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Measure Algorithm Efficiency 

• Space utilization: amount of memory 
required 

• Time efficiency: amount of time required to 
accomplish the task 

• As space is not a problem nowadays 

– Time efficiency is more emphasized 

– But, in embedded computers or sensor nodes, 
space efficiency is still important 



Time Efficiency 

• Time efficiency depends on : 

– size of input 

– speed of machine  

– quality of source code  

– quality of compiler 

These vary from one 

platform to another 

So, we cannot express time efficiency meaningfully in real time units 
such as seconds! 



Time Efficiency 

• Time efficiency = the number of times instructions executed 

– A measurement of efficiency of an algorithm 

 

• Measure computing time T(n) as 

– T(n) = number of times the instructions executed 

– T(n): computing time of an algorithm for input of size n 



Example: calculating a mean 

Task              # times executed 

1. Initialize the sum to 0   1 

2. Initialize index i to 0              1 

3. While  i < n do following         n+1 

4.   a) Add x[i] to sum              n 

5.   b) Increment i by 1              n 

6. Return mean = sum/n   1 

            Total                                                  3n + 4 



T(n): Order of Magnitude 

• As number of inputs increases 
– T(n) = 3n + 4 grows at a rate proportional to n 

– Thus T(n) has the "order of magnitude" n 



T(n): Order of Magnitude 

• T(n)on input of size n,  
– If there is some constant C such that  

T(n) < Cf(n)   
for all sufficiently large values of n 

– Then T(n) said to have order of magnitude f(n),   

– Written as: T(n) = O(f(n)) 

• Big-Oh notation 



Big Oh Notation 

Another way of saying this: 
• The complexity of the algorithm is O(f(n)). 

Example:  For the Mean-Calculation 
Algorithm: 
 
 



Mean-Calculation Algorithm 

[1] int sum = 0; 

[2] int i = 0; 

[3] While(i < n) { 

[4]  sum += a[i]; 

[5]  i++; 

    } 

[6] return sum/n;   



Big Oh Notation 

• Example:  For the Mean-Calculation Algorithm: 
 
 T(n) is O(n)  

• Note that constants and multiplicative factors are 
ignored.  

• Simple function: f(n) = n 



Measure T(n) 

• Not only depends on the input size, but also 
depends on the arrangement of the input items 

– Best case: not informative 

– Average value of T: difficult to determine 

– Worst case: is used to measure an algorithm’s 
performance 



Simplifying the complexity analysis 
Q: Do we need to examine all statements? 

• Identify the statement executed most often 
and determine its execution count 

• Ignore items with lower degree 

• Only the highest power of n that affects 
Big-O estimate 

• Big-O estimate gives an approximate 
measure of the computing time of an 
algorithm for large inputs 



Get a Taste 

int search (int a[n], int x) { // pseudocode for search x 

   for (int i=0; i<n; i++) 

      if (a[i]==x) return i; 

   return -1; 

} // assuming the elements in a[] are unique 

Complexity analysis T(n): 

-- best case: ? 

-- average value: ? 

-- worst case: ? 



Get a Taste 

• Answer: 

– Best case: O(1) 

– Average case: O(n) 

– Worst case: O(n) 

• How to get this? 



Simple Selection Sorting Algorithm,p554 

// Algorithm to sort x[0]…x[n-1] into ascending order 

1. for (int i=0; i<n-1; i++) { 

    /*On the ith pass, first find the smallest element in the sublist x[i],…,x[n-1]. */  

2. int spos = i; 

3. int smallest = x[spos]; 

4. for (int j=i+1; j<n; j++) { 

5.      if (x[j] < smallest) { 

6.            spos = j; 

7.            smallest = x[j]; 

               } // end if 

          }  // end for 

8. x[spos] = x[i]; 

9. X[i] = smallest 

   }// end for 



What’s the worst case T(n)? 

• T(n) = O(n2) 

• How do we get that? 

– Let’s try! 



Exercises #1 

for (int k=0; k < n; k++) 

    for (int i = 0; i < n; i++) 

        m[i][j] = a[i][j] + b[i][j]; 

 



Exercises #2 

for (int k=0; k < n; k++) 

    for (int i = k+1; i < n; i++) 

        m[i][j] = a[i][j] + b[i][j]; 
 



Big-Oh notation 

• f(n) is usually simple: 

   n, n2, n3, ... 
 2^n, 
1, log2n 
n log2n 
log2log2n 



Exercises #3 

n = 0; 

sum = 0; 

cin >> x; 

while (x != -999) { 

      n++; 

      sum += x; 

      cin >> x; 

 } 

mean = sum / n; 
 

 



Binary Search Algorithm 

int bin_search(int a[], int item) // a [0… n-1]  

        bool found = false; 

        int first = 0; 

        int last = n-1; 

        while (first <= last && !found) { 

            int loc = (first + last) / 2; 

            if (item < a[loc]) 

                 last = loc – 1; 

            else if (item > a[loc])  

                 first = loc + 1; 

            else found = !found; 

        } //end while  

} //end bin_search 



Binary Search Algorithm 

See p556. 

Step 1: identify the statement executed most often 

Step 2: determine the execution count for that 
statement (the worst case!) 

    T(n)= O(log2n) 

 

Better approach: how binary search is performed? 

 



How about recursive algorithms? 

double power(double x, unsigned n) 

{ 

     if (n==0)   

         return 1.0; 

     return x * power(x, n-1); 

} 

  



How to compute Big-Oh? 

• Recurrence relation: expresses the computing 
time for input of size n in terms of smaller-sized 
inputs 

• How to solve recurrence relations? 

– Using telescoping principle: repeatedly apply the 
relation until the anchor case is reached 



Exercises #5 

double fun(double x, unsigned  n) { 

    if (n==0) 

       return 1.0; 

    return x*fun(x, n/2); 

}  



Exercises #6 

 

  for (int i = 0; i < n * n; ++i) { 

      sum = sum/n; 

      for (int j = 0; j < i; ++j) 

          j >> cout; 

  } 

 



Exercises #7 

    for (int j = 4; j < n; ++j) { 

          cin >> val; 

          for (int i = 0; i < j; ++i) { 

                b = b * val; 

                for (int k = 0; k < n; ++k) 

                     c = b + c; 

          } 

     } 



Exercises #8 

for (int i = 1; i<n-1; i++) {  
     temp = a[i];  
     for (int j = i-1; j >= 0; j--)   
        if (temp < a[j])    
              a[j+1] = a[j]; 
        else  
              break; 
     a[j+1] = temp; 
  } 



Review of Lecture 

• How to measure algorithm efficiency? 

• How to compute time efficiency T(n)? 

• Big-Oh notation 

• For an algorithm, give the Big-Oh notation 

– Simplified analysis 

– Non-recursive 

– Recursive: telescoping principle 


