
Real-world Question

• Consider 16 GB integers or more to sort, given
4GB memory or less. (A large portion of data
must be on disks)

1. How would you do the sorting?

2. Any previous sorting algorithm works for this
problem?

3. Even more data to sort: 1 Petabytes? (data
scattered across different storage machines)

2

Previous Sorting Algorithms
• Previous sorting schemes were all internal

sorting algorithms:
– required direct access to list elements

• not possible for sequential files

– made many passes through the list
• not practical for files

• Assume ALL DATA IN MEMORY!

Mergesort

Dr. Yingwu Zhu

4

Mergesort
• Sorting schemes are either …

– internal -- designed for data items stored in main
memory

– external -- designed for data items stored in
secondary memory, e.g., disks

5

Mergesort

• Mergesort can be used both as an internal
and an external sort.

• Algorithm design: Divide-and-Conquer

• Basic operation in mergesort is merging,

– combining two lists that have previously been
sorted

– resulting list is also sorted.

6

MergeSort

• Given a single file

– Split into two files

– Apply the Mergesort algorithm on the resulting
two files independently and recursively, until it is
simple enough (e.g., quicksort)

– Merge them in a bottom-up fashion

Mergesort: recursive pseudo-code

 void mergesort(int F[], int size) {

 if (size can fit in memory or simple enough) {
 sort it using other internal sorting algs
 return

 }

 (equally) split F into F1, F2 //write it into two smaller files
 mergesort(F1, size1);

 mergesort(F2, size2);

 merge F1 and F2 into F; //merge operation

 }

8

Merge Algorithm

1. Open File1 and File2 for input, File3 for output
2. Read first element x from File1 and

first element y from File2
3. While neither eof File1 or eof File2

If x < y then
 a. Write x to File3
 b. Read a new x value from File1
Otherwise
 a. Write y to File3
 b. Read a new y from File2
End while

4. If eof File1 encountered copy rest of of File2 into File3.
If eof File2 encountered, copy rest of File1 into File3

9

Merge Algorithm

• void merge(int F[], int& n, int F1[], int n1, int F2[], int n2);
//F1 and F2 are sorted, the resulting F is sorted

10

Mergesort

• T(n) = ?

11

Mergesort

• T(n) = O(n log2n), why?

