
Programming Assignments #2 

 
Due date: 10/19/2011 Wednesday 9:20AM 

 

1. Problem (26 points) 

 
In this assignment, you need to start from Lab4 (including bst.h, bst.cpp, test.cpp and Makefile) to 

complete t the tasks as described later. 

In the lab4, you have already implemented 

 Constructor 

 Destructor 

 bool  empty() 

 void insert(ElementType x) 

 Three recursive traversals 

 Nonrecurive preorder traversal 

 Both recursive and non-recursive search operation 

 

Before starting this assignment, you need to make sure all the above functions working correctly. If so, 

you will receive 5 points.  

 

Then, you need to make BST to support the following operations. The member function prototypes are 

given below. You are NOT allowed to modify their prototypes! 

 void   nonrecurs_inorder(); 

A non-recursive inorder traversal using STL stack. (3 points) 

 int level(const ElementType& item); 

It determines the level of an given item on the tree. The root of the BST is at level 0, and its 

children are at level 1, and so on. Return -1 if the item is not on the tree. (3 points) 

 void level_traversal(); 

It traverses a tree level by level; that is, first visit the root, then all nodes on level 1 (children of 

the root), then all nodes on level 2, and so on. Nodes on the same level should be visited in 

order from left to right. Write a non-recursive function. Use a queue of pointers, you can use STL 

queue. (3 points) 

 int height(); 

It returns the height of the tree. (3 points) 

 ElementType  getMin(); 

It returns the minimum data item on the tree. (3 points) 

 ElementType  getMax(); 

It returns the maximum data item on the tree. (3 points) 

 void remove(const ElementType& x); 

It deletes the specified element from the tree if it exists. (3 points) 



2. References 

[1] STL stack: http://www.cplusplus.com/reference/stl/stack/ 

[2] STL queue: http://www.cplusplus.com/reference/stl/queue/ 

 

For example, if you want to use a STL queue to store integers, you can declare a STL queue like this: 
// queue::push/pop 

#include <iostream> 

#include <queue> 

using namespace std; 

 

int main () 

{ 

queue<int> myqueue; 

int myint; 

 

cout << "Please enter some integers (enter 0 to end):\n"; 

 

do { 

cin >> myint; 

myqueue.push (myint); 

} while (myint); 

 

cout << "myqueue contains: "; 

while (!myqueue.empty()) 

{ 

cout << " " << myqueue.front(); 

myqueue.pop(); 

} 

 

return 0; 

} 

 

More examples about these two containers can be found in the links. 

 

3. Submission 

Before submission, you should ensure your program has been compiled and tested extensively. Your 
assignment receives zero if your code cannot be compiled and executed. Collaboration is prohibited! 
 
You are encouraged to include a readme file in your submission, which should state your program’s 
purposes, assumptions, and issues (if any). 
 
You can submit your program multiple times before the deadline. The last submission will be used for 
grading. 
 
To submit your assignment, you should follow the steps below: 

a. Wrap all your files into a package, named hw2.tar 
tar   -cvf   hw2.tar   bst.h   bst.cpp   test.cpp   Makefile    readme 

b. Submit your newly generated package hw1.tar 
                      /home/fac/testzhuy/CPSC250/SubmitHW    hw2     hw2.tar 
 

http://www.cplusplus.com/reference/stl/stack/
http://www.cplusplus.com/reference/stl/queue/


4. Grading 

 You will receive zero if your program cannot be compiled and executed or if your submission 

does not include the required files. 

 The lab exercises receive 5 points in total. If you have any mistakes on the lab exercises, you 

receive 0- 80% of the points. 

 Each function except the lab exercises receives 3 points. If you did not test it in your test.cpp, 

you receive 0-50% of the points. If your function has problems, you receive 0-%80 of the points 

 

5. Testing 

As mentioned earlier, you need to test your program extensively before submission. In order to make 

your program testing to meet the minimum standard, I provide a test case below for your testing 

purpose. Note that this does not cover all use cases. 

 

ElementType  A[] = {23,  45, 12, 35, 60, 99, 6, 87, 9, 10, 14, 25 };  
BST    bt1; 
//test insert() 
for (int i = 0; i < 12; i++) 
       bt1.insert(A[i]); 
 
cout << “\nNon-recursive inorder travels: \n”; 
bt1.nonrecurs_inorder();  //test nonrecursive inorder 
 
cout << “\nLevel  traversal: \n”; 
bt1.level_traversal(); 
 
cout << endl; 
cout << “The min data item is: “ << bt1.getMin() << endl; 
cout << “The max data item is: “ << bt1.getMax() << endl; 
cout << “The tree height is: “ << bt1.height() << endl; 
 
//test deletion 
bt1.remove(45); 
bt1.remove(8); 
cout << “\nNon-recursive inorder travels: \n”; 
bt1.nonrecurs_inorder();  //test nonrecursive inorder 
 
cout << “99 is on the level of “ << bt1.level(99) << endl; 
cout << “45 is on the level of “ << bt1.level(45) << endl; 
 


