reverse)

* Virtually all the elements go into either
SmallerThanPivot or
LargerThanPivot

— all through the recursive calls.

* Quicksort takes quadratic time to do
essentially nothing at all.

14



Improvements to Quicksort

* Better method for selecting the pivot is the median-
of-three rule,

— Select the median of the first, middle, and last elements in
each sublist as the pivot.

e Often the list to be sorted is already partially ordered

 Median-of-three rule will select a pivot closer to the
middle of the sublist than will the “first-element”
rule.



Improvements to Quicksort

* For small files (n <= 20), quicksort is worse
than insertion sort;
— small files occur often because of recursion.

* Use an efficient sort (e.g., insertion sort) for
small files.

e Better yet, use Quicksoxrt () until sublists
are of a small size and then apply an efficient
sort like insertion sort.



Non-recursive Quicksort

* Think about non-recursive alg.?



