Binary Search Trees (BST)

Dr. Yingwu Zhu

Review: Linear Search

Collection of data items to be searched is organized in a list

$$X_1, X_2, ... X_n$$

- Assume == and < operators defined for the type</p>
- Linear search begins with item 1
 - continue through the list until target found
 - or reach end of list

Linear Search

Array based search function

```
void LinearSearch (int v[], int n,
              const int& item,
              boolean &found, int &loc)
  found = false; loc = 0;
  for ( ; ; )
    if (found || loc < n) return;
    if (item == v[loc]) found = true;
   else loc++;
```

Linear Search

Singly-linked list based search function

```
void LinearSearch (NodePointer first,
        const int& item, bool &found, int
  &loc)
 NodePointer locptr=first;
  found = false;
  for{loc=0; !found && locptr!=NULL;
    locptr=locptr->next)
    if (item == locptr->data)
        found = true;
    else loc++;
```

Binary Search

• Two requirements?

Binary Search

- Two requirements
 - The data items are in ascending order (can they be in decreasing order?)
 - Direct access of each data item for efficiency (why linked-list is not good!)

Binary Search

Binary search function for vector

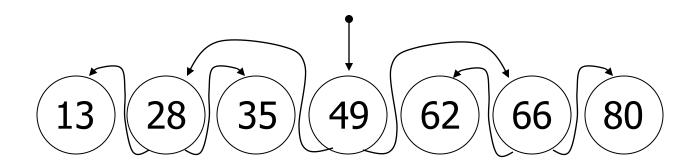
```
void LinearSearch (int v[], int n,
               const t &item,
               bool &found, int &loc) {
  found = false; loc = 0;
  int first = 0; int last = n - 1;
  while (first <= last) {</pre>
    loc = (first + last) / 2;
    if (item < v[loc])</pre>
        last = loc - 1;
    else if (item > v[loc])
        first = loc + 1;
    else {
        found = true; // item found
        break;
```

Binary Search vs. Linear Search

- Usually outperforms Linear search: O(logn)
 vs. O(n)
- Disadvantages
 - Sorted list of data items
 - Direct access of storage structure, not good for linked-list
- Good news: It is possible to use a linked structure which can be searched in a binary-like manner

Binary Search Tree (BST)

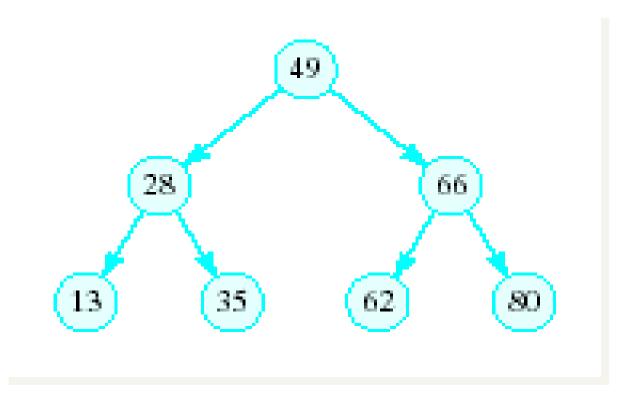
Consider the following ordered list of integers



- 1. Examine middle element
- 2. Examine left, right sublist (maintain pointers)
- 3. (Recursively) examine left, right sublists

Binary Search Tree

 Redraw the previous structure so that it has a treelike shape – a <u>binary tree</u>

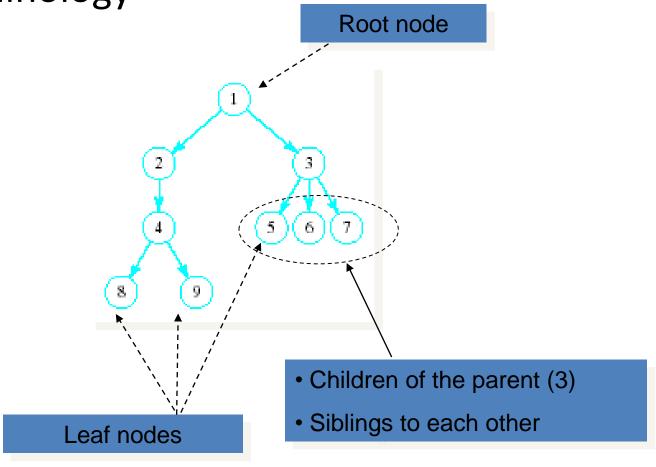


Trees

- A data structure which consists of
 - a finite set of elements called <u>nodes</u> or vertices
 - a finite set of <u>directed arcs</u> which connect the nodes
- If the tree is nonempty
 - one of the nodes (the <u>root</u>) has no incoming arc
 - every other node can be reached by following a unique sequence of consecutive arcs (or paths)

Trees

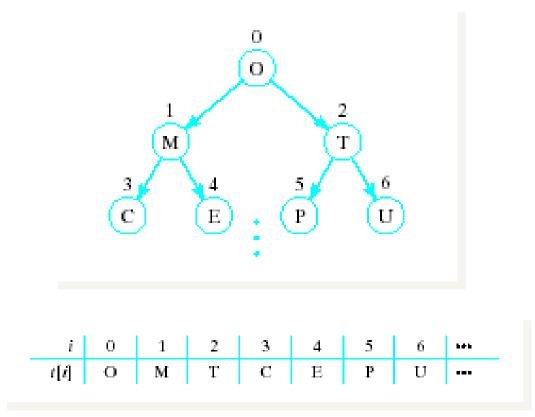
Tree terminology



Binary Trees

- Each node has at most two children
- An empty tree is a binary tree

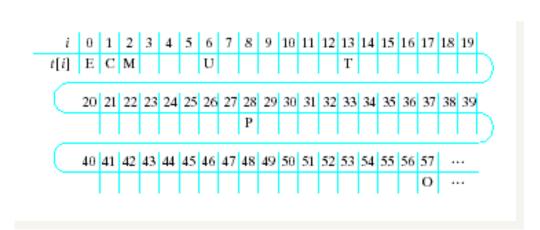
Array Representation of Binary Trees

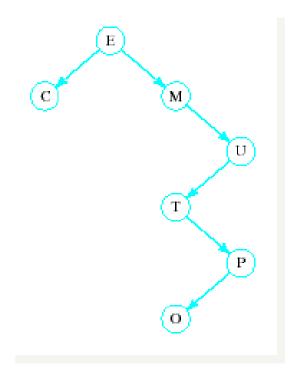


Store the ith node in the ith location of the array

Array Representation of Binary Trees

Works OK for complete trees, not for sparse trees





Some Tree Definition, p656

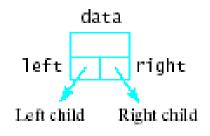
- Complete trees (might different form other books)
 - Each level is completely filled except the bottom level
 - The leftmost positions are filled at the bottom level
 - Array storage is perfect for them
- Balanced trees
 - Binary trees
 - |left_subtree right_subtree | <= 1</pre>
- Tree Height/Depth:
 - The # of levels

Tree Questions

- A complete tree must be a balanced tree?
- Give a node with position i in a complete tree,
 what are the positions of its child nodes?
 - Left child?
 - Right child?

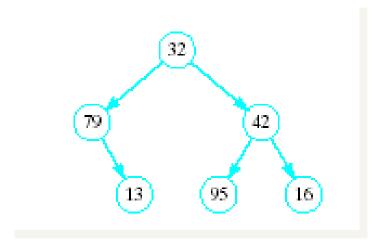
Linked Representation of Binary Trees

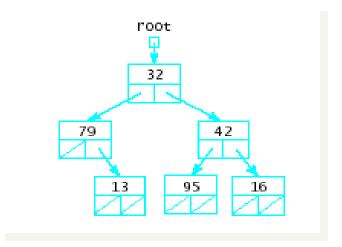
- Uses space more efficiently
- Provides additional flexibility
- Each node has two links
 - one to the left child of the node
 - one to the right child of the node
 - if no child node exists for a node, the link is set to
 NULL



Linked Representation of Binary Trees

Example





Binary Trees as Recursive Data Structures

A binary tree is either <u>empty</u> ...
 or

Anchor

- Consists of
 - a node called the <u>root</u>
 - root has pointers to two
 disjoint binary (sub)<u>trees</u> called ...
 - right (sub)<u>tree</u>
 - left (sub)<u>tree</u>

Which is either empty ...

or ...

Which is either empty ...

or ...

Inductive step

Tree Traversal is Recursive

If the binary tree is empty then do nothing

Else

N: Visit the root, process data

L: Traverse the left subtree

R: Traverse the right subtree

The "anchor"

The inductive step

Traversal Order

Three possibilities for inductive step ...

 Left subtree, Node, Right subtree the <u>inorder</u> traversal

 Node, Left subtree, Right subtree the <u>preorder</u> traversal

 Left subtree, Right subtree, Node the <u>postorder</u> traversal

ADT: Binary Search Tree (BST)

- Collection of Data Elements
 - Binary tree
 - BST property: for each node x,
 - value in left child of x < value in x < in right child of x
- Basic operations
 - Construct an empty BST
 - Determine if BST is empty
 - Search BST for given item

ADT Binary Search Tree (BST)

- Basic operations (ctd)
 - Insert a new item in the BST
 - Maintain the BST property
 - Delete an item from the BST
 - Maintain the BST property
 - Traverse the BST
 - Visit each node exactly once
 - The *inorder traversal* must visit the values in the nodes in ascending order

BST

```
typedef int T;
class BST {
   public:
     BST() : myRoot(0) {}
     bool empty() { return myRoot==NULL; }
   private:
     class BinNode {
       public:
         T data;
         BinNode* left, right;
         BinNode() : left(0), right(0) {}
         BinNode(Titem): data(item), left(0), right(0) {}
     }; //end of BinNode
     typedef BinNode* BinNodePtr;
     BinNodePtr myRoot;
};
```

BST operations

- Inorder, preorder and postorder traversals (recursive)
- Non-recursive traversals

BST Traversals, p.670

- Why do we need two functions?
 - Public: void inorder(ostream& out)
 - Private: inorderAux(...)
 - Do the actual job
 - To the left subtree and then right subtree
- Can we just use one function?
 - Probably NO

Non-recursive traversals

- Let's try non-recusive inorder
- Any idea to implement non-recursive traversals? What ADT can be used as an aid tool?

Non-recursive traversals

- Basic idea
 - Use LIFO data structure: stack
 - #include <stack> (provided by STL)
 - Chapter 9, google stack in C++ for more details, members and functions
 - Useful in your advanced programming

Non-recursive inorder

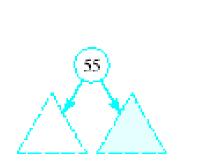
- Let's see how it works given a tree
- Step by step

Non-recursive traversals

- Can you do it yourself?
 - Preorder?
 - Postorder?

BST Searches

- Search begins at root
 - If that is desired item, done
- If item is <u>less</u>, move down <u>left</u> subtree
- If item searched for is greater, move down <u>right</u> subtree
- If item is not found, we will run into an empty subtree



25

BST Searches

- Write recursive search
- Write Non-recursive search algorithm
- bool search(const T& item) const

Insertion Operation

Basic idea:

- Use search operation to locate the insertion position or already existing item
- Use a parent point pointing to the parent of the node currently being examined as descending the tree

Insertion Operation

- Non-recursive insertion
- Recursive insertion
- Go through insertion illustration p.677
 - Initially parent = NULL, locptr = root;
 - Location termination at NULL pointer or encountering the item
 - Parent->left/right = item

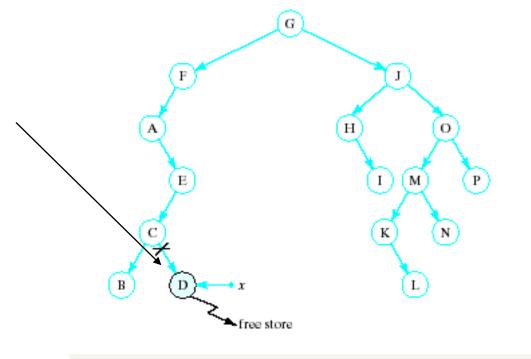
Recursive Insertion

- See p. 681
- Thinking!
 - Why using & at subtreeroot

Deletion Operation

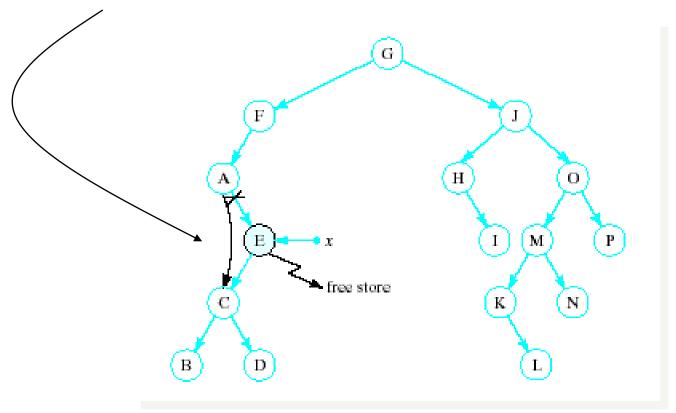
Three possible cases to delete a node, x, from a BST

1. The node, x, is a leaf



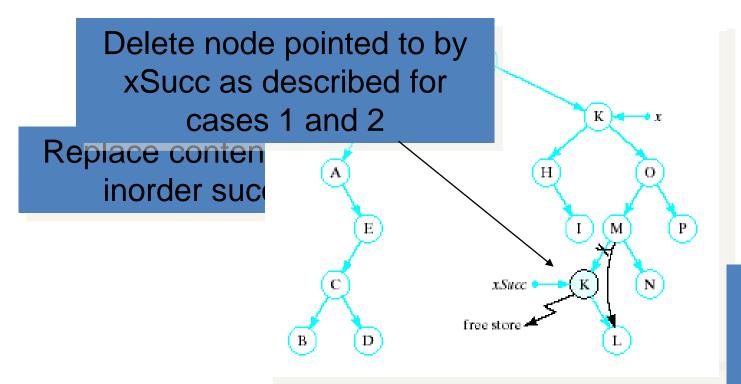
Deletion Operation

2. The node, x has one child



Deletion Operation

x has two children



View remove() function

Question?

 Why do we choose inorder predecessor/successor to replace the node to be deleted in case 3?

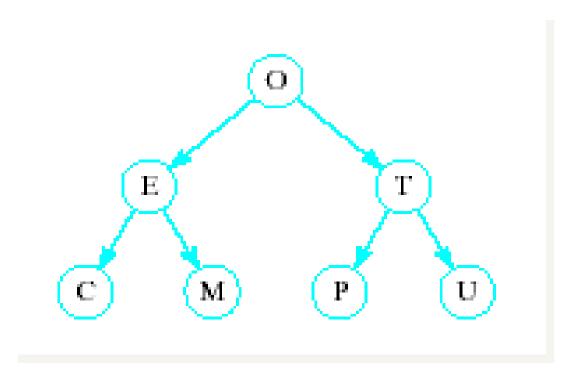
Questions?

- What is T(n) of search algorithm in a BST? Why?
- What is T(n) of insert algorithm in a BST?
- Other operations?

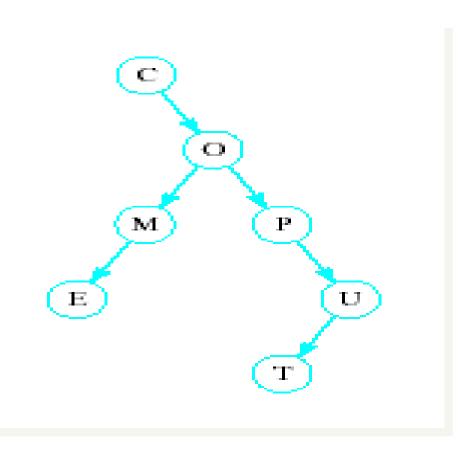
Problem of Lopsidedness

- The order in which items are inserted into a BST determines the shape of the BST
- Result in Balanced or Unbalanced trees
- Insert O, E, T, C, U, M, P
- Insert C, O, M, P, U, T, E

Balanced



Unbalanced



Problem of Lopsidedness

- Trees can be totally lopsided
 - Suppose each node has a right child only
 - Degenerates into a linked list

