
1

Socket Programming

What is a socket?

Using sockets
 Types (Protocols)

 Associated functions

 Styles

We will look at using sockets in C

2

What is a socket?

An interface between application and
network
 The application creates a socket
 The socket type dictates the style of

communication
• reliable vs. best effort
• connection-oriented vs. connectionless

Once configured the application can
 pass data to the socket for network

transmission
 receive data from the socket (transmitted

through the network by some other host)

3

Socket

A socket is an abstract representation of
a communication endpoint.

Sockets work with Unix I/O services just
like files, pipes & FIFOs.
 Treat me as a file, please!

Sockets (obviously) have special needs:
 establishing a connection

 specifying communication endpoint addresses

4

Unix Descriptor Table

Descriptor Table

0

1

2

3

4

Data structure for file 0

Data structure for file 1

Data structure for file 2

5

Socket Descriptor Data
Structure

Descriptor Table

0

1

2

3

4

Family: PF_INET

Service: SOCK_STREAM

Local IP: 111.22.3.4

Remote IP: 123.45.6.78

Local Port: 2249

Remote Port: 3726

6

Two essential types of sockets
 SOCK_STREAM

 a.k.a. TCP

 reliable delivery

 in-order guaranteed

 connection-oriented

 bidirectional

 SOCK_DGRAM

 a.k.a. UDP

 unreliable delivery

 no order guarantees

 no notion of “connection” –
app indicates dest. for each
packet

 can send or receive
App

socket
3 2 1

Dest.
App

socket
3 2 1

D1

D3

D2

Q: why have type SOCK_DGRAM?

7

Socket Creation: socket

 int s = socket(domain, type, protocol);
 s: socket descriptor, an integer (like a file-handle)
 domain: integer, communication domain

• e.g., PF_INET (IPv4 protocol) – typically used
• Now in Linux: #define PF_INET AF_INET (value of 2)

 type: communication type
• SOCK_STREAM: reliable, 2-way, connection-based

service
• SOCK_DGRAM: unreliable, connectionless,
• other values: need root permission, rarely used, or

obsolete

 protocol: specifies protocol (see file /etc/protocols
for a list of options) - usually set to 0

 NOTE: socket call does not specify where data will be coming
from, nor where it will be going to – it just creates the
interface!

8

socket()

The socket() system call returns a socket
descriptor (small integer) or -1 on error.

 socket() allocates resources needed for a
communication endpoint - but it does not
deal with endpoint addressing.

9

Ports

Port 0

Port 1

Port 65535

 Each host has 65,536
ports (limited!)

Some ports are
reserved for specific
apps
 20,21: FTP

 23: Telnet

 80: HTTP

 see RFC 1700 (about
2000 ports are
reserved)

 A socket provides an interface
to send data to/from the
network through a port

10

Addresses, Ports and Sockets

 Like apartments and mailboxes
 You are the application

 Your apartment building address is the address

 Your mailbox is the port

 The post-office is the network

 The socket is the key that gives you access to the right
mailbox (one difference: assume outgoing mail is placed
by you in your mailbox)

 Q: How do you choose which port a socket
connects to?

11

The bind function

 associates and (can exclusively) reserves a port
for use by the socket

 int status = bind(sockid, &addrport, size);

 status: error status, = -1 if bind failed

 sockid: integer, socket descriptor

 addrport: struct sockaddr, the (IP) address and port of the
machine (address usually set to INADDR_ANY – chooses a
local address)

 size: the size (in bytes) of the addrport structure

 bind can be skipped for both types of sockets.
When and why?

12

Assigning an address to a
socket

The bind() system call is used to assign an
address to an existing socket.

int bind(int sockfd,

const struct sockaddr *myaddr,

int addrlen);

 bind returns 0 if successful or -1 on error.

const!

13

bind()

 calling bind() assigns the address
specified by the sockaddr structure to
the socket descriptor.

 You can give bind() a sockaddr_in
structure:
bind(mysock,

(struct sockaddr*) &myaddr,

sizeof(myaddr));

14

bind() Example

int mysock,err;

struct sockaddr_in myaddr;

mysock = socket(PF_INET,SOCK_STREAM,0);

myaddr.sin_family = AF_INET;

myaddr.sin_port = htons(portnum);

myaddr.sin_addr = htonl(ipaddress);

err=bind(mysock, (sockaddr *) &myaddr,

sizeof(myaddr));

15

Uses for bind()

There are a number of uses for bind():
 Server would like to bind to a well known address

(port number).

 Client can bind to a specific port.

 Client can ask the O.S. to assign any available
port number.

16

Port schmort - who cares ?

 Clients typically don’t care what port they
are assigned.

When you call bind you can tell it to assign
you any available port:

myaddr.port = htons(0);

17

What is my IP address ?

 How can you find out what your IP address is so
you can tell bind() ?

 There is no realistic way for you to know the right
IP address to give bind() - what if the computer
has multiple network interfaces?

 specify the IP address as: INADDR_ANY, this
tells the OS to take care of things.

18

Skipping the bind

 SOCK_DGRAM:
 if only sending, no need to bind. The OS finds a

port each time the socket sends a pkt

 if receiving, need to bind

 SOCK_STREAM:
 destination determined during connection setup

 don’t need to know port sending from (during
connection setup, receiving end is informed of
port)

19

Connection Setup (SOCK_STREAM)

 Recall: no connection setup for SOCK_DGRAM

 A connection occurs between two kinds of
participants
 passive: waits for an active participant to request

connection

 active: initiates connection request to passive side

 Once connection is established, passive and active
participants are “similar”
 both can send & receive data

 either can terminate the connection

20

Connection setup cont’d

 Passive participant
 step 1: listen (for

incoming requests)
 step 3: accept (a

request)
 step 4: data transfer

 The accepted
connection is on a new
socket

 The old socket
continues to listen for
other active
participants

 Why?

 Active participant

 step 2: request &
establish connection

 step 4: data transfer

Passive Participant

l-socka-sock-1 a-sock-2

Active 1

socket

Active 2

socket

21

Connection setup: listen & accept

 Called by passive participant
 int status = listen(sock, queuelen);

 status: 0 if listening, -1 if error
 sock: integer, socket descriptor
 queuelen: integer, # of active participants that can

“wait” for a connection
 listen is non-blocking: returns immediately

 int s = accept(sock, &name, &namelen);
 s: integer, the new socket (used for data-transfer)
 sock: integer, the orig. socket (being listened on)
 name: struct sockaddr, address of the active participant
 namelen: sizeof(name): value/result parameter

• must be set appropriately before call
• adjusted by OS upon return

 accept is blocking: waits for connection before returning

22

connect call

 int status = connect(sock, &name, namelen);

 status: 0 if successful connect, -1 otherwise

 sock: integer, socket to be used in connection

 name: struct sockaddr: address of passive
participant

 namelen: integer, sizeof(name)

 connect is blocking

23

Sending / Receiving Data

 With a connection (SOCK_STREAM):
 int count = write(sock, &buf, len);

• count: # bytes transmitted
– 0: The connection was closed by the remote host.

– -1:The read system call was interrupted, or failed for some reason.

– n: The write system call wrote 'n' bytes into the socket..

• buf: char*, buffer to be transmitted
• len: integer, length of buffer (in bytes) to transmit

 int count = read(sock, &buf, len);

• count: # bytes received (-1 if error)
– 0: The connection was closed by the remote host.

– -1:The read system call was interrupted, or failed for some reason.

– n: The read system call put 'n' bytes into the buffer we supplied it with.

• buf: char*, stores received bytes
• len: integer, length of buffer (in bytes) to receive

 Calls are blocking [returns only after data is sent (to socket
buffer) / received]

24

Sending / Receiving Data

With a connection (SOCK_STREAM):
 int count = send(sock, &buf, len, flags);

• count: # bytes transmitted (-1 if error)
• buf: char[], buffer to be transmitted
• len: integer, length of buffer (in bytes) to transmit
• flags: integer, special options, usually just 0

 int count = recv(sock, &buf, len, flags);
• count: # bytes received (-1 if error)
• buf: void[], stores received bytes
• len: integer, length of buffer (in bytes) to receive
• flags: integer, special options, usually just 0

 Calls are blocking [returns only after data is sent
(to socket buffer) / received]

25

Sending / Receiving Data (cont’d)

Without a connection (SOCK_DGRAM):
 int count = sendto(sock, &buf, len, flags, &addr, addrlen);

• count, sock, buf, len, flags: same as send

• addr: struct sockaddr, address of the destination

• addrlen: sizeof(addr)

 int count = recvfrom(sock, &buf, len, flags, &addr,

&addrlen);

• count, sock, buf, len, flags: same as recv

• name: struct sockaddr, address of the source

• namelen: sizeof(name): value/result parameter

 Calls are blocking [returns only after data is sent (to
socket buffer) / received]

26

close

When finished using a socket, the socket
should be closed:

 status = close(s);

 status: 0 if successful, -1 if error

 s: the file descriptor (socket being closed)

 Closing a socket
 closes a connection (for SOCK_STREAM)

 frees up the port used by the socket

27

The struct sockaddr

 The generic:
struct sockaddr {

u_short sa_family;

char sa_data[14];

};

 sa_family

• specifies which
address family is
being used

• determines how the
remaining 14 bytes
are used

 The Internet-specific:
struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

 sin_family = AF_INET

 sin_port: port # (0-65535)

 sin_addr: IP-address

 sin_zero: unused

28

TCP/IP Addresses

We don’t need to deal with sockaddr
structures since we will only deal with a
real protocol family.

We can use sockaddr_in structures.

BUT: The C functions that make up the
sockets API expect structures of type
sockaddr.

29

Network Byte Order

All values stored in a sockaddr_in must
be in network byte order.
 sin_port a TCP/IP port number.

 sin_addr an IP address.

30

Address and port byte-ordering
 Address and port are stored as

integers
 u_short sin_port; (16 bit)

 in_addr sin_addr; (32 bit)

struct in_addr {

u_long s_addr;

};

 Problem:
 different machines / OS’s use different word orderings

• little-endian: lower bytes first

• big-endian: higher bytes first

 these machines may communicate with one another over the
network

128.119.40.12

128 119 40 12

12.40.119.128

128 119 40 12

Big-Endian
machine Little-Endian

machine

31

Solution: Network Byte-Ordering
Definitions:

Host Byte-Ordering: the byte ordering used by
a host (big or little)

Network Byte-Ordering: the byte ordering used
by the network – always big-endian

 Any words sent through the network should be
converted to Network Byte-Order prior to
transmission (and back to Host Byte-Order once
received)

 Q: should the socket perform the conversion
automatically?

 Q: Given big-endian machines don’t need
conversion routines and little-endian machines do,
how do we avoid writing two versions of code?

32

UNIX’s byte-ordering funcs

 u_long htonl(u_long x);

 u_short htons(u_short x);

 u_long ntohl(u_long x);

 u_short ntohs(u_short x);

 On big-endian machines, these routines do nothing

 On little-endian machines, they reverse the byte
order

 Same code would have worked regardless of endian-
ness of the two machines

128.119.40.12

128 119 40 12

128.119.40.12

128 119 40 12

Big-Endian
machine Little-Endian

machine n
to

h
l

128 119 40 12 1281194012

33

Address Resolution

 struct hostent *gethostbyname(char
*hostname);
 struct hostent {

char* h_name; /* official name of host */

char** h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward
compatibility */

};

3434

Socket programming with TCP

Example client-server app:

 client reads line from
standard input, sends to
server via socket; server
reads line from socket

 server converts line to
uppercase, sends back to
client

 client reads, prints modified
line from socket

Input stream: sequence of
bytes into process

Output stream: sequence of
bytes out of process

client socket

3535

Client/server socket interaction: TCP

wait for incoming
connection request
int cs =
accept(s,….)

create socket,
port=x, for

incoming request:
int s = socket(…); bind(s,…)

listen(s,5);

create socket,
connect to A, port=x

int cli_socket = socket(..);
connect(s,…);

close
cs

read reply from
cli_socket

close
cli_socket

Server (running in A) Client

send request using
cli_socketread request from

cs

write reply to
cs

TCP
connection setup

3636

Example: C++ client (TCP)
#include <stdio.h> /* Basic I/O routines */
#include <sys/types.h> /* standard system types */
#include <netinet/in.h> /* Internet address structures */
#include <sys/socket.h> /* socket interface functions */
#include <netdb.h> /* host to IP resolution */

int main(int argc, char *argv[]) {

/* Address resolution stage */
struct hostent* hen = gethostbyname(argv[1]);
if (!hen) {

perror("couldn't resolve host name");
}
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa);
sa.sin_family = AF_INET;
sa.sin_port = htons(PORT); //server port number
memcpy(&sa.sin_addr.s_addr, hen->h_addr_list[0], hen->h_length);

int cli_socket = socket(AF_INET, SOCK_STREAM, 0);
assert(cli_socket >= 0); //I am just lazy here!!
connect(s, (struct sockaddr *)&sa, sizeof(sa));

write(s, “hello”, 5); //send it to server, better use while
char buf[BUFLEN];
int rc;
memset(buf, 0, BUFLEN);
char* pc = buf;
while(rc = read(cli_socket, pc, BUFLEN – (pc - buf)))

pc += rc;
write(1, buf, strlen(buf));
close(cli_socket);

}

Create
client socket,

connect to server

3737

Example: C++ server (TCP)
//include header files

#define PORT 6789

int main(int argc, char* argv[]) {

struct sockaddr_in sa, csa;

memset(&sa, 0, sizeof(sa);

sa.sin_family = AF_INET;

sa.sin_port = htons(PORT);

sa.sin_addr.s_addr = INADDR_ANY; //any IP addr. Is accepted

int s = socket(AF_INET,SOCK_STREAM, 0);

assert(s>=0);

int rc = bind(s, (struct sockaddr *)& sa, sizeof(sa)); //hook s with port

rc = listen(s, 5);

int cs_socket = accept(s, (struct sockaddr*)&csa, sizeof(csa));

char buf[BUFLEN];

memset(buf, 0, BUFLEN);
char* pc = buf; int bcount = 0;
while(bcount < 5) {

if (rc = read(cs_socket, pc, BUFLEN – (pc - buf)) > 0)) {
pc += rc; bcount += rc;

} else return -1;
upper_case(buf); // covert it into upper case
write(cs_socket, buf, strlen(buf));
close(cs_socket);
close(s);

}

3838

Multi-Clients Servers
 Two main approaches to designing such servers.
 Approach 1.
 The first approach is using one process that awaits new

connections, and one more process (or thread) for each
Client already connected. This approach makes design quite
easy, cause then the main process does not need to differ
between servers, and the sub-processes are each a single-
Client server process, hence, easier to implement.

 However, this approach wastes too many system resources
(if child processes are used), and complicates inter-Client
communication: If one Client wants to send a message to
another through the server, this will require communication
between two processes on the server, or locking mechanisms,
if using multiple threads.

 See tutorial for details!

3939

Socket programming with UDP

UDP: no “connection” between
client and server

 no handshaking

 sender explicitly attaches
IP address and port of
destination

 server must extract IP
address, port of sender
from received datagram

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

4040

Summary

 application service
requirements:
 reliability, bandwidth,

delay

 client-server paradigm

 Internet transport
service model
 connection-oriented,

reliable: TCP

 unreliable, datagrams:
UDP

Our study of network apps now complete!

 specific protocols:
 http

 ftp

 smtp, pop3

 dns

 socket programming
 client/server

implementation

 using tcp, udp sockets

4141

Summary

 typical request/reply
message exchange:
 client requests info or

service

 server responds with
data, status code

 message formats:
 headers: fields giving

info about data

 data: info being
communicated

Most importantly: learned about protocols

 control vs. data msgs

 in-based, out-of-band

 centralized vs. decentralized

 stateless vs. stateful

 reliable vs. unreliable msg
transfer

 “complexity at network
edge”

 security: authentication

42

Dealing with blocking calls

 Many of the functions we saw block until a certain
event
 accept: until a connection comes in

 connect: until the connection is established

 recv, recvfrom: until a packet (of data) is received

 send, sendto: until data is pushed into socket’s buffer
• Q: why not until received?

 For simple programs, blocking is convenient

 What about more complex programs?
 multiple connections

 simultaneous sends and receives

 simultaneously doing non-networking processing

43

Dealing w/ blocking (cont’d)

 Options:
 create multi-process or multi-threaded code

 turn off the blocking feature (e.g., using the fcntl file-
descriptor control function)

 use the select function call.

 What does select do?
 can be permanent blocking, time-limited blocking or non-

blocking

 input: a set of file-descriptors

 output: info on the file-descriptors’ status

 i.e., can identify sockets that are “ready for use”: calls
involving that socket will return immediately

44

select function call

 int status = select(nfds, &readfds, &writefds,

&exceptfds, &timeout);

 status: # of ready objects, -1 if error

 nfds: 1 + largest file descriptor to check

 readfds: list of descriptors to check if read-ready

 writefds: list of descriptors to check if write-ready

 exceptfds: list of descriptors to check if an
exception is registered

 timeout: time after which select returns, even if
nothing ready - can be 0 or 
(point timeout parameter to NULL for )

45

To be used with select:

 Recall select uses a structure, struct fd_set

 it is just a bit-vector
 if bit i is set in [readfds, writefds, exceptfds],

select will check if file descriptor (i.e. socket) i
is ready for [reading, writing, exception]

 Before calling select:
 FD_ZERO(&fdvar): clears the structure
 FD_SET(i, &fdvar): to check file desc. i

After calling select:
 int FD_ISSET(i, &fdvar): boolean returns TRUE

iff i is “ready”

46

Other useful functions

 bzero(char* c, int n): 0’s n bytes starting at c
 gethostname(char *name, int len): gets the name of

the current host
 gethostbyaddr(char *addr, int len, int type): converts

IP hostname to structure containing long integer
 inet_addr(const char *cp): converts dotted-decimal

char-string to long integer
 inet_ntoa(const struct in_addr in): converts long to

dotted-decimal notation

 Warning: check function assumptions about byte-
ordering (host or network). Often, they assume
parameters / return solutions in network byte-
order

47

Release of ports

 Sometimes, a “rough” exit from a program (e.g.,
ctrl-c) does not properly free up a port

 Eventually (after a few minutes), the port will be
freed

 To reduce the likelihood of this problem, include
the following code:

#include <signal.h>

void cleanExit(){exit(0);}

 in socket code:

signal(SIGTERM, cleanExit);

signal(SIGINT, cleanExit);

48

Final Thoughts

Make sure to #include the header files that
define used functions

 Check man-pages and course web-site for
additional info

