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Synchronization

• Threads cooperate in multithreaded programs
– To share resources, access shared data structures

• Threads accessing a memory cache in a Web server

– To coordinate their execution

• One thread executes relative to another (recall ping-pong)

• For correctness, we need to control this cooperation
– Threads interleave executions arbitrarily and at different rates

– Scheduling is not under program control

• We control cooperation using synchronization
– Synchronization enables us to restrict the possible interleavings of 

thread executions

• Discuss in terms of threads, also applies to processes



The Problem with Concurrent Execution

• Concurrent threads (& processes) often access 
shared data and resources

– Need controlled access to the shared data; otherwise 
result in an inconsistent view of this data

• Maintaining data consistency must ensure orderly 
execution of cooperating processes

• We will look at

– Mechanisms to control access to shared resources
• Locks, mutexes, semaphores, monitors, condition variables, …

– Patterns for coordinating accesses to shared resources
• Bounded buffer, producer-consumer, etc.



Classic Example

• Suppose we have to implement a function to handle withdrawals 
from a bank account:

• Now suppose that you and your significant other share a bank 
account with a balance of $1000.

• Then you each go to separate ATM machines and simultaneously 
withdraw $100 from the account.



Example Continued…

• We’ll represent the situation by creating a separate 
thread for each person to do the withdrawals

– These threads run on the same bank machine:

• What’s the problem with this implementation?

– Think about potential schedules of these two threads



Interleaved Schedules

• The problem is that the execution of the two 
threads can be interleaved:

• What is the balance of the account now?

• Is the bank happy with our implementation?



Shared Resources

• The problem is that two concurrent threads (or processes) 
accessed a shared resource (account) without any 
synchronization
– Known as a race condition (memorize this buzzword)

• We need mechanisms to control access to these shared 
resources in the face of concurrency
– So we can reason about how the program will operate

• Our example was updating a shared bank account

• Also necessary for synchronizing access to any shared data 
structure
– Buffers, queues, lists, hash tables, etc.



When Are Resources Shared?

• Local variables are not shared (private)

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on 
another thread’s stack!

• Global variables and static objects are shared

– Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared

– Allocated from heap with malloc/free or new/delete



Race Condition

• Multiple processes manipulate same data 
concurrently

• The outcome of execution depends on the 
particular order in which the data access 
takes place



Race Condition: Example

• count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

• count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

• Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}



Mutual Exclusion & Critical-Section

• We want to use mutual exclusion to synchronize 
access to shared resources

• Code that uses mutual exclusion to synchronize its 
execution is called a critical section

– Only one thread at a time can execute in the critical 
section

– All other threads are forced to wait on entry

– When a thread leaves a critical section, another can 
enter



Critical-Section Problem

Each process looks like:
do {

CRITICAL SECTION

REMAINDER SECTION

} while (TRUE);

Entry Section

Exit Section



Solution to Critical-Section Problem

MUST satisfy the following three/four requirements:

1. Mutual Exclusion -- If one thread is in the critical section, 
then no other is

2. Progress - If some thread T is not in the critical section, 
then T cannot prevent some other thread S from entering 
the critical section

3. Bounded Waiting - If some thread T is waiting on the 
critical section, then T will eventually enter the critical 
section

4. Performance -- The overhead of entering and exiting the 
critical section is small with respect to the work being done 
within it



Locks

• While one thread executes “withdraw”, we want some way to 
prevent other threads from executing in it

• Locks are one way to do this

• A lock is an object in memory providing two operations
– acquire(): before entering the critical section

– release(): after leaving a critical section

• Threads pair calls to acquire() and release()
– Between acquire()/release(), the thread holds the lock

– acquire() does not return until any previous holder releases

– What can happen if the calls are not paired?

• Locks can spin (a spinlock) or block (a mutex)



Using Locks

• What happens when blue tries to acquire the lock?

• Why is the “return” outside the critical section? Is this ok?



Implementing Locks

• How do we implement locks? Here is one attempt:

• This is called a spinlock because a thread spins waiting for 
the lock to be released

• Does this work?



Implementing Locks

• No. Two independent threads may both notice that 
a lock has been released and thereby acquire it.



Implementing Locks

• The problem is that the implementation of locks has critical 
sections, too

• How do we stop the recursion?

• The implementation of acquire/release must be atomic
– An atomic operation is one which executes as though it could not be 

interrupted

– Code that executes “all or nothing”

• How do we make them atomic?

• Need help from hardware
– Atomic instructions (e.g., test-and-set)

– Disable/enable interrupts (prevents context switches)



Hardware Solution – Test and Set

• Test and modify the 
content of a word 
atomically

boolean TestAndSet (boolean
*flag)

{

boolean old = *flag;

*flag = true;

return old;

}

Implement locks using test and set



Problems with Spinlocks

• The problem with spinlocks is that they are wasteful

– If a thread is spinning on a lock, then the thread holding 
the lock cannot make progress

• How did the lock holder give up the CPU in the first 
place?

– Lock holder calls yield or sleep

– Involuntary context switch

• Only want to use spinlocks as primitives to build 
higher-level synchronization constructs



Hardware Solution – Disable Interrupts

• Correct solution for uni-
processor machine
– Atomic instructions

• During critical section, 
multiprogramming is not 
utilized  perf. penalty

• Too inefficient for multi-
processor machines, interrupt 

disabling message passing to 

all processors, delay entrance 

to critical section



On Disabling Interrupts

• Disabling interrupts blocks notification of external events that 
could trigger a context switch (e.g., timer)
– This is what Nachos uses as its primitive

• In a “real” system, this is only available to the kernel
– Why? 

– What could user-level programs use instead?

• Disabling interrupts is insufficient on a multiprocessor
– Back to atomic instructions

• Like spinlocks, only want to disable interrupts to implement 
higher-level synchronization primitives
– Don’t want interrupts disabled between acquire and release



Summarize Where We Are

• Goal: Use mutual exclusion to protect critical 
sections of code that access shared resources

• Method: Use locks (spinlocks or disable interrupts)

• Problem: Critical sections can be long



PART 2: High-Level Synchronization



High-Level Synchronization

• Spinlocks and disabling interrupts are useful only for 
very short and simple critical sections
– Wasteful otherwise

– These primitives are “primitive” – don’t do anything besides mutual 
exclusion



High-Level Synchronization

• We looked at using locks to provide mutual exclusion

• Locks work, but they have some drawbacks when critical 
sections are long
– Spinlocks – inefficient

– Disabling interrupts – can miss or delay important events

• Instead, we want synchronization mechanisms that
– Block waiters

– Leave interrupts enabled inside the critical section

• Look at two common high-level mechanisms
– Semaphores: binary (mutex) and counting

– Monitors: mutexes and condition variables

• Use them to solve common synchronization problems



Semaphores
• Semaphores are another data structure that provides 

mutual exclusion to critical sections
– Block waiters, interrupts enabled within CS

– Described by Dijkstra in THE system in 1968

• Semaphores can also be used as atomic counters
– More later

• Semaphores support two operations:
– wait(semaphore): decrement, block until semaphore is open

• Also P(), after the Dutch word for test, or down()

– signal(semaphore): increment, allow another thread to enter
• Also V() after the Dutch word for increment, or up()



Blocking in Semaphores

• Associated with each semaphore is a queue of 
waiting processes

• When wait() is called by a thread:
– If semaphore is open, thread continues

– If semaphore is closed, thread blocks on queue

• Then signal() opens the semaphore:
– If a thread is waiting on the queue, the thread is unblocked

– If no threads are waiting on the queue, the signal is remembered for 
the next thread

• In other words, signal() has “history” (c.f. condition vars later)

• This “history” is a counter



Semaphore Types

• Counting semaphore – integer value can range over 
an unrestricted domain
– Used to control access to a given resource consisting of a finite 

number of instances

– The semaphore is initialized to the number of resources available

– Multiple threads can pass the semaphore

• Binary semaphore – integer value can range only 
between 0 and 1; 
– Also known as mutex locks

– Represents single access to a resource

– Guarantees mutual exclusion to a critical section



Semaphore Implementation

• Implementation of wait:

wait (S){ 
value--;
if (value < 0) { 

add this thread T to waiting queue
block(P);  

}
}

• Implementation of signal:

signal (S){ 
value++;
if (value <= 0) { 

remove a thread T from the waiting queue
wakeup(P);  

}
}

Struct Semaphore {

int value;

Queue q;

} S;



Using Semaphores

• Use is similar to our locks, but semantics are different



Producer-Consumer: Bounded Buffer

• Problem: There is a set of resource buffers shared by producer 
and consumer threads

• Producer inserts resources into the buffer set
– Output, disk blocks, memory pages, processes, etc.

• Consumer removes resources from the buffer set
– Whatever is generated by the producer

• Producer and consumer execute at different rates

• Cyclic buffer:

0 1 2 3 4

out in



Using Semaphores

• Use three semaphores:

• mutex – mutual exclusion to shared set of 
buffers

– Binary semaphore

• empty – count of empty buffers

– Counting semaphore

• full – count of full buffers

– Counting semaphore



Producer-Consumer: bounded buffer

void append(int d) {

buffer[in] = d;

in = (in + 1) % N;

}

int take() {

int x = out;

out = (ouit+1) %N;

return buffer[x];

} 

Initialization:  semaphores:  mutex = 1,   full = 0; empty = N;
integers: int = 0, out = 0; 

Producer:

While (1) {
produce x; 
wait(empty);
wait(mutex);
append(x);
signal(full);

signal(mutex);
}

Consumer:

While (1) {
wait(full); 
wait(mutex);
x = take();
signal(empty);

signal(mutex);
consume x;

}

What happens if operations on mutex and full/empty are switched around?



Readers-Writers Problem

• A data set is shared among a number of concurrent 
threads
– Readers – only read the data set; they do not perform any updates

– Writers   – can both read and write.

• Problem – allow multiple readers to read at the same 
time.  Only one single writer can access the shared data at 
the same time (if on writer access it, no readers or other 
writers are allowed to access the data).

• Shared Data
– Data set

• Using semaphores
– What semaphores do we need?



Readers-Writers Problem

– Semaphore mutex initialized to 1, control access 
to readcount.

– Semaphore wrt initialized to 1.

– Integer readcount initialized to 0.



Readers-Writers Problem (Cont.)

• Exercise: Implement readers and writers 



Readers-Writers Problem
Initialization:  semaphores:  mutex = 1,   wrt = 1;

integers: readcount = 0; 

Reader:

{

wait(mutex);

readcount++;

If (readcount==1)

wait(wrt);

signal(mutex);

read;

wait(mutex);

readcount--;

If(readcount==0)

signal(wrt);

signal(mutex);

}

Writer:

{

wait(wrt); 

write;

signal(wrt);

}



Semaphore Summary

• Semaphores can be used to solve any of the 
traditional synchronization problems

• However, they have some drawbacks
– They are essentially shared global variables

• Can potentially be accessed anywhere in program

– No connection between the semaphore and the data being controlled 
by the semaphore

– Used both for critical sections (mutual exclusion) and coordination 
(scheduling)

– No control or guarantee of proper usage

• Sometimes hard to use and prone to bugs
– Another approach: Use programming language support



Monitor

• A monitor is a programming language construct that 
controls access to shared data
– Synchronization code added by compiler, enforced at runtime

– Why is this an advantage?

• A monitor is a module that encapsulates
– Shared data structures

– Procedures that operate on the shared data structures

– Synchronization between concurrent threads that invoke the 
procedures

• A monitor protects its data from unstructured access

• It guarantees that threads accessing its data through 
its procedures interact only in legitimate ways



Monitor Semantics

• A monitor guarantees mutual exclusion

– Only one thread can execute any monitor procedure at any 
time (the thread is “in the monitor”)

– If a second thread invokes a monitor procedure when a 
first thread is already executing one, it blocks

• So the monitor has to have a wait queue…

– If a thread within a monitor blocks, another one can enter

• What are the implications in terms of parallelism in 
monitor?



Account Example Again

• Hey, that was easy

• But what if a thread wants to wait inside the monitor?
– Such as “mutex(empty)” by reader in bounded buffer?



Condition Variables

• Condition variables provide a mechanism to wait for 
events (a “rendezvous point”)
– Resource available, no more writers, etc.

• Condition variables support three operations:
– Wait – release monitor lock, wait for C/V to be signaled

• So condition variables have wait queues, too

– Signal – wakeup one waiting thread

– Broadcast – wakeup all waiting threads

• Note: Condition variables are not boolean objects
– “if (condition_variable) then” … does not make sense

– “if (num_resources == 0) then wait(resources_available)” does

– An example will make this more clear



Monitor Bounded Buffer

• What happens if no threads are waiting when 
signal is called?



Monitor Queues



Condition Variables != Semaphores

• Condition variables != semaphores
– Although their operations have the same names, they have entirely 

different semantics (

– However, they each can be used to implement the other

• Access to the monitor is controlled by a lock
– wait() blocks the calling thread, and gives up the lock

• To call wait, the thread has to be in the monitor (hence has lock)

• Semaphore::wait just blocks the thread on the queue

– signal() causes a waiting thread to wake up
• If there is no waiting thread, the signal is lost

• Semaphore::signal increases the semaphore count, allowing future entry even if no 
thread is waiting

• Condition variables have no history



Signal Semantics

• There are two flavors of monitors that differ in the scheduling 
semantics of signal()

– Hoare monitors (original)
• signal() immediately switches from the caller to a waiting thread

• The condition that the waiter was anticipating is guaranteed to 
hold when waiter executes

• Signaler must restore monitor invariants before signaling

– Mesa monitors (Mesa, Java)
• signal() places a waiter on the ready queue, but signaler continues 

inside monitor

• Condition is not necessarily true when waiter runs again
– Returning from wait() is only a hint that something changed

– Must recheck conditional case



Hoare vs. Mesa Monitors

• Hoare
if (empty)

wait(condition);

• Mesa
while (empty)

wait(condition);

• Tradeoffs
– Mesa monitors easier to use, more efficient

• Fewer context switches, easy to support broadcast

– Hoare monitors leave less to chance
• Easier to reason about the program



Condition Variables vs. Locks

• Condition variables are also used without monitors in 
conjunction with blocking locks

• A monitor is “just like” a module whose state includes a 
condition variable and a lock
– Difference is syntactic; with monitors, compiler adds the code

• It is “just as if” each procedure in the module calls acquire() 
on entry and release() on exit
– But can be done anywhere in procedure, at finer granularity

• With condition variables, the module methods may wait and 
signal on independent conditions



Using Condition Variables & Locks

• Alternation of two threads (ping-pong)

• Each executes the following:



Monitors and Java

• A lock and condition variable are in every Java object
– No explicit classes for locks or condition variables

• Every object is/has a monitor
– At most one thread can be inside an object’s monitor

– A thread enters an object’s monitor by
• Executing a method declared “synchronized”

• Can mix synchronized/unsynchronized methods in same class

– Executing the body of a “synchronized” statement
• Supports finer-grained locking than an entire procedure

• Identical to the Modula-2 “LOCK (m) DO” construct

• Every object can be treated as a condition variable
– Object::notify() has similar semantics as Condition::signal()



Summary

• Semaphores
– wait()/signal() implement blocking mutual exclusion

– Also used as atomic counters (counting semaphores)

– Can be inconvenient to use

• Monitors
– Synchronizes execution within procedures that manipulate 

encapsulated data shared among procedures

– Only one thread can execute within a monitor at a time

– Relies upon high-level language support

• Condition variables
– Used by threads as a synchronization point to wait for events

– Inside monitors, or outside with locks


