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Deadlocks
• Synchronization is a live gun – we can easily shoot ourselves in 

the foot
– Incorrect use of synchronization can block all processes
– You have likely been intuitively avoiding this situation already

• More generally, processes that allocate multiple resources 
generate dependencies on those resources
– Locks, semaphores, monitors, etc., just represent the resources that 

they protect

• If one process tries to allocate a resource that a second process 
holds, and vice-versa, they can never make progress

• We call this situation deadlock, and we’ll look at:
– Definition and conditions necessary for deadlock
– Representation of deadlock conditions
– Approaches to dealing with deadlock



Deadlock Definition

• A set of blocked processes each holding a resource and 
waiting to acquire a resource held by another process in the 
set.

• Example 
– System has 2 tape drives.

– P1 and P2 each hold one tape drive and each needs another one.

• Example 
– semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)



Deadlock Characterization

• Mutual exclusion: only one process at a time can use a 
resource.

• Hold and wait: a process holding at least one resource is 
waiting to acquire additional resources held by other 
processes.

• No preemption: a resource can be released only 
voluntarily by the process holding it, after that process has 
completed its task.

• Circular wait: there exists a set {P0, P1, …, P0} of waiting 
processes such that P0 is waiting for a resource that is held 
by P1, P1 is waiting for a resource that is held by 
P2, …, Pn–1 is waiting for a resource that is held by 
Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.



Resource-Allocation Graph

• More precisely describe deadlocks

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set consisting of all the processes in the 

system.

– R = {R1, R2, …, Rm}, the set consisting of all resource types in 
the system.

– request edge – directed edge Pi Rj

– assignment edge – directed edge Rj  Pi

• If the graph has no cycles, deadlock cannot exist

• If the graph has a cycle, deadlock may exist

A set of vertices V and a set of edges E.



Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi

Rj

Rj



Example of a Resource Allocation Graph



Example of a Resource Allocation Graph

If the graph contains no 
cycles, then no process is 
deadlocked



Resource Allocation Graph



Resource Allocation Graph

If the graph contains a 
cycle, then a deadlock 
MAY exist!

[1] If each resource type 
has exactly one instance, 
then a cycle implies that a 
deadlock has occurred.

[2] If each resource type 
has several instances, then 
a cycle does not 
necessarily imply a 
deadlock. The cycle is just 
a necessary but not a 
sufficient condition

3 processes are 
deadlocked!



Resource Allocation Graph With A Cycle But No Deadlock



Resource Allocation Graph With A Cycle But No Deadlock



Basic Facts

• If graph contains no cycles  no deadlock.

• If graph contains a cycle 

– if only one instance per resource type, then 
deadlock.

– if several instances per resource type, 
possibility of deadlock.



Handling Deadlocks

• Prevention – make it impossible for deadlock to 
happen

• Avoidance – control allocation of resources

• Detection and Recovery – look for a cycle in 
dependencies

• Ignore it – Ignore the problem and pretend that 
deadlocks never occur in the system; used by most 
operating systems, including UNIX.

– It is up to the app. Developer to write programs that handle 
deadlocks



Deadlock Prevention

• Mutual exclusion
– Make resources sharable (not generally practical)

• Hold and wait
– Process cannot hold one resource when requesting another
– Process requests, releases all needed resources at once
– Low resource utilization; possible starvation

• Preemption
– OS can preempt resource (costly)
– Not practical for many resources (printers, tape drives)!

• Circular wait
– Impose an ordering (numbering) on the resources and request 

them in order (popular implementation technique)

Break one of the four conditions to prevent deadlock



Deadlock Avoidance

• Avoidance
– Provide information in advance about what resources 

will be needed by processes to guarantee that 
deadlock will not happen

– System only grants resource requests if it knows that 
the process can obtain all resources it needs in future 
requests

– Avoids circularities (wait dependencies)

• Tough
– Hard to determine all resources needed in advance
– Good theoretical problem, not as practical to use



Deadlock Avoidance

• Requires that each process declare the maximum number of 
resources of each type that it may need.

• The deadlock-avoidance algorithm dynamically examines the 
resource-allocation state to ensure that there can never be a 
circular-wait condition.

• Resource-allocation state is defined by the number of available and 
allocated resources, and the maximum demands of the processes.

Requires that the system has some additional a priori information  
available.



Safe State
• When a process requests an available resource, system 

must decide if immediate allocation leaves the system 
in a safe state.

• System is in safe state if there exists a safe sequence of 
all processes. 

• Sequence <P1, P2, …, Pn> is safe if for each Pi, the 
resources that Pi can still request can be satisfied by 
currently available resources + resources held by all the 
Pj, with j<i.
– If Pi resource needs are not immediately available, then Pi can 

wait until all Pj have finished.
– When Pj is finished, Pi can obtain needed resources, execute, 

return allocated resources, and terminate. 
– When Pi terminates, Pi+1 can obtain its needed resources, and 

so on. 



Basic Facts

• If a system is in safe state 
 no deadlocks.

• If a system is in unsafe 
state  possibility of 
deadlock.

• Avoidance  ensure that 
a system will never enter 
an unsafe state. 



Resource-Allocation Graph Algorithm

• Claim edge Pi  Rj indicated that process Pj may request resource 
Rj; represented by a dashed line.

• Claim edge converts to request edge when a process requests a 
resource.

• When a resource is released by a process, assignment edge 
reconverts to a claim edge.

• Resources must be claimed a priori in the system.

– Before a process executes, all its claim edges must already 
appear in the graph!

Only works for resource types each with one instance!



Resource-Allocation Graph For Deadlock Avoidance

Can the request P2-->R2 be granted?



Unsafe State In Resource-Allocation Graph

NO. converting to assignment edge forms a cycle, unsafe state!



Banker’s Algorithm
• The resource-allocation-graph algorithm is not applicable to 

a resource allocation with multiple instances of each 
resource type

• Multiple instances.

• Each process must a priori claim maximum use.

• When a process requests a resource it may have to wait.  

• When a process gets all its resources it must return them in a 
finite amount of time.



Data Structures for the Banker’s Algorithm 

• Available: Vector of length m. If available [j] = k, 
there are k instances of resource type Rj available.

• Max: n x m matrix.  If Max [i,j] = k, then process Pi

may request at most k instances of resource type Rj.

• Allocation: n x m matrix.  If Allocation[i,j] = k then Pi

is currently allocated k instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need 
k more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types. 



Banker’s Algorithm

1. Let Work and Finish be vectors of length m and n, 
respectively.  Initialize:

Work = Available
Finish [i] = false for i = 1,2, …, n.

2. Find an i such that both: 
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe 
state.

Require O(m x n2) operations!!!

Goal: find a safe sequence of processes!



Example of Banker’s Algorithm
• 5 processes P0 through 

P4; 3 resource types A
(10 instances), 
B (5 instances), and C
(7 instances).

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2  

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3  

 The content of the matrix. Need is 
defined to be Max – Allocation.

Need

A B C

P0 7 4 3 

P1 1 2 2 

P2 6 0 0 

P3 0 1 1

P4 4 3 1 

 The system is in a safe state since the 
sequence < P1, P3, P4, P2, P0> satisfies 
safety criteria. 



Resource-Request Algorithm for Process Pi

-- To determine if a request should be granted or not?
Request = request vector for process Pi.  If Requesti [j] = k

then process Pi wants k instances of resource type Rj.

1. If Requesti  Needi go to step 2.  Otherwise, raise error 
condition, since process has exceeded its maximum 
claim.

2. If Requesti  Available, go to step 3.  Otherwise Pi must 
wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by 
modifying the state as follows:

Available = Available – Requesti ;
Allocationi = Allocationi + Requesti ;
Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi. 
 If unsafe  Pi must wait, and the old resource-allocation state is 

restored



Example P1 Request (1,0,2)
Allocation Need Available

A B C A B C A B C 

P0 0 1 0 7 4 3 3 3 2

P1 2 0 0 0 2 0 

P2 3 0 1 6 0 0 

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1 

• Can this request be satisfied?



Example P1 Request (1,0,2) (Cont.)
• Check that Request  Available (that is, (1,0,2)  (3,3,2) 
 true.

Allocation Need Available
A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0 
P2 3 0 1 6 0 0 
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1 

• Executing safety algorithm shows that sequence <P1, P3, 
P4, P0, P2> satisfies safety requirement. 

• Question: Can request for (3,3,0) by P4 be granted?
• Question: Can request for (0,2,0) by P0 be granted?



Detection and Recovery

• Detection and recovery
– If we don’t have deadlock prevention or avoidance, then 

deadlock may occur

– In this case, we need to detect deadlock and recover from 
it

• To do this, we need two algorithms
– One to determine whether a deadlock has occurred

– Another to recover from the deadlock

• Possible, but expensive (time consuming)
– Implemented in VMS

– Run detection algorithm when resource request times out



Deadlock Detection

• Detection
– Traverse the resource graph looking for cycles

– If a cycle is found, preempt resource (force a process 
to release)

• Expensive
– Many processes and resources to traverse

• Only invoke detection algorithm depending on
– How often or likely deadlock is

– How many processes are likely to be affected when it 
occurs



Dead Recovery

• Once a deadlock is detected, we have two 
options…

• 1. Abort processes
– Abort all deadlocked processes

• Processes need start over again

– Abort one process at a time until cycle is eliminated
• System needs to rerun detection after each abort

• 2. Preempt resources (force their release)
– Need to select process and resource to preempt
– Need to rollback process to previous state
– Need to prevent starvation



Summary

• Deadlock occurs when processes are waiting on each 
other and cannot make progress
– Cycles in Resource Allocation Graph (RAG)

• Deadlock requires four conditions
– Mutual exclusion, hold and wait, no resource preemption, 

circular wait

• Four approaches to dealing with deadlock:
– Ignore it – Living life on the edge
– Prevention – Make one of the four conditions impossible
– Avoidance – Banker’s Algorithm (control allocation)
– Detection and Recovery – Look for a cycle, preempt or 

abort


