
Hashing

Dr. Yingwu Zhu

What do I have?

• Recall order of magnitude of searches

– Linear search O(n)

– Binary search O(log2n)

– Balanced binary tree search O(log2n)

– Unbalanced binary tree can degrade to O(n)

Hash Tables

• Sometime faster search is needed

– Solution: use hashing

– Value of key field fed into a hash function

– Location in a hash table is calculated

Hashing

• Key to hashing

– The hash function h(x)

Hash Functions

• Simple function could be to mod the value of
the key by some arbitrary integer
int h(int i)

{ return i % someInt; }

• Note the max number of locations in the table
will be same as someInt

• Note that we have traded space for
performance
– Table must be considerably larger than number of

items anticipated

Collision Problem

• Collision: same value returned by
h(i) for different values of i

– h(i)= i mod 31

Hash Functions

• Strategies for improved performance

– Increase table capacity (less collisions)

– Use a different collision resolution technique

– Devise a different hash function

Hash Table Capacity

• Size of table must be 1.5 to 2 times the size of
the number of items to be stored

• Otherwise probability of collisions is too high

• Sometimes may be hard to get the estimate of
the number of items

Solution #1: Linear Probing
• Insertion

– Linear search begins at
collision location

– Continues until empty
slot found for insertion

• When retrieving a value
linear probe until found
– If empty slot encountered

then value is not in table

• If deletions permitted
– Slot can be marked so

it will not be empty and cause an invalid
linear probe

Example: Linear Probing

• h(x) = x % 31, the hash table has size of 31

– Insertion order of 620, 64, 128, 467, 777, 35, 127,
282

• Use linear probing to solve collision

Solution #2: Quadratic Probing

• Linear probing can result in primary clustering

• Consider quadratic probing
– Probe sequence from location i is

i + 1, i – 1, i + 2^2, i – 2^2, i + 3^2, i – 3^2, …

– Exercise: using quadratic probing to solve

– Drawback: Secondary clusters can still form

Solution #3: Double Hashing

• Double hashing

– Use a second hash function to determine probe
sequence

– Two hash functions

• h1(x) = i

• h2(x) = k

• Probing sequence i, i+k, i+2k,….

Example: Double Hashing

• h(x) = x % 31, the hash table has size of 31

– Insertion order of 620, 64, 128, 467, 777, 35, 127, 282

• Exercise: Use double hashing to solve collision

– h1(x) = x % 31

– h2(x) = 17 – (x % 17)

Solution 4: Chaining

• Chaining

– Table is a list of head nodes to linked lists

– When item hashes to location, it is added to that
linked list

Improve the Hash Function

• Ideal hash function

– Simple to evaluate

– Scatters items uniformly throughout table
(reducing collision)

• Modulo arithmetic not so good for strings

– Possible to manipulate numeric (ASCII) value of
first and last characters of a name

Do you know any good hash function?

• MD5 hashing, h(x)=16bytes

• SHA-1 hashing, h(x)=20bytes

• Hope you spend some time on googling these
two to get a taste!!!!

Review

• Why Hashing?

• What does hashing do?

• One problem of hashing: collision

– Degrade search performance

• 3 strategies to improve hashing performance

• Collision Strategies

• How to evaluate if a hash function is good?

