
Algorithm Complexity Analysis: Big-O
Notation (Chapter 10.4)

Dr. Yingwu Zhu

Measure Algorithm Efficiency

• Space utilization: amount of memory
required

• Time efficiency: amount of time required to
accomplish the task

• As space is not a problem nowadays

– Time efficiency is more emphasized

– But, in embedded computers or sensor nodes,
space efficiency is still important

Time Efficiency

• Time efficiency depends on :

– size of input

– speed of machine

– quality of source code

– quality of compiler

These vary from one

platform to another

So, we cannot express time efficiency meaningfully in real time units
such as seconds!

Time Efficiency

• Time efficiency = the number of times instructions executed

– A measurement of efficiency of an algorithm

• Measure computing time T(n) as

– T(n) = number of times the instructions executed

– T(n): computing time of an algorithm for input of size n

Example: calculating a mean

Task # times executed

1. Initialize the sum to 0 1

2. Initialize index i to 0 1

3. While i < n do following n+1

4. a) Add x[i] to sum n

5. b) Increment i by 1 n

6. Return mean = sum/n 1

 Total 3n + 4

T(n): Order of Magnitude

• As number of inputs increases
– T(n) = 3n + 4 grows at a rate proportional to n

– Thus T(n) has the "order of magnitude" n

T(n): Order of Magnitude

• T(n)on input of size n,
– If there is some constant C such that

T(n) < Cf(n)
for all sufficiently large values of n

– Then T(n) said to have order of magnitude f(n),

– Written as: T(n) = O(f(n))

• Big-Oh notation

Big Oh Notation

Another way of saying this:
• The complexity of the algorithm is O(f(n)).

Example: For the Mean-Calculation
Algorithm:

Mean-Calculation Algorithm

[1] int sum = 0;

[2] int i = 0;

[3] While(i < n) {

[4] sum += a[i];

[5] i++;

 }

[6] return sum/n;

Big Oh Notation

• Example: For the Mean-Calculation Algorithm:

 T(n) is O(n)

• Note that constants and multiplicative factors are
ignored.

• Simple function: f(n) = n

Measure T(n)

• Not only depends on the input size, but also
depends on the arrangement of the input items

– Best case: not informative

– Average value of T: difficult to determine

– Worst case: is used to measure an algorithm’s
performance

Simplifying the complexity analysis
Q: Do we need to examine all statements?

• Identify the statement executed most often
and determine its execution count

• Ignore items with lower degree

• Only the highest power of n that affects
Big-O estimate

• Big-O estimate gives an approximate
measure of the computing time of an
algorithm for large inputs

Get a Taste

int search (int a[n], int x) { // pseudocode for search x

 for (int i=0; i<n; i++)

 if (a[i]==x) return i;

 return -1;

} // assuming the elements in a[] are unique

Complexity analysis T(n):

-- best case: ?

-- average value: ?

-- worst case: ?

Get a Taste

• Answer:

– Best case: O(1)

– Average case: O(n)

– Worst case: O(n)

• How to get this?

Simple Selection Sorting Algorithm,p554

// Algorithm to sort x[0]…x[n-1] into ascending order

1. for (int i=0; i<n-1; i++) {

 /*On the ith pass, first find the smallest element in the sublist x[i],…,x[n-1]. */

2. int spos = i;

3. int smallest = x[spos];

4. for (int j=i+1; j<n; j++) {

5. if (x[j] < smallest) {

6. spos = j;

7. smallest = x[j];

 } // end if

 } // end for

8. x[spos] = x[i];

9. X[i] = smallest

 }// end for

What’s the worst case T(n)?

• T(n) = O(n2)

• How do we get that?

– Let’s try!

Exercises #1

for (int k=0; k < n; k++)

 for (int i = 0; i < n; i++)

 m[i][j] = a[i][j] + b[i][j];

Exercises #2

for (int k=0; k < n; k++)

 for (int i = k+1; i < n; i++)

 m[i][j] = a[i][j] + b[i][j];

Big-Oh notation

• f(n) is usually simple:

 n, n2, n3, ...
 2^n,
1, log2n
n log2n
log2log2n

Exercises #3

n = 0;

sum = 0;

cin >> x;

while (x != -999) {

 n++;

 sum += x;

 cin >> x;

 }

mean = sum / n;

Binary Search Algorithm

int bin_search(int a[], int item) // a [0… n-1]

 bool found = false;

 int first = 0;

 int last = n-1;

 while (first <= last && !found) {

 int loc = (first + last) / 2;

 if (item < a[loc])

 last = loc – 1;

 else if (item > a[loc])

 first = loc + 1;

 else found = !found;

 } //end while

} //end bin_search

Binary Search Algorithm

See p556.

Step 1: identify the statement executed most often

Step 2: determine the execution count for that
statement (the worst case!)

 T(n)= O(log2n)

Better approach: how binary search is performed?

How about recursive algorithms?

double power(double x, unsigned n)

{

 if (n==0)

 return 1.0;

 return x * power(x, n-1);

}

How to compute Big-Oh?

• Recurrence relation: expresses the computing
time for input of size n in terms of smaller-sized
inputs

• How to solve recurrence relations?

– Using telescoping principle: repeatedly apply the
relation until the anchor case is reached

Exercises #5

double fun(double x, unsigned n) {

 if (n==0)

 return 1.0;

 return x*fun(x, n/2);

}

Exercises #6

 for (int i = 0; i < n * n; ++i) {

 sum = sum/n;

 for (int j = 0; j < i; ++j)

 j >> cout;

 }

Exercises #7

 for (int j = 4; j < n; ++j) {

 cin >> val;

 for (int i = 0; i < j; ++i) {

 b = b * val;

 for (int k = 0; k < n; ++k)

 c = b + c;

 }

 }

Exercises #8

for (int i = 1; i<n-1; i++) {
 temp = a[i];
 for (int j = i-1; j >= 0; j--)
 if (temp < a[j])
 a[j+1] = a[j];
 else
 break;
 a[j+1] = temp;
 }

Review of Lecture

• How to measure algorithm efficiency?

• How to compute time efficiency T(n)?

• Big-Oh notation

• For an algorithm, give the Big-Oh notation

– Simplified analysis

– Non-recursive

– Recursive: telescoping principle

