
CPSC 250 Fall 2011

Lab 4: BST

By Dr. Yingwu Zhu, Seattle University

1. Goals

This lab aims to familiarize you with BST and its operations. You need to be able to

implement a BST that efficiently support its operations as a dynamic set discussed in

class.

2. Design

In this lab, you need to implement the following basic operations:

 Constructor

 Destructor

 bool empty() which return true if the BST is empty; false otherwise

 void recurs_preorder(), void recurs_inorder() and void recurs_postorder() which

recursively traverse the tree in preorder, inorder and postorder, respectively.

 bool search(ElementType x) which returns true if x exists on the list; false

otherwise

 void nonrecurs_preorder() that traverses the tree in preorder with iterative

algorithm.

 void insert(ElementType x) which inserts a new element x into the list and

maintains the non-decreasing order

Note: typedef int ElementType;

CPSC 250 Fall 2011

3. Implementation

Now, it is time for you to come up with the class declaration for BST in bst.h

Under your lab4 directory, please complete the header file bst.h

Stop here! Complete the header file! (10 points)
===

CPSC 250 Fall 2011

 /*

 Author: xxxxx (your name)

 Program: bst.h

 Last Modification: xxx (date)

 */

 /*

 Description: this header file is for BST

 */

 #ifndef _MY_BST_H

 #define _MY_BST_H

 #include <iostream>

 using namespace std;

 typedef int ElementType;

 class BST {

 private:

 class Node {

 public:

 ElementType data;

 Node* left;

 Node* right;

 public:

 Node() : left(NULL), right(NULL) { }

 Node(ElementType x) : data(x), left(NULL), right(NULL) { }

 };

 Node* root;

 public:

 BST(); //constructor

 ~BST(); //destructor

 bool empty();

 bool recurs_search(ElementType x);

 bool nonrecurs_search(ElementType x);

 void recurs_preorder();

 void recurs_inorder();

 void recurs_postorder();

 void nonrecurs_preorder();

 void insert(ElementType x);

 };

 #endif

Note: you may need to adapt this class declaration when necessary!

Next, you are going to implement the BST in bst.cpp step by step!

CPSC 250 Fall 2011

Step 1: Implement constructor, destructor & empty() (10 points)

Thinking: What should be done in constructor and destructor? When will they be called?

How do you implement the destructor?

Step 2: Test the constructor, destructor & empty() (10 points)

In this step, you need to create a client program test.cpp and a Makefile. In test.cpp, you

should test BST’s constructor and destructor.

Note: You should comment out those function that you have NOT implemented, in

order to compile your program successfully. Also reuse your Makefile in the previous

labs by modifying the involved file names.

Step 3: Implement insert() and simply test it (10 points)

Questions: How do you perform insertion? Will the BST property help on this

insertion operation?

Step 4: Implement three recursive traversals and test if they work correctly,

combined with insert() (10 points)

Step 5: Implement non-recursive preorder traversal (10 points)

Hint: use STL stack class template, the off-the-shelf data structure.

Questions: How would you perform preorder traversal using the STL stack?

Step 6: Implement the search operation and test it (10 points)

Questions: can you implement it in both iterative and recursive versions?

===

CPSC 250 Fall 2011

4. Extra lab exercises

See the corresponding homework assignment for exercises.

