Hashing

Dr. Yingwu Zhu

What do | have?

* Recall order of magnitude of searches
— Linear search O(n)
— Binary search O(log,n)
— Balanced binary tree search O(log,n)

I
M
IS T
- M P] /

— Unbalanced binary tree can degrade to O(n)

Hash Tables

Sometime faster search is heeded
— Solution: use hashing

— Value of key field fed into a hash function
— Location in a hash table is calculated

Ciollec tiom o Ha=h tahle
data items=

Lad bl = [T

|I:I'.]II'IJ_||.;'I||III

~H 0N

I ot P

Hashing

* Key to hashing
— The hash function h(x)

Hash Functions

e Simple function could be to mod the value of
the key by some arbitrary integer
int h(int 1)
{ return 1 % somelnt; }

* Note the max number of locations in the table
will be same as someInt

* Note that we have traded space for
performance

— Table must be considerably larger than number of
items anticipated

Collision Problem

* Collision: same value returned by . riil | 50

h (i) for different values of i el 33

—h(i)= i mod 31 ahle2] | 64 e
blel3] | 95
table(d] | 128
aBled | 188

able|29] | 277 :)/
ahle| 3] | 6l

Hash Functions

» Strategies for improved performance
— Increase table capacity (less collisions)
— Use a different collision resolution technique
— Devise a different hash function

Hash Table Capacity

e Size of table must be 1.5 to 2 times the size of
the number of items to be stored

* Otherwise probability of collisions is too high

 Sometimes may be hard to get the estimate of
the number of items

Solution #1: Linear Probing

Insertion

— Linear search begins at
collision location

— Continues until empty
slot found for insertion
When retrieving a value
linear probe until found
— If empty slot encountered
then value is not in table
If deletions permitted

— Slot can be marked so
it will not be empty and cause an invalid
linear probe

e
fahle| |

bl

-z

tahle

e

tahle

|II|IIr.'|II.. .:I'

]
]
1

|'|'|'|r"||l.'| :':'l
el "ull.'l A '|

[|
. |
T |

i)

T

Example: Linear Probing

* h(x) =x % 31, the hash table has size of 31

— Insertion order of 620, 64, 128, 467, 777, 35, 127,
282

* Use linear probing to solve collision

Solution #2: Quadratic Probing

* Linear probing can result in primary clustering

* Consider quadratic probing
— Probe sequence from location i is
i+1,i—1,i+272,i—2"2,i+3"2,i—372, ..
— Exercise: using quadratic probing to solve
— Drawback: Secondary clusters can still form

Solution #3: Double Hashing

* Double hashing

— Use a second hash function to determine probe
sequence

— Two hash functions
* h1(x) =i
* h2(x) =k
* Probing sequence i, i+k, i+2k,....

Example: Double Hashing

* h(x) =x% 31, the hash table has size of 31
— Insertion order of 620, 64, 128, 467,777, 35, 127, 282

e Exercise: Use double hashing to solve collision
— h1(x)=x% 31
— h2(x)=17-(x% 17)

Solution 4: Chaining

e Chaining
— Table is a list of head nodes to linked lists

— When item hashes to location, it is added to that
linked list

fenle| O] Acdams John
lll. I.lr.'ll':ll I I
lll. I.lr.'ll':ll : I

fedfe| 3 [avis Jos [Pz, Mary

|'.'|'.r"||l:'| 25 I

Improve the Hash Function

* |deal hash function
— Simple to evaluate

— Scatters items uniformly throughout table
(reducing collision)

* Modulo arithmetic not so good for strings

— Possible to manipulate numeric (ASCII) value of
first and last characters of a name

Do you know any good hash function?

 MD5 hashing, h(x)=16bytes

e SHA-1 hashing, h(x)=20bytes

* Hope you spend some time on googling these
two to get a tastell!l

Review

Why Hashing?
What does hashing do?
One problem of hashing: collision

— Degrade search performance

3 strategies to improve hashing performance
Collision Strategies

How to evaluate if a hash function is good?

