
CPSC 250 Fall 2011

Lab 2: ADT Design & Implementation

By Dr. Yingwu Zhu, Seattle University

1. Goals

In this lab, you are required to use a dynamic array to design and implement an ADT SortedList

that maintains a sorted list of integers. This lab aims to further your understanding of the basic

concepts we’ve discussed in class. The SortedList differs from the List class we’ve discussed in

class in that it stores its elements in a non-decreasing order.

2. Design

In the design stage, you need to think about two questions: (1) What data members will be in this

ADT? (2) What operations (or member functions) will be provided by this ADT?

(1) Data member:

(2) Operations:

Stop here! Answer the two questions above!

===

CPSC 250 Fall 2011

Three data members:

 Array capacity

 Array pointer

 # of elements

Basic operations:

 Constructor (with a parameter specifying the array capacity)

 Destructor

 bool empty() which return true if the list is empty; false otherwise

 void insert(ElementType x) which inserts a new element x into the list and

maintains the non-decreasing order

 void remove(ElementType x) which deletes an element x if it exists

 bool found(ElementType x) which returns true if x exists on the list; false

otherwise

 overload output operator<< to display the elements on the list

Note: typedef int ElementType;

CPSC 250 Fall 2011

3. Implementation

In this stage, you need to think about data structures for storing the data members and algorithms

for implementing the operations.

For the data structures, it is quite straightforward: we use a dynamic array to store the elements.

Now, it is time for you to come up with the class declaration for SortedList in sortedlist.h

Under your lab2 directory, please complete the header file sortedlist.h

Stop here! Complete the header file! (10 points)
===

CPSC 250 Fall 2011

 /*

 Author: xxxxx (your name)

 Program: sortedlist.h

 Last Modification: xxx (date)

 */

 /*

 Description: this header file is for SortedList

 */

 #ifndef _SORTED_LIST_H

 #define _SORTED_LIST_H

 #include <iostream>

 using namespace std;

 typedef int ElementType;

 class SortedList {

 private:

 int capacity;

 int size;

 ElementType* array;

 public:

 SortedList(int c); //constructor

 ~SortedList(); //destructor

 bool empty();

 bool found(ElementType x);

 void insert(ElementType x);

 void remove(ElementType x);

 void display(ostream& out);

 };

 ostream& operator<<(ostream& out, const SortedList& slist);

 #endif

Checklists:

 Redundant declaration?

 Data members properly declared?

 Member functions properly declared?

 Operator<< overloading properly declared?

 Semicolon in the end of class declaration?

If all your answers to the checklists are YES, congratulations!

Next, you are going to implement the SortedList in sortedlist.cpp step by step!

CPSC 250 Fall 2011

Step 1: Implement constructor and destructor (10 points)

Thinking: What should be done in constructor and destructor? When will they be called?

Step 2: Test the constructor and destructor (10 points)

In this step, you need to create a client program test.cpp and a Makefile. In test.cpp, you

should test SortedList’s constructor and destructor.

Note: You should comment out those member functions and operator<< overloading

function that you have NOT implemented, in order to compile your program

successfully. Also reuse your Makefile in Lab1 by modifying the involved file names.

 /*

 Author: xxxxx (your name)

 Program: sortedlist.h

 Last Modification: xxx (date)

 */

 /*

 Description: this header file is for SortedList

 */

 #ifndef _SORTED_LIST_H

 #define _SORTED_LIST_H

 #include <iostream>

 using namespace std;

 typedef int ElementType;

 class SortedList {

 private:

 int capacity;

 int size;

 ElementType* array;

 public:

 SortedList(int c); //constructor

 ~SortedList(); //destructor

 /*

 bool empty();

 bool found(ElementType x);

 void insert(ElementType x);

 void remove(ElementType x);

 void display(ostream& out);

 */

 };

 // ostream& operator<<(ostream& out, const SortedList& slist);

 #endif

CPSC 250 Fall 2011

Step 3: Implement insert() (10 points)

Step 4: Overload operator<< (10 points)

Step 5: Test if insert() and operator<< overloading work properly (10 points)

Step 6: Implement remove() and test it (10 points)

Step 7: Implement found() and test it (10 points)

Step 8: Revisit found() (10 points)

What search algorithm is used in this function? Can you use a more efficient algorithm if

your algorithm is linear time?

Stop here! Try to come up with a more efficient search algorithm!
===

CPSC 250 Fall 2011

Yes. You should use a binary search algorithm. Improve your found() with a binary

search algorithm.

 How many points have you got?

4. Extra lab exercises

If you have successfully completed the above steps, you may implement SortedList

using a different data structure linked-list.

