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Abstract

Current anonymous systems either use a small, fixed core set of mixes or randomly choose

a sequence of peer nodes to form anonymous paths/tunnels. The resulting paths are fragile and

shortlived — that is, a path fails if one of the mixes/nodes fails or leaves the system. In this

paper, we propose SurePath, a failure-resilient tunneling approach for anonymity built on dis-

tributed hash tables (DHTs). SurePath aims to make anonymous tunnels fault-tolerant to node

failures. The basic idea behind SurePath is to decouple anonymous tunnels from “fixed” nodes

and form anonymous tunnels from dynamic mix nodes by relying on DHT routing infrastruc-

ture and data replication mechanism. We have implemented SurePath in Java on FreePastry

1.3. We also provide analysis of anonymity and performance evaluation for SurePath.

Index Terms: Anonymity, peer-to-peer, relay set, forward tunnel, reply tunnel
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1 Introduction

Many Internet applications such as anonymous web-browsing, anonymous e-mail services and pri-

vate P2P file sharing, need anonymization to provide anonymity for the participants such that their

identities cannot be revealed by third-party observers. There are different types of anonymity [1].

Initiator anonymity hides the identity of the initiator from all other nodes including the responder.

Responder anonymity means that the identity of the responder is hidden to all other nodes includ-

ing the initiator. Mutual anonymity provides both initiator anonymity and responder anonymity.

Unlinkability means that even if the initiator and responder can each be identified as participating

in some communication, they cannot be identified as communicating with each other.

One example of an anonymous system is Anonymizer [2] in which all anonymous paths go

through the centralized Anoymizer server. While simple, Anonymizer suffers from the single

point of failure problem: It fails if the server reveals a user’s identity or if an adversary can observe

the server’s traffic.

To address the problem of single point of failures, some systems such as Anonymous Re-

mailer [3] and Onion Routing [4] propose to achieve anonymity by having anonymous paths route

through a small, fixed core set of mixes [5]. However, such systems have several limitations. First,

if a corrupt entry mix receives traffic from a non-core node, it can identify that node as the origin of

the traffic. Further, colluding entry and exit mixes can use timing analysis to disclose both source

and destination. Second, traffic analysis attacks are difficult to counter. Cover traffic has been

proposed to deal with such attacks, but it could incur a big bandwidth overhead. Third, the drastic

imbalance between the relatively small number of mixes and the potential large number of users

might pose a capacity problem. Lastly, legal attacks are another major threat, i.e., law enforcement

could prevent institutions from operating a mix.

To overcome the aforementioned drawbacks, systems such as Crowds [1], MorphMix [6] and

Tarzan [7] provide anonymity by having messages route through anonymous paths involving a

randomly chosen sequence of nodes. In such systems, each node is a mix and an anonymous path

can follow any possible path through the system. However, the resulting anonymous paths are

vulnerable to node failures: If a node on a tunnel is down, the request/reply message is not able

to route through the tunnel to the destination. Consequently, node failures pose a functionality

problem for anonymous paths.
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In this paper, we propose a novel tunneling approach to achieving anonymity in distributed hash

tables (DHTs) [8, 9, 10, 11], called SurePath. The basic idea is to decouple anonymous tunnels

from “fixed” peer nodes. An anonymous tunnel is composed of a sequence of relay sets, each of

which has a unique identifier rsetId and is dynamically mapped into a peer node called relay set

agent. Leveraging DHT routing infrastructure and data replication mechanism, SurePath makes

anonymous tunnels resilient to node failures.

The main motivation of SurePath is to strike a balance between functionality and anonymity

in DHTs. Current tunneling techniques [1, 6, 7] have a problem in maintaining long-standing

remote login sessions if a node on a tunnel fails. Moreover, when constructing an anonymous

path, they cannot make sure if the anonymous tunnel contains only nodes that remain active with

high probability. However, SurePath can support long-standing remote login sessions in the face

of node failures. Another application is anonymous email systems. Current tunneling techniques

may fail to route the reply email back to the sender due to node failures along the tunnel, while

SurePath can route the reply back to the sender thanks to its robustness in the face of node failures

(as will be shown in Section 4.6 by using a reply tunnel). We have implemented SurePath in Java

on FreePastry 1.3 [12]. We also provide analysis of anonymity and performance evaluation for

SurePath in this paper.

The rest of the paper is structured as follows. Section 2 provides related work and neces-

sary background. Section 3 describes goals and threat model in SurePath. We discuss design

of SurePath in Section 4. Section 5 gives security analysis. We present experimental results in

Section 6 and conclude the paper in Section 7.

2 Related Work and Background

2.1 Centralized Anonymous Systems

Anonymizer [2] is a centralized anonymous system which provides fast, anonymous, interac-

tive communication services. In this system, all anonymous paths go through a proxy called

Anonymizer Server. Such a system fails if the proxy reveals a user’s identity or if an adversary can

observe the proxy’s traffic.
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2.2 Mixes-Based Anonymous Systems

Many Systems such as Anonymous Remailer [3] and Onion Routing [4] achieve anonymity by

having anonymous paths route through a small, fixed core set of mixes [5]. Each mix decrypts

messages, delays, and reorder messages before relaying them to the next mix.

Onion Routing [4] provides anonymous routing using a dedicated set of “onion routers” that

are similar to real-time Chaum Mixes. To send a message in an Onion Routing session, the sender

chooses a path of onion routers, then encrypts the message in a layered manner using the public

keys of each onion router from the last member of the path, creating an onion. As a message routes

through an anonymous path, each onion router removes or adds a layer of encryption, depending

upon the direction of traversal of the message. Tor [13], the second generation of Onion Routing,

achieves initiator anonymity and responder anonymity by using rendezvous points.

Ogata et al. [14] proposed two schemes that are based on the hardness of factorization and the

difficulty of the discrete log problem respectively, to offer robust anonymous tunnels when less

than a half of mixes are faulty. SurePath differs from [14] in that it relies on the DHT’s routing

infrastructure and data replication mechanism to provide resilient anonymous routing.

2.3 P2P-Based Anonymous Systems

Many anonymous systems where every node is a mix have been proposed. Crowds [1] aims at

providing web-browsing anonymity using random forwarding. The initiator sends the message

to a randomly-chosen node called jondo. Upon the message, each jondo randomly decides to

either send the message to the responder or to forward it to another jondo. Tarzan [7] provides

a P2P anonymizing network layer by employing cover traffic. It achieves anonymity with layer

encryption and multihop routing similar to Onion Routing. MorphMix [6] uses a collusion de-

tection mechanism to detect colluding mixes. Xiao et al. [15] proposed two protocols for mutual

anonymity in hybrid P2P networks.

P5 [16] uses broadcast channels to achieve mutual anonymity. Nodes join one or more broad-

cast groups to retain anonymity. P5 allows users to trade-off the degree of anonymity for commu-

nication efficiency. Hordes [17] provides initiator anonymity using multicast. An initiator sends a

request to a responder using Crowds or Onion Routing, while the responder multicasts the response

to the multicast group that is formed by all the initiators. APFS [18] uses an intermediate proxy

and Onion Routing to provide mutual anonymity. We reported our preliminary results of resilient
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anonymous routing in TAP [19].

Freenet [20] uses probabilistic routing to achieve anonymity. FreeHaven [21] uses both cryp-

tography and routing to provide anonymity.

2.4 Background: DHT Infrastructure

Without loss of generality, we take Pastry/PAST [8, 22] as the example. Other DHTs [9, 10, 11]

have the similar characteristics to the ones discussed below.

Pastry is a P2P routing substrate that is efficient, scalable, fault-resistant and self-organizing.

Each node in the overlay network has a unique nodeId and a pair of public and private keys. Given

a file with a fileId, Pastry maps the file into a destination node whose nodeId is numerically

closest to the fileId. Given an overlay network consisting of N nodes, Pastry can route to the

numerically closest node for a given fileId in O(log N) hops. PAST is a large scale, P2P persistent

storage utility layer on top of of Pastry. It employs a replication mechanism to store a file on the k

nodes whose nodeIds are numerically closest to the file’s fileId. The k nodes are called replica

set for the file with fileId, and k is called replication factor. The k replicas for a file is maintained

to increase availability under node churn. In other words, a file can be located unless all k nodes

have failed simultaneously.

3 Design Goals and Threat Model

3.1 Goals

SurePath uses an Internet-wide pool of nodes, numbered in thousands, to relay each other’s traffic

to gain anonymity. In particular, the goals of SurePath are to meet the following requirements:

Initiator Anonymity: The identity of an initiator is hidden to all other node including the

responder.

Unlinkability: Identities of the communicating parties (initiators and responders) are hidden

to adversaries.

Failure-Resilience: Anonymous paths are fault-tolerant to node failures on the paths.

Low Latency: Anonymous communication latency is low. Anonymity should not severely

compromise performance.

Responder Anonymity: SurePath can easily be extended to support responder anonymity, by

using an additional level of indirection.
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3.2 Threat Model

We assume adversaries control a fraction of nodes in the SurePath network. These compromised

nodes collude and share each other’s information, attempting to break anonymity of legitimate

users by getting control of the anonymous tunnels. The adversaries can observe some fraction of

network traffic. There is zero latency for messages sent between colluding nodes.

4 SurePath Design

SurePath uses layered encryption and multi-hop routing: Each hop of an anonymous path removes

or adds a layer of encryption depending on the traversal direction of messages. The basic idea

behind SurePath is to decouple anonymous paths from “fixed” nodes. Unlike current tunneling

techniques, SurePath defines an anonymous path by a sequence of relay sets, each of which is

specified by a relay set identifier rsetId instead of an IP address. rsetId is similar to the file

identifier fileId in DHTs such as Pastry. Given a rsetId, the relay set consists of k nodes whose

nodeIds are numerically closest to the rsetId (k is the replication factor). The one with nodeId

numerically closest to rsetId is called relay set agent and the other k− 1 nodes in the relay set are

candidates.

An anonymous path consists of a sequence of relay sets. The relay set agent of a relay set

is responsible for decrypting the forwarding path information for a message and forwarding the

message to the next relay set. If the relay set agent has failed, the other nodes in the relay set will

undertake its responsibilities. Unless all the k nodes in a relay set have failed simultaneously, a

relay set is capable of relaying messages successfully. All members in a relay set have a replica

of relay set anchor (RSA) (Section 4.1), by which the candidate nodes in the relay set can take

the place of the relay set agent in case that the agent has failed. Put in another way, the RSA is

replicated on k different nodes covered by the relay set. Leveraging DHT routing infrastructure

and data replication mechanism, SurePath makes anonymous paths resilient to node failures.

In SurePath, a node seeking initiator anonymity generates a small number of RSAs (Sec-

tion 4.2), deploys the RSAs into the DHT overlay (Section 4.3), forms an anonymous path using a

subset of the deployed RSAs (Section 4.5), and sends messages through the resulting anonymous

path (Section 4.6).

Figure 1 depicts an anonymous path from the initiator I via relay sets rs1, rs2 and rs3. We

denote by {X}K encryption of the content X with a key K. When I sends a message M (which
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< rs2, K2, h(PW2) >

M

< rs2, K2, h(PW2) >

{rs3, {D, M}K3}K2

< rs3, K3, h(PW3) >

{D, M}K3

< rs1, K1, h(PW1) >

A2 A3A1I

< rs1, K1, h(PW1) >

< rs3, K3, h(PW3) >

{rs2, {rs3, {D, M}K3}K2}K1

D

Figure 1: Tunneling mechanism. rsi represents the rsetId for the ith relay set. Ai represents the
corresponding relay set agent. < rsi, Ki, h(PWi) > is the i-th relay set anchor. Ki is a symmetric
key.

may be encrypted for privacy, e.g., by D’s public key) to the destination server D through the

anonymous path, it encrypts the message in a layered manner from the last hop of the path with

the symmetric keys, which results in {rs2, {rs3, {D,M}K3}K2}K1 . Then, I sends the encrypted

message to A1, which is the relay set agent for rs1. Upon the message, A1 removes one layer of

encryption using K1, determines the next relay set according to the identifier in the header, and

sends it to A2, which is relay set agent for rs2. This process repeats until the tail relay set agent A3

of rs3 is reached, which relays the message M to D. As will be discussed later, the corresponding

reply is sent back to I using a different anonymous tunnel (called reply tunnel which is included in

message M by I).

Consider the case when A1 receives the message from I and is going to send the message

to A2, which has already failed. Relying on P2P routing infrastructure and data replication, A1

is able to route the message to A′
2, which has become the relay set agent for rs2 after A2 fails.

A′
2 then removes one layer of encryption using the symmetric key K2 from its replica of RSA

< rs2, K2, h(PW2) > and sends the message to A3, allowing the message to continue on the

anonymous tunnel.

Having anonymous tunnels consist of an open-ended set of peer nodes, however, introduces a

new challenge. An adversary can easily operate several malicious nodes in the system and try to

break anonymity of legitimate users by getting full control of their anonymous tunnels. With the

replication of RSAs, the probability for colluding nodes to compromise other users’ anonymity

becomes higher. The main motivation behind SurePath is to strike a balance between functionality

and anonymity, and our goal is not to provide perfect anonymity in P2P systems.

SurePath does not employ cover traffic due to several reasons. First, cover traffic is very ex-

pensive in terms of bandwidth overhead and it does not protect from internal attackers (malicious

nodes who act as mixes in SurePath). Second, the number of mixes in SurePath is large (num-
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bered in thousands) and they are probably spread across several countries and ISPs, rendering the

global eavesdropper very unlikely. Lastly, the dynamism of P2P systems makes cover traffic hard

to maintain.

In what follows, we describe relay set anchors (RSAs), and discuss how to generate and deploy

RSAs. Then, we use examples to demonstrate uses of SurePath to achieve initiator anonymity and

responder anonymity. We also present a technique to improve anonymous routing performance.

Finally, we give a brief discussion on secure routing. Without loss of generality, we take Pastry as

the DHT example. However, we believe that our tunneling approach can be easily adapted to other

DHT systems [9, 10, 11]

4.1 Relay Set Anchor

A relay set is “anchored” in the system through a relay set anchor (RSA). A RSA is in the form of

< rsetId,K, h(PW ) >, where rsetId uniquely identifies a relay set and functions as a DHT key

for the RSA’s storage and retrieval, K is a symmetric key for encryption/decryption, and h(PW )

is the hash of a password PW . It can be envisioned a small file stored on the system, where rsetId

is the fileId, and {K,h(PW )} is the file content.

Like a normal file, a RSA is stored on k nodes whose nodeIds are numerically closest to its

associated rsetId. These k nodes are the replica set for the RSA and k is the replication factor.

One of the nodes in the replica set is the relay set agent and the other k − 1 nodes are the relay set

agent candidates. Once the agent fails, one of the candidates will take its place, thus making an

anonymous tunnel fault-tolerant to node failures.

The security of RSAs is critical to anonymous tunnels in SurePath. The nodes who have a right

to access a RSA must be restricted. Only its owner (the initiator who has deployed it) and the

nodes in its replica set have the right to access it, while all other nodes cannot be allowed to access

it. Any node who wants to access a RSA must be verified that it is either the owner or one of the

nodes in the replica set. The identity of an owner can be verified by presenting the corresponding

PW of a RSA as will be shown later, while the identity of the nodes in the replica set can be

verified due to the verifiable constraint that these nodes’ nodeIds must be numerically closest to

the rsetId of the RSA. It is worth pointing out that a malicious node can disclose the RSAs stored

in its local storage to other colluding nodes such that the malicious nodes can pool their RSAs to

break anonymity of other users. Section 6 will show evaluation results.
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4.2 Generating RSAs

Any node seeking anonymity has to generate and deploy a number of RSAs before using anony-

mous tunnels. In order to avoid collision in generating RSAs, we propose a RSA generating mech-

anism which allows a node to generate node-specific RSAs without revealing the node’s identity.

Note that the uniqueness of a RSA is determined by its rsetId. So the rsetId for a given node can

be computed from a node-specific identifier node ID (which could be, for example, the node’s

IP address, private key or public key), a secret bit-string hkey, and a time t at which the rsetId

is created. The purpose of the hkey and t is to prevent other nodes from linking the rsetId with

a particular node by performing recomputation of the rsetId upon each node in the system, and

revealing that node’s identity. The following equation presents the generation more formally:

rsetId←h(node ID, hkey, t)

Where h is a uniform collision-resistant hash function, i.e., SHA-1. After generating the rsetId

for a RSA, the node then generates a random bit-string as the symmetric key K and another random

bit-string as PW .

With the RSA generating approach described above, we can see that, the RSAs a node generates

not only avoid collision with those of other nodes, but also prevent other nodes from linking them

with the node.

4.3 Deploying RSAs

Before forming a tunnel, a node seeking anonymity must deploy a number of RSAs into the system

as the anchors of its relay sets. More importantly, the node must deploy them anonymously such

that nobody can link a RSA with itself. So, the node needs a bootstrapping anonymous tunnel

to deploy the RSAs for its first anonymous tunnel. Relying on a public key infrastructure (PKI)

on a P2P system by assuming each node has a pair of private and public keys, the node can use

Onion Routing as the bootstrapping tunnel by choosing a set of nodes 1, to deploy the RSAs for

its first anonymous tunnel. It creates an onion carrying instructions for each node on the Onion

path to store a RSA on the system. For example, a node I creates an onion for the path P0, P1,

1We can employ the peer selection technique proposed in Tarzan by considering the chosen nodes’ IP address
prefixes.
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P2 is {P1, RSA0, {P2, RSA1, {D,RSA2}K2}K1}K0 , where Ki is Pi’s public key. It then sends the

onion to P0. Each node on the path removes one layer of encryption and stores the corresponding

RSA on the system. Or a node can deploy only one RSA during each Onion Routing session.

It is worth pointing out that Onion Routing is only used to bootstrap a node’s first anonymous

tunnel. Once the node is able to form the first tunnel using the deployed RSAs, it will use this

tunnel to deploy other RSAs if necessary. Without doubt, if a node on the bootstrapping Onion

path fails, the deploying process will be aborted. We argue that this is not a problem because the

deploying process is not performance critical. A node can always try to use another Onion path

to deploy its initial RSAs until the first anonymous tunnel is able to be formed. A node can also

rent a trusted node’s anonymous tunnels to deploy its initial RSAs. We leave this approach to our

future work.

Note that malicious nodes can simply try to flood the system with random RSAs so that “real”

RSAs cannot be inserted. This sort of data flooding is a form of denial of service attacks, as it

prevents other nodes from deploying RSAs to form anonymous tunnels and gaining anonymity.

The usual way of counteracting this type of attack is to charge the node for deploying a RSA. This

charge can take the form of anonymous e-cash or a CPU-based payment system that forces the

node to solve some puzzles before deploying a RSA.

4.4 Deleting RSAs

Our system provides a mechanism for a node to delete the RSAs which it previously deployed, but

no node can delete other nodes’ deployed RSAs by using this mechanism. Recall that when a node

deploys a RSA, a PW is generated and the h(PW ) is included in the RSA. The reason that this

value is stored as opposed to just the PW is that it prevents a malicious node from learning the

password PW and deleting the RSA. To delete a RSA, a node has to present the secret PW as a

proof of the owner. The nodes which store the RSA will hash the received PW , compare the hash

value with the stored H(PW ), and if they match, remove the RSA from their local storage.

4.5 Forming Tunnels

When forming a tunnel, a node selects a set of RSAs it has already deployed. The chosen RSAs

must scatter in the DHT identifier space as far as possible (i.e., with different rsetId’s prefixes) to

avoid the case that a single node has the information of multiple or all relay sets of the tunnel to be

formed.
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4.6 Example: Anonymous File Retrieval

In this section we demonstrate how to use SurePath for an initiator I to anonymously retrieve a file

(with fid as its fileId) in DHTs such as Pastry.

In the forward path, an initiator I creates a forward tunnel Tf and performs a layered encryption

for each relay set. More precisely, consider a forward tunnel Tf that consists of a sequence of 3

relay sets (rs1, rs2, rs3), where rsi’s RSA is < ridi, Ki, h(PWi) >. Then I produces the message

M = {rid1, {rid2, {rid3, {fid, PI , Tr}K3}K2}K1}

Where PI is a temporary public key for I and Tr is a reply tunnel for the requested file to route

back. Tr is a different tunnel from Tf , consisting of a sequence of 3 relay sets (rs1
′, rs2

′, rs3
′),

where rsi
′’s RSA is < ridi

′, Ki
′, h(PWi

′) >. So

Tr = {rid1
′, {rid2

′, {rid3
′, {bid, fakeOnion}K3

′}K2
′}K1

′}

Where fakeOnion is introduced to confuse the last hop in Tr. bid is an identifier subject to

a condition that I is the node whose nodeId is numerically closest to it. Therefore, it guarantees

that the reply will be route back to I .

To retrieve the file, the initiator I sends the message M to the first relay set agent corresponding

to rid1. The first relay agent node retrieves the symmetric key K1 from its local storage, removes

one layer of encryption using K1, reveals the next relay set, and sends the extracted message to

the next relay set agent. This process continues until the message reaches the tail relay set agent

of rid3. The tail relay set agent strips off the innermost layer of encryption, revealing I’s request

for file specified by fid. Then it sends the request together with the reply tunnel Tr and PI
′ to the

responder node R who stores the file f corresponding to fid. Note that PI and Tr can be encrypted

with R’s public key for privacy, i.e., {PI , Tr}PR
.

Upon receiving the message, the responder R retrieves the file f from its local storage, encrypts

f with a symmetric key Kf (i.e., {f}Kf
), encrypts Kf with PI (i.e., {Kf}PI

), and sends the {f}Kf
,

{Kf}PI
and the reply tunnel Tr to the relay set agent of rid1

′. On the reply path, each successive

relay set agent removes one layer of encryption from the reply tunnel Tr, revealing the next relay

set, and sends {f}Kf
, {Kf}PI

and the stripped reply tunnel to the next relay set. This process
11



repeats until the reply message reaches I , which decrypts Kf using the corresponding temporary

private key PI
−, and then decrypts the file f using Kf . Note that each tunnel hop performs only a

single symmetric key operation per message.

It is worth pointing out that a request tunnel is different from a reply tunnel in SurePath. This

makes it harder for an adversary to correlate a request with a reply.

4.7 Extending to Support Responder Anonymity

In this section, we show how the responder R uses a reply tunnel TR to achieve responder

anonymity in the above example.

In order to serve its file f with identifier fid anonymously, R first hooks fid with a reply tunnel

TR (which is constructed in the same way as Tr) and anonymously stores < fid, TR > into the

node D which is responsible for fid. When the message M from I arrives at the relay set agent of

rid3, it forwards the request together with the reply tunnel Tr and PI included in M to D. Then,

D consults its locally stored < fid, TR > and routes fid, Tr and PI through the reply tunnel TR

to R. Upon receiving the message, R sends the file f to I using I’s reply tunnel Tr as described

above.

Recent work [23] introduced a notion of extended destination routing (EDR) which relies on

routing header to achieve responder anonymity. The reply tunnel used to gain responder anonymity

in SurePath essentially serves the same purpose of a routing header, but with enhanced resilience

to node failures by decoupling the tunnel from fixed nodes.

4.8 Tunnel Performance Enhancement

Note that routing through an anonymous tunnel of l relay sets involves l·O(logN) overlay hops,

introducing a big performance overhead. In this section, we propose a performance enhancement

scheme for SurePath’s basic tunneling mechanism.

More precisely, consider a tunnel T = (rs1, rs2, rs3), where rsi’s RSA is <

ridi, Ki, h(PWi) >. For each relay set rsi, the initiator gets the IP address ipi of the corresponding

relay set agent 2. Then it creates an encrypted message in the form of

{rid1, ip1, {rid2, ip2, {rid3, ip3, {D, M}K3}K2}K1}
2The initiator can maintain a cache of the mappings between a tunnel hop ridi and the IP address of its relay set

agent, and it can periodically refresh the cache.
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by embedding the IP address of each relay set agent.

The initiator first attempts to send the message directly to the node with the IP address ip1. If

this node does not exist or it is not the relay set agent of rid1 any more, it falls back to the DHT

routing infrastructure and routes to the relay set agent of rid1. Each successive relay set agent on

the tunnel removes a layer of encryption, revealing the next relay set with a IP address and rsetId.

It first tries the IP address, if it fails, then routes the message to the relay set agent corresponding

to the rsetId. This process repeats until the message reaches the tail relay set agent, which in turn

routes the message M to the destination node D. Obviously, the tunneling approach with the IP

address embedded as a hint at each hop provides a shortcut to the next relay set agent along the

path, resulting in great performance improvement (see Section 6).

4.9 Discussion: Secure Routing

As discussed earlier, the ability of SurePath in making anonymous tunnels resilient to node failures

relies on the DHT routing infrastructure and data replication mechanism. A big concern is how

a message can be securely routed to a relay set agent given a rsetId in DHT overlays where a

fraction of nodes are malicious to pose a threat. Fortunately, we can address the secure routing

problem by following the techniques used in [24] — that is, assigning certified nodeIds to nodes,

maintaining secure routing table and routing messages. The certified nodeIds not only prevent

nodes from forging nodeIds, but also are able to prevent an attacker from easily obtaining a large

number of nodeId certificates by requiring some form of real-world currency or solving crypto

puzzles. Therefore, the cost of controlling a significant portion of nodes in a large overlay can

be made high enough to deter most attackers. Maintaining secure routing tables and using the

secure routing tables to forward messages are two parts in routing. To enable secure routing table

maintenance, we could impose strong constraints on the set of nodeIds that can fill routing table

entries. To forward a message, we could apply routing failure test to detect problems and then

use diverse routes. More detail of secure routing can refer to [24]. In summary, secure routing

takes a message and a destination key (e.g.,, rsetId) and ensures that with very high probability

the message reaches the destination (e.g., the relay set agent) for the key in DHT overlays under

the faulty network models.
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5 Security Analysis

In this section, we analyze how SurePath can defend against attacks from the various parties in the

network. In particular, we focus the analysis on initiator anonymity.

A Global Eavesdropper: As discussed earlier, SurePath does not employ cover traffic. So if

a global eavesdropper can observe every single node in the system, it should be able to break the

anonymity of all participants by means of timing attacks at the nodes along anonymous tunnels or

end-to-end timing attacks at the first and tail nodes. However, we argue that such an attacker is not

realistic in a P2P network with thousands of nodes distributed in the Internet. First, in SurePath

each node is a mix and therefore the number of mixes is very large and they are spread across

several countries and ISPs. Recent studies [6, 25] also argue that a global attacker is very unlikely

in such a P2P system. Second, the dynamism of P2P networks due to node joins and leaves makes

it virtually impossible for anyone to get knowledge of the whole network at any time.

A local eavesdropper: An adversary can monitor all local traffic to and from an initiator.

Although the eavesdropper will reveal the initiator’s traffic patterns (both sent and received), it

cannot figure out the initiator’s destination or message content without the cooperation from other

nodes.

The responder: The probability that the responder correctly guesses the initiator’s identity is
1

N−1
(N is the number of nodes in system), since all other nodes have the same likelihood of being

the initiator.

A Malicious Node: The mix homogeneity (each node is a potential mix) of our design prevents

an adversary from deterministically concluding the identity of an initiator: All nodes both originate

and forward traffic. Thus, a malicious node along the tunnel cannot know for sure whether it is the

first hop in the tunnel. It can only guess that its immediate predecessor is the initiator with some

confidence.

Colluding Malicious Nodes: We consider the case that an adversary operates a portion of

nodes which collude with each other to compromise the anonymity of legitimate users. It can read

messages addressed to nodes under its control; it can analyze the contents of these messages. The

adversary can use timing analysis to determine whether messages seen at different hops belong to

the same tunnel. In SurePath, each relay set anchor RSA is replicated on a replica set of k nodes.

If one of these k nodes is malicious, it can disclose the RSA to other colluding nodes. Therefore,

14



malicious nodes can pool their RSAs to break the anonymity of other users. With some probability,

the adversary can (1) have the RSAs for all the hops following the initiator along a tunnel (where

the first tunnel hop node is under the adversary’s control) or (2) control at least the first tunnel hop

node and the tail tunnel hop node of a tunnel (in this case, the adversary can use timing analysis

attack to compromise the tunnel). Thus, if a message is routed through such corrupt tunnels, the

adversary can have a chance to compromise the anonymity. But, it is worth pointing out that the

adversary attack on the second case is very limited. This is because, first and most importantly, the

adversary does not know if the first hop is really the first hop, which implies he cannot determine

who the initiator is. Secondly, the network connection heterogeneity of P2P networks complicates

the task of timing analysis attacks. As a result, in Section 6 we mainly focus on the first case.

Note that the primary motivation of SurePath is to strike a balance between functionality and

anonymity in very dynamic P2P networks. The adversary may occasionally break the anonymity

of a user by using the RSAs he has accumulated, but a user can form another tunnel anyway to

protect its future anonymity once its current tunnel is found to be compromised.

6 Experimental Results

We have implemented SurePath in Java on FreePastry 1.3 [12]. FreePastry 1.3 is a modular, open

source implementation of the Pastry P2P routing and location substrate. It also includes an imple-

mentation of the PAST storage system and the replication manager, which provides application-

independent management of replicas by replicating data on the set of k nodes closest to a given

key. To be able to perform experiments with large networks of nodes, we implemented SurePath on

a network emulation environment, through which the instances of the node software communicate.

In all experiments reported in this paper, the peer nodes were configured to run in a single Java

VM.

6.1 Resilience to Simultaneous Node Failures/Leaves

In the set of experiments, we evaluated the ability of SurePath to function after a fraction of nodes

fail/leave simultaneously. We considered a 104 node network that forms 5, 000 tunnels, and ran-

domly choose a fraction p of nodes that fail/leave simultaneously. After node failures, we measure

the fraction of tunnels that could not function. We define the number of relay sets per tunnel as the

tunnel length. In this experiment, the tunnel length is 5.

Figure 2 plots the mean tunnel failure rate as a function of p for the current tunneling tech-
15
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Figure 2: Fraction of tunnels that fail as a function of the fraction of nodes that fail.

niques, SurePath with the replicator factor k = 3, and SurePath with k = 5, respectively. Note

that in SurePath, there is no significant tunnel failures. A higher replication factor k makes tunnels

more robust against node failures. However, in current tunneling techniques, the tunnel failure rate

increases dramatically as the node failure fraction increases.

6.2 Anonymity upon Colluding Malicious Nodes

This set of experiments measured anonymity of SurePath against colluding malicious nodes. The

main metric used to evaluate anonymity is the compromised tunnel rate as a fraction of total tunnels

in the system. We considered a 104 node network where some of them are malicious and in the

same colluding set. We assumed the system with 5, 000 tunnels and randomly chose a fraction p

of nodes that are malicious. The tunnel length is 5 by default, unless otherwise specified.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
om

pr
om

is
ed

 tu
nn

el
s 

(fr
ac

tio
n 

of
 to

ta
l)

Malicious nodes (fraction of total)

Figure 3: The fraction of tunnels that are compromised as a function of the fraction of nodes that
are malicious. The replication factor k is 3.

We first measured the fraction of tunnels that were compromised by malicious nodes. Figure 3

plots the mean compromised tunnel rate as a function of p. As p increases, the corrupt tunnel rate

increases. However, there is no significant tunnels compromised even if p is large enough (e.g.,

0.3).
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In the following experiments, the value of p was fixed to be 0.1. We then evaluated the impact

of the replication factor and the tunnel length on anonymity. Figure 4 shows the fraction of tunnels

that are compromised as a function of the replication factor. As the replication factor increases,

the fraction of tunnels that are compromised increases. This is because a higher replication factor

allows malicious nodes to be able to learn more RSAs, increasing the probability of compromising

other users’ anonymity. Figure 5 shows the fraction of tunnels that are compromised as a function

of the tunnel length. Note that the fraction decreases with the increasing tunnel length, and the

tunnel length of 5 catches the knee of the curve.
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Figure 4: The fraction of tunnels that are compromised as a function of the replication factor
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Figure 5: The fraction of tunnels that are compromised as a function of the tunnel length.

So far our experiments have not considered the dynamism of P2P systems that nodes enter

and leave the system at will. Instead of leaving the system, malicious nodes are trying to stay in

system as long as possible so that they can accumulate more RSAs to break others’ anonymity. For

example, if a benign node leaves, its responsible RSAs are taken by another node, which might

happen to be a malicious node. Moreover, the DHT’s data replication mechanism might happen

to make malicious nodes to become the members of some RSAs’ replica sets as nodes leave.

Therefore, malicious nodes can take advantage of the leaves of other nodes to learn more RSAs.
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We started a system initially with 5, 000 tunnels. During each time unit, we simulated that a number

of 100 benign nodes leaves and then another set of 100 benign nodes join the system, keeping the

fraction of malicious nodes p on 0.1 after each time unit. Then, we measured the fraction of

tunnels that are compromised after each time unit. Figure 6 plots the mean compromised tunnel

rate. “un-refreshed” means that the original 5, 000 tunnels were used throughout the experiment,

while “refreshed” means that a new set of 5, 000 tunnels were created to replace the old tunnels

after each time unit. Note that the compromised rate of “un-refreshed” increases steadily as time

goes, while that of “refreshed” keeps almost constant. We conclude that in such dynamic P2P

systems, users must refresh their tunnels periodically to reduce the risk of having their anonymity

compromised.
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Figure 6: The fraction of tunnels that are compromised. The replication factor k is 5.

6.3 Performance

In this set of experiments, we evaluated the performance of SurePath in terms of transfer latency

between peer nodes. Our performance analysis focused on the overhead introduced by SurePath.

We simulated the size of a P2P network from 100 to 10, 000 nodes. Each link in the network

had a random latency from 10 ms to 2300 ms, randomly selected in a fashion that approximates

an Internet network [18]. All links had a simulated bandwidth of 1.5 Mb/s. A randomly chosen

initiator transferred a 2Mb file with a random fileId to a node whose nodeId is numerically closest

to the fileId in the following three ways: (1) overt transfer relying on DHT routing infrastructure

that does not provide anonymity; (2) anonymous transfer using SurePath; (3) anonymous transfer

using performance optimized SurePath, denoted by SurePath+ (as discussed in Section 4.8).

We ran 30 simulations for each network size, and each of the simulations involved 100, 000 file

transfers.

Figure 7 shows transfer latencies as a function of network sizes. Note that SurePath’s basic
18
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Figure 7: Transfer latencies. l is the tunnel length.

tunneling mechanism introduces a significant latency penalty in file transfer. A longer tunnel

incurs bigger performance overhead, though it provides better anonymity. However, SurePath+

can dramatically reduce the latency penalty, improving tunneling performance. It is worth pointing

out that the overhead introduced by symmetric encryption/decryption in tunneling is negligible in

the experiments.

7 Conclusions and Future Work

In this paper, we present SurePath to improve resilience of anonymous routing in dynamic P2P

systems. Via detailed simulations, we have arrived at the following conclusions: (1) Leveraging

the DHT routing infrastructure and data replication mechanism, SurePath is fault-tolerant to node

failures. (2) By carefully choosing the replication factor and tunnel length, SurePath can strike

a balance between functionality and anonymity. (3) SurePath’s performance optimized tunneling

mechanism can greatly improve routing performance. (4) Users seeking anonymity must reform

their tunnels periodically against colluding malicious nodes in dynamic P2P networks to reduce

the risk of having their anonymity compromised.

SurePath currently has some limitations. First, unlike MorphMix [6] and Tarzan [7], SurePath

lacks the ability to control future hops along a tunnel. It trades this ability for functionality. Sec-

ond, we have not addressed the admission control problem in SurePath. In securing routing, the

certified nodeIds could control the admission of peers, and we believe trust management could be

used to control the admission and exclude malicious peers from the system. In addition, other in-

centive mechanisms could possibly be introduced to encourage nodes to protect others’ anonymity.

Third, SurePath does not have a mechanism to detect compromised tunnels. It requires users to

reform their tunnels periodically against colluding malicious nodes. Nevertheless, we believe that
19



SurePath is a first step towards understanding the construction of anonymous tunnels from peers

in dynamic P2P systems, and it provides a balance point between functionality and anonymity.
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