
Case Study:
Pthread Synchronization

Dr. Yingwu Zhu

Thread Mechanisms

• Birrell identifies four mechanisms commonly used in
threading systems
– Thread creation

– Mutual exclusion (mutex)

– Waiting for events - condition variables

– Interrupting a thread’s wait

• First three commonly used in thread systems

• Take home message: Threads programming is tricky
stuff! Stick to established design patterns.

Thread Creation in PThreads
• Type: pthread_t tid; /* thread handle */

• pthread_create (&tid, thread_attr, start, arg)
– tid returns pointer to created thread

– thread_attr specifies attributes, e.g., stack size; use NULL for
default attributes

– start is procedure called to start execution of thread

– arg is sole argument to proc

– pthread_create returns 0 if thread created successfully

• pthread_join (tid, &retval);
– Wait for thread tid to complete

– Retval is valued returned by thread

• pthread_exit(retval)
– Complete execution of thread, returning retval

Example
#include<pthread.h>

#include <stdio.h>

/* Example program creating thread to compute square of value */

int value;/* thread stores result here */

void* my_thread(void *param); /* the thread */

main (int argc, char *argv[])

{ pthread_t tid; /* thread identifier */

int retcode;/* check input parameters */

if (argc != 2) { fprintf(stderr,"usage: a.out <integer value>\n"); exit(1); }

/* create the thread */

retcode = pthread_create(&tid,NULL,my_thread,argv[1]);

if (retcode != 0) { fprintf(stderr,"Unable to create thread\n"); exit (1); }

/* wait for created thread to exit */

pthread_join(tid,NULL);

printf ("I am the parent: Square = %d¥n", value);}

/* The thread will begin control in this function */

void *my_thread(void *param)

{

int i = atoi (param);

printf ("I am the child, passed value %d\n", i);

value = i * i;

/* next line is not really necessary */

pthread_exit(0);

}

Mutual Exclusion

• Bad things can happen when two threads
“simultaneously” access shared data structures:
Race condition  critical section problem

– Data inconsistency!

– These types of bugs are really nasty!
• Program may not blow up, just produces wrong results

• Bugs are not repeatable

• Associate a separate lock (mutex) variable with
the shared data structure to ensure “one at a time
access”

Mutual Exclusion in PThreads

• pthread_mutex_t mutex_var;
– Declares mutex_var as a lock (mutex) variable

– Holds one of two values: “locked” or “unlocked”

• pthread_mutex_lock (&mutex_var)
– Waits/blocked until mutex_var in unlocked state

– Sets mutex_var into locked state

• pthread_mutex_unlock (&mutex_var)
– Sets mutex_var into unlocked state

– If one or more threads are waiting on lock, will allow one thread
to acquire lock

Example: pthread_mutex_t m; //pthread_mutex_init(&m, NULL);

…

pthread_mutex_lock (&m);

<access shared variables>

pthread_mutex_unlock(&m);

//pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

Problems with Mutex Locks

• A scenario:

– Producer threads enqueue new items

– Consumer threads dequeue items

– Race condition: the queue

• What is the potential problem?

Pthread Semaphores

• #include <semaphore.h>

• Each semaphore has a counter value, which is
a non-negative integer

Pthread Semaphores

• Two basic operations:
– A wait operation decrements the value of the semaphore by 1. If the

value is already zero, the operation blocks until the value of the
semaphore becomes positive (due to the action of some other
thread).When the semaphore’s value becomes positive, it is
decremented by 1 and the wait operation returns.  sem_wait()

– A post operation increments the value of the semaphore by 1. If the
semaphore was previously zero and other threads are blocked in a
wait operation on that semaphore, one of those threads is unblocked
and its wait operation completes (which brings the semaphore’s value
back to zero).  sem_post()

Slightly different from our discussion on semaphores

Pthread Semaphores

• sem_t s; //define a variable

• sem_init(); //must initialize

– 1st para: pointer to sem_t variable

– 2nd para: must be zero
• A nonzero value would indicate a semaphore that can be shared

across processes, which is not supported by GNU/Linux for this
type of semaphore.

– 3rd para: initial value

• sem_destroy(): destroy a semaphore if do not
use it anymore

Pthread Semaphores

• int sem_wait(): wait operation

• int sem_post(): signal operation

• int sem_trywait():

– A nonblocking wait function

– if the wait would have blocked because the
semaphore’s value was zero, the function returns
immediately, with error value EAGAIN, instead of
blocking.

Example

#include <malloc.h>

#include <pthread.h>

#include <semaphore.h>

struct job {

/* Link field for linked list. */

struct job* next;

/* Other fields describing work to be
done...*/

};

/* A linked list of pending jobs. */

struct job* job_queue;

/* A mutex protecting job_queue. */

pthread_mutex_t job_queue_mutex =

PTHREAD_MUTEX_INITIALIZER;

/* A semaphore counting the number of jobs in the queue. */
sem_t job_queue_count;
/* Perform one-time initialization of the job queue. */
void initialize_job_queue ()
{

/* The queue is initially empty. */
job_queue = NULL;
/* Initialize the semaphore which counts jobs in the
queue. Its initial value should be zero. */
sem_init (&job_queue_count, 0, 0);

}

Assume infinite queue capacity.

Example
/* Process dequeued jobs until the queue is empty. */

void* thread_function (void* arg)

{

while (1) {

struct job* next_job;

/* Wait on the job queue semaphore. If its value is positive,indicating that the queue is not empty,
decrement the count by 1. If the queue is empty, block until a new job is enqueued. */

sem_wait (&job_queue_count);

/* Lock the mutex on the job queue. */

pthread_mutex_lock (&job_queue_mutex);

/* Because of the semaphore, we know the queue is not empty. Get the next available job. */

next_job = job_queue;

/* Remove this job from the list. */

job_queue = job_queue->next;

/* Unlock the mutex on the job queue because we’re done with the queue for now. */

pthread_mutex_unlock (&job_queue_mutex);

/* Carry out the work. */

process_job (next_job);

/* Clean up. */

free (next_job);

}

return NULL;

}

Example
/* Add a new job to the front of the job queue. */

void enqueue_job (/* Pass job-specific data here... */)

{

struct job* new_job;

/* Allocate a new job object. */

new_job = (struct job*) malloc (sizeof (struct job));

/* Set the other fields of the job struct here... */

/* Lock the mutex on the job queue before accessing it. */

pthread_mutex_lock (&job_queue_mutex);

/* Place the new job at the head of the queue. */

new_job->next = job_queue;

job_queue = new_job;

/* Post to the semaphore to indicate that another job is available. If

threads are blocked, waiting on the semaphore, one will become

unblocked so it can process the job. */

sem_post (&job_queue_count);

/* Unlock the job queue mutex. */

pthread_mutex_unlock (&job_queue_mutex);

}

Can they switch order?

Condition Variables

Waiting for Events: Condition Variables

• Mutex variables are used to control access to
shared data

• Condition variables are used to wait for
specific events

– Buffer has data to consume

– New data arrived on I/O port

– 10,000 clock ticks have elapsed

Let’s see an example

The thread execution is

controlled by a flag

If we use mutex locks

only, what happens?

Condition Variables

• Enable you to implement a condition under
which a thread executes and, inversely, the
condition under which the thread is blocked

Condition Variables in PThreads
• pthread_cond_t c_var;

– Declares c_var as a condition variable

– Always associated with a mutex variable (say m_var)

• pthread_cond_wait (&c_var, &m_var)
– Atomically unlock m_var and block on c_var

– Upon return, mutex m_var will be re-acquired

– Spurious wakeups may occur (i.e., may wake up for no good reason -
always recheck the condition you are waiting on!)

• pthread_cond_signal (&c_var)
– If no thread blocked on c_var, do nothing

– Else, unblock a thread blocked on c_var to allow one thread to be
released from a pthread_cond_wait call

• pthread_cond_broadcast (&c_var)
– Unblock all threads blocked on condition variable c_var

– Order that threads execute unspecified; each reacquires mutex when it
resumes

Waiting on a Condition
pthread_mutex_t

m_var=PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t c_var=PTHREAD_COND_INITIALIZER;

//pthread_cond_init()

pthread_mutex_lock (m_var);

while (<some blocking condition is true>)

pthread_cond_wait (c_var, m_var);

<access shared data structrure>

pthread_mutex_unlock(m_var);

Note: Use “while” not “if”; Why?

Revisit on the example

Example continued…

Exercise

• Design a multithreaded program which handles bounded
buffer problem using semaphores
– int buffer[10]; //10 buffers

– rand() to produce an item

– int in, out;

– Implement producers and consumers process

