
ADT: Design & Implementation

Dr. Yingwu Zhu

Outline

• Concept: ADT

• Demonstration of ADT’s design and
implementation

– List as an ADT (our focus)

– Stack & Queue as ADTs (exercises)

3

Abstract Data Type (ADT)

• ADT = data items + operations on the data

• Design of ADT

– Determine data members & operations

• Implementation of ADT

– Storage/data structures to store the data

– Algorithms for the operations, i.e., how to do it

Example: List

• List as an ADT

• 3 different implementations

– Static array-based

– Dynamic array-based

– Linked-list based

5

Properties of Lists

• Can have a single element

• Can have no elements empty!

• There can be lists of lists

• We will look at the list as an abstract data type
– Homogeneous

– Finite length

– Sequential elements

6

Basic Operations

• Construct an empty list

• Determine whether or not empty

• Insert an element into the list

• Delete an element from the list

• Traverse (iterate through) the list to
– Modify

– Output

– Search for a specific value

– Copy or save

– Rearrange

7

Designing a List Class

• Should contain at least the following function
members
– Constructor

– empty()

– insert()

– delete()

– display()

• Implementation involves
– Choosing data structures to store data members

– Choosing algorithms to implement function members

Impl. 1: Static Array

• Use a static array to hold list elements

• Easy to manipulate arrays for implementing
operations

• Natural fit for mapping list elements to array
elements

Design

• What data members?

• What operations?

10

Design

 const int CAPACITY = 1000; //for what purpose?

 typedef int ElementType; //for what purpose?

class List {

 private:

 int size; //# of elements

 ElementType array[CAPACITY];

 public:

 …

};

11

Implementing Operations

• Constructor
– Static array allocated at compile time. No need to allocate explicitly!

• Empty
– Check if size == 0

• Traverse

– Use a loop from 0th element to size – 1

• Insert
– Shift elements to

right of insertion point

• Delete
– Shift elements back

Also adjust
size up or

down

12

List Class with Static Array - Problems

• Stuck with "one size fits all"

– Could be wasting space

– Could run out of space

• Better to have instantiation of specific list:
specify what the capacity should be

• Thus we consider creating a List class with
dynamically-allocated array

Impl. 2: Using Dynamic Arrays

• Allow List objects to specify varied sizes

14

Dynamic-Allocation for List Class

• Now possible to specify different sized lists
cin >> maxListSize;

List aList1(maxListSize);

List aList2(500);

15

Dynamic-Allocation for List Class

• Changes required in data members
– Eliminate const declaration for CAPACITY

– Add data member to store capacity specified by client
program

– Change array data member to a pointer

– Constructor requires considerable change

• Little or no changes required for
– empty()

– display()

– erase()

– insert()

16

Design

typedef int ElementType;

class List {

 private:

 int mySize; //# of elements

 int myCapacity;

 ElementType *myArray;

 public:

 List (int cap);

};

What needs to be changed?

• Constructor

• Addition of other functions to deal with
dynamically allocated memory

– Destructor

– Copy constructor (won’t be discussed here)

– Assignment operator (won’t be discussed here)

Constructor

• Two tasks
– Data member initialization

– Dynamically allocate memory

//constructor

List::List(int cap) : mySize(0), myCapacity(cap) {

 myArray = new int[cap]; //allocate memory

 assert(myArray != 0); //need #include <cassert>

}

19

Destructor Needed!

• When class object goes out of scope, the pointer
to the dynamically allocated memory is
reclaimed automatically

• The dynamically allocated memory is not

• The destructor reclaims dynamically allocated

memory (the default destructor fails here!)

Destructor

• The default destructor needs to be overrided!

• De-allocate memory you allocated previously;
otherwise causes memory leak problem!

List::~List() {

 delete [] myArray;

}

Problems

• Array capacity cannot be changed during
running time (execution)!

• Insertion & deletion are not efficient!

– Involve element shifting

Impl. 3: Using Linked-Lists

• To address the two problems faced by array-
based solutions

23

Review: Linked List

• Linked list nodes contain

– Data part – stores an element of the list

– Next part – stores link/pointer to next element
 (when no next element, null value)

Basic Operations

• Traversal

• Insertion

• Deletion

25

Traversal

• Initialize a variable ptr to point to first node

• Process data where ptr points

26

Traversal (cont.)

• set ptr = ptr->next, process ptr-
>data

• Continue until ptr == null

27

Insertion

• Insertion

– To insert 20 after 17

– Need address of item before point of insertion

– predptr points to the node containing 17

– Create a new node pointed to by newptr and store 20 in it

– Set the next pointer of this new node equal to the next pointer
in its predecessor, thus making it point to its successor.

– Reset the next pointer of its predecessor to point to this new
node

20
newptr

predptr

28

Insertion

• Note: insertion also works at end of list
– pointer member of new node set to null

• Insertion at the beginning of the list
– predptr must be set to first

– pointer member of newptr set to that value

– first set to value of newptr

 Note: In all cases, no shifting of list

elements is required !

29

Operations: Deletion

• Delete node containing 22 from list.

– Suppose ptr points to the node to be deleted

– predptr points to its predecessor (the 17)

• Do a bypass operation:
– Set the next pointer in the predecessor to

point to the successor of the node to be deleted

– Deallocate the node being deleted.

predptr ptr

To free space

1 Lesson in Pointers

• Before operating on an pointer, first check if it
is null!

if (ptr) {

 //do sth. meaningful

}

31

Linked Lists - Advantages

• Access any item as long as external link
to first item maintained

• Insert new item without shifting

• Delete existing item without shifting

• Can expand/contract as necessary

32

Linked Lists - Disadvantages

• Overhead of links:
– used only internally, pure overhead

• If dynamic, must provide
– destructor
– copy constructor (but not here!)

• No longer have direct access to each element of the
list
– Many sorting algorithms need direct access
– Binary search needs direct access

• Access of nth item now less efficient
– must go through first element, and then second, and then

third, etc.

33

Linked Lists - Disadvantages
• List-processing algorithms that require fast access to each

element cannot be done as efficiently with linked lists.

• Consider adding an element at the end of the list

 Array Linked List

a[size++] = value;

Get a new node;

set data part = value

 next part = null_value

If list is empty

 Set first to point to new node.

Else

 Traverse list to find last node

 Set next part of last node to

point to new node.
This is the inefficient part

34

Using C++ Pointers and Classes

• To Implement Nodes
 class Node

{

 public:

 DataType data;

 Node * next;

};

• Note: The definition of a Node is recursive
– (or self-referential)

• It uses the name Node in its definition

• The next member is defined as a pointer to a Node

35

Working with Nodes

• Declaring pointers
 Node* ptr; or
typedef Node* NodePointer;

 NodePointer ptr;

• Allocate and deallocate
 ptr = new Node; delete ptr;

• Access the data and next part of node
(*ptr).data and (*ptr).next

or
 ptr->data and ptr->next

36

Working with Nodes
• Note data members

 are public

• This class declaration will be placed inside
another class declaration for List
(private section), p296

class Node

{ public:

 DataType data;

 Node * next; };

37

typedef int ElementType;

class List
{
 private:
 class Node
 {
 public:
 ElementType data;
 Node * next;
 };

 typedef Node * NodePointer;
 …

}

Implementing List with Linked-Lists

• data is public inside class
Node

• class Node is private
inside List

Design & Impl.

• Add data members

• Add member functions

Class List
#ifndef _LIST_H
#define _LIST_H
typedef int ElementType;
class List {
 private:
 class Node {
 public:
 ElementType data;
 Node* next;
 };
 typedef Node* NodePointer;
 private:
 NodePointer first;
 public:
 List();
 ~List();
 void insert(ElementType x);
 void delete(ElementType x);
};
#endif

Implementing

• Constructor

• Destructor

• Operation: insert()

• Operation: delete()

Exercises

• Implement Stack and Queue classes with
different implementations.

42

Stack

• Design and Implement a Stack class

• 3 options

– Static array

– Dynamic array

– Linked list

43

Stack.h
typedef int DataType;

class Stack {
public:
 Stack();
 Stack(const Stack& org);
 void push(const DataType& v);
 void pop();
 DataType top() const;
 ~Stack();

 private:
 class Node {
 public:
 DataType data;
 Node* next;
 Node(DataType v, Node* p) : data(v), next(0) { }

 };

 typedef Node* NodePtr;

 NodePtr myTop;

};

44

Queue

• Design and Implement a Queue class

• 3 options

– Static array

– Dynamic array

– Linked list

45

Queue.h

typedef int DataType;

class Queue {

public:

 //constructor

 //… member functions

private:

 class Node {

 public:

 DataType data;

 Node* next;

 Node(DataType v, Node* p) : data(v), next(0) { }

 };

 typedef Node* NodePtr;

 NodePtr myFront, myback;

};

