
Making P2P Downloading Dependable by
Exploiting Social Networks

Yingwu Zhu
Department of CSSE, Seattle University

Seattle, WA 98122, USA
Email: zhuy@seattleu.edu

Abstract—P2P file sharing networks are rife with unusable
copies of files, polluted either incidentally or deliberately. Pollu-
tion has made P2P downloading undependable — users may end
up receiving polluted copies of a target file. To combat pollution,
we propose a recommender that maintains users’ opinions
on previously downloaded files over their social network and
provides recommendations on demand to assist users in making
file download decisions. The big challenge for the recommender
is to produce right recommendations in face of various potential
attacks. To this end, we propose novel techniques in managing
user opinions and forming recommendations. Our experimental
results show that our recommender greatly outperforms existing
download selection strategies in identifying authentic files.

Keywords: Pollution, peer-to-peer, recommender, social links.

I. Introduction
In past years, P2P file sharing networks have been ap-

plauded as a “happy land” for a variety of reasons, such as
open environment without admission control, fast speed down-
load, and free downloads without monetary charge. However,
recent studies [1], [2] have warned users that P2P networks are
not a “pure land” by revealing significant file pollution. File
pollution comes from different sources. Inadvertent users often
accidentally create damaged files and upload them into P2P
network as authentic copies. Worse, attackers and professional
companies like Overpeer [3] intentionally deposit a massive
amount of decoys (e.g., files tampered with, spam files or
virus) into P2P networks for different reasons, resulting in
a significant level of pollution. In order to fool users to
download decoys, each decoy is labeled as an authentic copy
by associating it with the metadata of the authentic file (a wolf
in sheepskin).

Pollution raises several issues. First, pollution makes P2P
downloading undependable — a peer lacking measures to
distinguish decoys from authentic files, may be fooled to
download decoys, wasting network and client resources. Sec-
ond, being unaware that what it downloaded is a decoy, a
careless peer may help the decoy originator spread the decoy,
further reducing availability of authentic files [4]. Lastly,
pollution adversely impacts user experience.

Existing approaches to counteracting pollution fall into three
broad categories. First, one can base download decisions on
popularity of replicas in query responses [2] or random selec-
tion of query responses [5]. Second, one can use reputation
systems to make informed download decisions [6]. Third, one
can rely on a trusted database, which maintains content hashes

of authentic objects, to make download decisions. Each of
these approaches has certain advantages and disadvantages,
which we discuss in Section II.

Our vision on P2P file sharing networks is that file pollution
is inevitable due to open environment. In this paper, we have
no ambition to make P2P networks a “pure land”. Instead,
we aim to design a recommender for users to make right
download decisions. The recommender is built on top of
the social network of participating users. Participating users
advertise their opinions on previously downloaded files to the
recommender over their social links. When a user issues a
query for a file in the P2P network, the user also submits
the query to the recommender via her social links. Upon
receiving query responses from the P2P network, the user uses
the recommendation (i.e., content hash of the authentic file)
returned from the recommender to make informed download
decisions. Via simulations, we show that the recommender is
effective in defending against pollution in P2P networks and
greatly outperforms existing heuristic anti-pollution strategies
including random- and popularity-based selections.

The remainder of the paper is structured as follows. Sec-
tion II provides overview of related work and background on
random routes. We detail design of the recommender in Sec-
tion III. Section IV describes experimental setup and provides
experimental results. We conclude the paper in Section V.

II. Related Work
Pollution in P2P networks has been investigated by recent

studies [1], [2], [4]. Existing anti-pollution proposals fall
into three categories: simple heuristic selection strategies,
reputation-based approach, and recommender-based approach.
Simple heuristic selection strategies include popularity-
based [2] and random-based [5]. The popularity-based strategy
makes download decisions based on the popularity of replicas
in query responses, and the random-based strategy randomly
chooses replicas in query responses for download targets.
While simple, both strategies are vulnerable to manipulation.

The reputation-based approach like Credence [6] gauges
file authenticity based on voter peers’ reputation to assist
download decision making. While attractive, this approach has
limitations in its reputation system, including bootstrapping of
new peers, identity whitewashing, and Sybil attacks. Leverag-
ing social networks, our solution can address these limitations.

The recommender-based approach maintains a trusted,

centralized database which contains fingerprints (or content
hashes) of authentic objects [7]. Peers base their download
decisions on the database queries. Our proposed recommender
differs from this approach in that it exploits trust relationships
embedded in social networks and allows participating users
collectively to maintain the database over their social links.

Trust networks (or social networks) have recently been
utilized to handle Sybil attacks in different applications [8],
[9], [10], [11]. The basic insight is that any individual user
cannot create an arbitrary number of trust links in the social
network and the attack power is strained by the limited number
of the trust links. Our work follows the same insight.
A. Background: Random Routes

Random routes are a special form of random walks. The
difference between random walks and random routes is routing
decisions: the routing decision for random walks is random
while that for random routes is deterministic. In random routes,
at each hop, the current node forwards a message to a pre-
determined outgoing link based on the incoming link of the
message. Assume a node with d edges x1x2· · ·xd and a
random permutation of the d edges y1y2· · ·yd. Then, a random
route entering the node via edge xi will always exit via edge
yi. Random routes have a convergence property: Once two
random routes traverse the same directed edge, they will merge
and stay merged. Moreover, if two random routes converge on
some directed edge, then one of them must start in the middle
of the other (our object descriptor dissemination overriding
policy exploits this to limit pollution of malicious descriptors
in Section III-B). Random routes are also back-traceable: the
outgoing edge uniquely determines the incoming edge. Each
node X maintains a registration table for each of its edge. The
ith entry in the registration table for edge e lists the public
key of the node whose random route enters X via e at its ith
hop. Since we use random routes of a length of L hops, the
number of entries in the registration table for e is L. As will
be shown later, the registration table allows a node to enforce
the descriptor overriding policy in descriptor dissemination.
Please refer to [8] for more details about random routes.

III. Design of the Recommender
A. Overview

When a user issues a query to a P2P network, the user
also submits the same query to the recommender via her
social links. After receiving query responses (without loss of
generality, we assume that a query response includes (1) IP
address of the node storing the queried file, and (2) content
hash of the file) from the P2P network, the user matches con-
tent hashes in the query responses with the recommendation
on content hash of the file returned from the recommender.
If a match is found, the user downloads the file from the
corresponding peer(s) associated with the matched content
hash. Otherwise, the user resubmits a modified query that
contains the recommended content hash to the P2P network.
After receiving query responses, the user downloads the file
from the corresponding peers.

Decoupled from a specific P2P network, the recommender
is built on top of the social network of participating users.
Nowadays, an Internet user likely has joined many online
social networks (OSNs) such as Facebook, Twitter and Flickr.
Note that not all OSNs are suitable for the recommender we
aim to build. We have some assumptions: (1) The social links
of the underlying social network reflect strong (trust) social
connections, e.g., the human-established trust relationships
among colleagues, friends or relatives. Attackers are limited in
creating social links with honest nodes in the social network,
which we call attack edge in the paper. (2) Each node in the
social network has a pair of private and public keys. (3) Honest
nodes in the social network are incentivized to follow protocols
while attacker nodes collude with each other deviating from
the protocols to prevent the recommender from returning right
recommendations.

The recommender is a repository of participating users’
opinions on their recently downloaded files. The user opinion
is termed as formatted object descriptor (FOD) in the paper.
A FOD contains content hash, and descriptive metadata that
includes file name, type, bitrate, and other descriptive data
fields (e.g., singer name of a song). Along a FOD stored are
the public key of the publisher node of the FOD and the FOD
hash encrypted by the publisher node’s private key. The FOD
only indicates whether the object dictated by the content hash
matches the description. The descriptive metadata in a FOD
is used to determine if the FOD matches a query. Without
loss of generality, the descriptive metadata contains sufficient
information to determine whether two pieces of descriptive
metadata describe the same object. If the descriptive metadata
in two FODs describes the same object, then the two FODs
are in descriptive congruence, regardless of whether or not
they contain the same content hash.

Two basic operations are provided by the recommender:
(1) put(d) which allows a user to publish a FOD d into
the recommender via her social links; and (2) h = get(q)
which returns a recommended content hash h for a query q.
The recommender also allows a user to submit feedbacks on
recommendations she received, to refine the recommender, as
discussed in Section III-D.

As an anti-pollution component, the recommender will draw
various attacks as described in Section III-E. Hence, the
recommender needs to address two important issues: (1) How
to maintain FODs in the underlying social network facilitating
search while containing pollution of malicious FODs? (2)
How to aggregate relevant FODs for user queries and form
right recommendations in the presence of various attacks?
To produce right recommendations with high probability in
the presence of those attacks, the recommender: (1) utilizes
the concept of random routes and a novel dissemination
overriding policy to spread FODs across the underlying social
network (Section III-B); (2) uses multiple random routes to
aggregate relevant FODs from the underlying social network
and employs a simple ranking algorithm to form the final
recommendation for user queries (Section III-C); and (3)
allows users to submit feedback on received recommendations

to refine itself (Section III-D).
B. FOD Dissemination

We use random routes of L hops to disseminate FODs.
Consider a user who wants to publish a FOD d to the
recommender via her social links. Let X denote the associated
node in the social network. Node X forwards d over all its
outgoing links. Upon receiving d, each node Y along a random
route stores d at a descriptor database (DDB) corresponding to
the incoming link 1 over which d is received, if d does not exist
in this DDB. If Y is not a tail node of the random route, Y

forwards d to the pre-determined outgoing link corresponding
to the incoming link. This dissemination process allows a node
X with m social links to store d on a set of up to L·m nodes.
Dissemination redundancy over multiple social links increases
visibility of FODs.

F D B AE C

F D B AE C

(a)

(b)

C→D A→BB→CE→F D→E

C→D A→BB→CE→F D→E

A.dA.dA.d

B.dB.d

B.d A.d

B.d

B.dB.d B.d B.d

Fig. 1. FOD dissemination. (a) w/o the overriding policy. (b) w/ the
overriding policy.

If an attacker node with m attack edges launches Sybil
attacks by creating multiple identities behind each attack edge,
each of these identities can advertise their malicious FODs
only to a subset of the L·m nodes due to the convergence
property of random routes. Simply put, attacker nodes col-
lectively having m attack edges pollute at most L·m nodes
even with Sybil attacks; contamination of malicious FODs is
thus controlled by random routes — the pollution power is
throttled by the number of attack edges instead of the number
of identities.

To further limit contamination of malicious FODs, we
propose a novel policy descriptor dissemination overriding.
The basic idea is that a downstream publisher node’s FOD
overrides an upstream publisher node’s FOD along the random
route, if the two FODs are in descriptive congruence (defined
in Section III-A). The overriding policy works as follows:
upon receiving a dissemination message for a FOD d, each
node Y checks whether its local database has any FOD in
descriptive congruence with d (in other words, node Y checks
whether it has published a FOD in descriptive congruence
with d). If so, node Y discards the dissemination message;
otherwise, Y checks if the corresponding DDB associated
with the incoming link of the dissemination message contains
any FOD in descriptive congruence with d. If no such a
FOD is identified, Y stores d in this DDB and forwards the
dissemination message via the pre-determined outgoing link (if

1A node with m social links will have m DDBs associated with these
incoming links and a local DDB that stores its own FODs.

Y is not a tail node). Otherwise, Y needs to determine whether
d overrides the existing FOD: if the publisher node of d is a
downstream node of the publisher node of the existing FOD
on the random route that includes this incoming link 2, then
d overrides the existing one by replacing it in the DDB and
Y forwards the dissemination message to the pre-determined
outgoing link (if Y is not a tail node of the random route);
otherwise, Y simply discards the dissemination message.

Figure 1 illustrates FOD dissemination w/ and w/o de-
scriptor overriding. A is an attacker node while the other
five nodes B to F are honest nodes. A→B is an attack
edge. A→B→C→D→E→F is a random route. A and B

each advertises their FODs A.d and B.d for the same object,
respectively. That is, malicious FOD A.d and authentic FOD
B.d are in descriptive congruence. Without descriptor over-
riding, A and B each stores their FODs A.d and B.d on the
nodes along a random route of 4 hops, respectively. Nodes
B, C, D and E are polluted by A.d. As shown in Figure 1
(b), descriptor overriding removes A.d from the corresponding
DDBs at B, C, D and E, reducing contamination scope of A.d,
since B is a downstream node of A on this random route.

The overriding policy does not affect much visibility of
authentic FODs. For example, if A is an honest node and B is
an attacker node. B is determined to drop A’s dissemination
messages anyway, making A’s FODs unable to reach nodes
further downstream. If A and B both are honest nodes which
are incentivized to publish only authentic FODs, the overriding
policy makes each node on the random route keep only one
copy of the authentic FOD (this does not reduce visibility of
authentic FODs but only the copies of authentic descriptors; as
will be discussed in the subsequent section, keeping a single
copy of the authentic FOD for each content hash on the node
is sufficient, which is shown in Line 2 of Algorithm 1).
C. Recommendation Generation

When a user issues a query in the P2P network, the user
also submits the same query to the recommender. Suppose the
associated node in the underlying social network for this user
is node X with m social links. Then, node X duplicates the
query over all its m social links to aggregate relevant FODs.
Each query takes a random route of length L hops. Upon
receiving the query, each node Y along the random route
checks its local DDB and DDBs associated with its social
links and sees if there is any FOD matching the query. If one
such FOD is identified, the pair (content hash, public key)
is extracted from the FOD. The query response is routed back
to the query initiator along the random route in a reverse
direction: each node Y along the route inserts its identified
pairs (if any) to the response message (only one pair is kept
for duplicate pairs).

Upon receiving m query response messages, X needs to
rank query responses in order to produce a right commendation

2Node Y determines this by simply comparing the two publisher nodes’
entry numbers in the registration table associated with the incoming link: the
publisher node with a lower entry number is the downstream node.

with high probability. Algorithm 1 illustrates the ranking
algorithm which returns a recommended content hash based
on the query responses. The returned content hash is the
fingerprint of the file that the user is looking for and is used
to guide download decision making.

Algorithm 1 X .ranking()
Require: R: a list of (content hash, votes) pairs, initially empty
1: for each query response message do
2: list l←− extract unique content hashes from the response message
3: for each content hash h ∈ l do
4: if h/∈R then
5: insert (h, 1) to R
6: else
7: extract (h, c) from R
8: replace (h, c) with (h, c + 1) in R
9: end if

10: end for
11: end for
12: sort R in descending order according to votes c
13: return the content hash in the top-ranking pair

As described above, FOD dissemination and aggregation
both use L-hop random routes. If a random route of the
query initiator intersects with a random route of a publisher
which advertised a FOD matching the query, the content hash
advertised by this publisher is very likely in the query response
(the object overriding policy may make the publisher’s content
hash not included in the query response; this policy could
shorten a publisher’s FOD publishing scope). Because of
the limited number of attack edges, the random route of
the query initiator is more likely to intersect with that of
an honest publisher than that of a malicious publisher. An
exception is a query initiator with a nearby attack edge. Hence,
(dissemination and query) message redundancy is used to
address such nodes. Due to the presence of malicious content
hashes in the query responses, the query initiator needs to
distinguish authentic content hashes from malicious ones. We
use a simple ranking algorithm: the content hash receiving the
most votes is recommended as the fingerprint of the file the
user is going to download.
D. Feedback on Recommendations

Users are incentivized to submit feedback on recommenda-
tions in order to progressively improve the recommender. If a
recommended content hash is authentic, the user will publish
authentic FODs for this file as described in Section III-B. If
the recommended content hash is inauthentic, the user needs
to perform two tasks. First, the user blacklists the nodes 3

(uniquely identified by their public keys) whose responses
include this recommended content hash and removes the FODs
advertised by these nodes from the DDBs on her associated
node in the social network. Second, via the associated node,
the user publishes a “thumb-down” FOD, which contains one
additional field indicating objection to the contained content
hash. Table I shows the FOD dissemination overriding policy
in the presence of both usual and thumb-down FODs. The

3A more effective approach would be to blacklist the link from which the
inauthentic FOD originates. We leave this to our future work.

downstream usual FOD always overrides the upstream FOD
(whether usual or thumb-down) as long as the two FODs
are in descriptive congruence. “Conditional” means that the
downstream thumb-down FOD overrides the upstream FOD
only if the FODs are in descriptive congruence and contain the
same content hash. Note that the thumb-down object FOD is
not included in query response messages, and it solely aims to
throttle pollution of malicious FODs by the overriding policy.

TABLE I
OBJECT DESCRIPTOR OVERRIDING POLICY.

upstream usual FOD upstream thumb-down FOD
downstream
usual FOD Yes Yes
downstream
thumb-down FOD Conditional Conditional

To summarize, feedback on recommendations, on one hand,
aggressively spreads authentic FODs, and on the other hand,
reduces contamination of malicious FODs by blacklisting
and descriptor overriding, thereby progressively improving the
recommender. Blacklisting is not only an incentive to keep
honest users following the protocols but also a deterrent to
attackers. For a node which intentionally or inadvertently
deviates from the protocols, the node may find it unable to
publish and search FODs via its social links (nodes one the
other side of the social links or near to the social links will
drop its dissemination and search messages if the node is in
their blacklists). The node’s social links become useless and
the node needs to whitewash itself by creating a new set of
social links with a new pair of public and private keys, in order
to regain access to the recommender. However, construction
of a new set of such social links is prohibitive.
E. Attacks

The recommender could become target of various attacks.
One might think of legal attacks such as lawsuits against the
recommender. This might not be a concern due to the fact
that the recommender is fully decentralized and maintains only
content hash.

Leveraging attack edges, attacker nodes can collude with
each other to launch technical attacks against the recommender
by deviating from the protocols. Below, we present a list of
possible attacks. We do not claim that it is a complete list but
we believe it covers most of the potential attacks. We have
evaluated the performance of the recommender upon these
attacks.

Publishing malicious FODs. To pollute the recommender
for a specific file, the attacker nodes each can publish ma-
licious FODs either with the same content hash or with
different content hashes, over all attack edges. However, with
the descriptor overriding policy in dissemination and content
hash ranking by votes in forming recommendations, it is in
their best interests to publish malicious FODs with the same
content hash for the specific file (to maximize the number of
votes for this content hash).

Attacks in routing authentic FOD dissemination mes-

sages. Upon receiving an dissemination message from an
honest node, the attacker node simply discards and stops
forwarding the message, thereby reducing the visibility of
authentic FODs.

Attacks in routing query messages. Upon receiv-
ing a query message, the attacker node stops forwarding
the message along the random route, and loads all the
(content hash, public key) pairs from the relevant malicious
FODs advertised by all the attacker nodes, to the query
response message.

Abusing feedback on recommendations. The attacker
node exhaustively explores authentic FODs by repeatedly
issuing queries and then publishes thumb-down FODs for each
such content hash contained in the authentic FODs.

Whitewashing. If the attacker node becomes notorious as
being blacklisted by many honest nodes, the attacker node
may choose to whitewash, i.e., to leave and rejoin the social
network with a new identity (new public and private keys).
However, whitewashing is prohibitive because the attacker
node needs to rebuild attack edges.

IV. Evaluation
A. Experimental Setup

In this section we aim to answer a question: How well does
the recommender perform by providing right recommenda-
tions, in the face of those attacks as outlined in Section III-E?

Few social network datasets are publicly available to us.
Thus, we use the widely accepted Kleinberg’s synthetic social
network model [12] in our evaluation, which generalizes from
theWatts-Strogatz model [13]. We use the model to instantiate
different 10, 000-node graphs with different random seeds. The
average node degree is 20. Attacker nodes exploit attack edges
to launch attacks. We select attacker nodes as follows: we start
from a randomly-chosen “seed” node and perform a breadth-
first search from the seed. Nodes encountered are marked as
attacker nodes that collude with each other until the total
number of attack edges reaches a certain value. The number
of attack edges used in our simulations is 108, which means
that the attackers have to convince 108 real human beings to
be their friends. We believe that it is reasonable to assume
the hardness of creating 108 such social links by the attacker.
We also consider the attacks discussed in Section III-E except
whitewashing in our experiments.
B. Results

In this section we present our results averaging over 10
simulations with different random seeds. We first studied
impact of random route lengths, number of honest nodes as
FOD publishers and feedback submission, on performance of
the recommender.

In each simulation, the attacker nodes publish their mali-
cious FODs for a specific file via the attack edges. We also
randomly choose a set of honest nodes to publish authentic
FODs for the specific file. Then, the rest of honest nodes
each issues a query for this file to request a recommendation.
We define success rate as fraction of queries that get a right

recommendation, which is used to quantify performance of the
recommender under attacks.

Figure 2(a) depicts the success rate with respect to random
route lengths. It shows that a random route length of 12
hops yields the best performance, because a shorter random
route decreases the visibility of authentic FODs, and a longer
random route, on the other hand, increases pollution scope of
malicious FODs. We thus use random routes of 12 throughout
the rest of the experiments unless otherwise specified.

Figure 2(b) plots the success rate as the number of honest
nodes as FOD publishers varies. The success rate quickly
ramps up as the number of honest publisher nodes increases
from 1 to 10. When the number of honest publisher nodes
reaches 20, the success rate is over 0.99. Thus, we believe the
recommender can provide good recommendations to defend
against pollution, if a small number of honest nodes collec-
tively publish their authentic FODs.

Figure 2(c) shows impact of feedback on recommendations
for a particular simulation. In each simulation, the attacker
nodes publish their malicious FODs for a specific file via their
attack edges. Initially, one honest node is randomly chosen to
publish the authentic FOD for the specific file. Then, for the
list of the remaining honest nodes, each time we randomly
choose one and remove it from the list. The selected honest
node issues a query for the file and then submits feedback
on the received recommendation. We repeat it until the list is
empty. The success rate is calculated based on the list. We
ran the simulation 10 times with different random seeds. The
success rate averaging over the 10 simulations is 0.98. This
shows that, despite one single honest publisher node in the
beginning, feedback on recommendations, is very effective in
disseminating authentic FODs and reducing pollution scope of
attackers’ FODs.

In Figure 2(c), the x-axis denotes the order of the queries
issued by the honest nodes and the y-axis represents received
recommendations by the queries. Note that almost the first
150 queries received bad recommendation due to rampant
malicious FODs. However, the feedback of the first 150
queries, mostly thumb-down FODs, significantly reduces con-
tamination scope of the malicious FODs due to the descriptor
overriding policy and blacklisting, thereby making voice of the
authentic FODs heard. The feedback on good recommenda-
tions by the previous queries makes the voice of the authentic
FODs louder and louder. Nearly all the subsequent queries
get good recommendations except four queries. We found
that the four query initiator nodes actually were surrounded
by many attack edges and they were in the area heavily
polluted by the malicious FODs. For all the queries receiving
a bad recommendation, we resubmit them to the recommender
and all the queries get a good recommendation. This means
that the average number of query submissions to get a good
recommendation is 1.02.

The last experiment compares performance of the recom-
mender with that of heuristic anti-pollution strategies (random-
based and popularity-based selection strategies described in
Section II). We assume a 10,000-node P2P network where

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Random route length (# of hops)

Su
cc

es
s r

at
e

(a) Success rate vs. random route length w/o
feedback

100 101 102 103 104
10−3

10−2

10−1

100

of good publishers

Su
cc

es
s r

ate

(b) Success rate vs. number of honest nodes
as FOD publishers w/o feedback

100 101 102 103 104

bad

good

Queries

Re
co

mm
en

da
tio

n

(c) Recommendations vs. feedback

Fig. 2. Performance of the recommender.

0 20 40 60 80 100
0.01

0.1
0.2

0.4

0.6

0.8

1

Authentic copies (%)

Su
cce

ss
rate

Replication rate = 0.01

Recomm (w/o feedback)
Recomm
random
popularity

0 20 40 60 80 100
0.01

0.1
0.2

0.4

0.6

0.8

1

Authentic copies (%)

Replication rate = 0.1

Fig. 3. Performance comparison. “Recomm” represents the recommender.

each honest peer/user has a corresponding node in the social
network while attackers have 108 attack edges in the social
network as specified in Section IV-A. In the P2P network,
for a specific file we assume various replication rates (i.e., the
fraction of nodes that claim possession of the file) and various
authentic copy rates (i.e., the percentage of copies is authentic,
ranging from 5−90%). Note that attackers can recruit as many
nodes as possible for pollution in the P2P network but are
limited in the number of attack edges in the social network
underlying the recommender.

We assume that the P2P network returns up to 100 responses
for a query for a specific file. When making download deci-
sions, we compare random-based selection, popularity-based
selection and the recommender. For a specific file, 1, 000
queries from different, randomly-chosen honest peers are con-
sidered. Figure 3 plots the results for replication rates of 0.01
and 0.1 respectively. Two important observations can be made:
(1) The recommender significantly outperforms random-based
and popularity-based strategies for various replication rates
(the results for other replication rates are omitted due to space
limitations); (2) Feedback on recommendations is especially
effective when the number of authentic file copies is small.

V. Conclusions
In this paper we present a recommender to defend against

pollution in the P2P file sharing network. What makes the
recommender an attractive anti-pollution solution, is that it
leverages users’ trust links in their social network to manage
their opinions on previously downloaded files and to provide
recommendation on file downloads. The primary goal of the
recommender is to generate right recommendations in face
of various attacks. We present novel FOD dissemination,

recommendation generation and feedback on recommenda-
tions to achieve this goal. Via simulations, we show that the
techniques, combined together, effectively counteract pollution
in the P2P network. Not all social networks are suitable for
the recommender. One assumption we made is that social links
in the underlying social network must reflect strong human-
established connections which requires nontrivial efforts to
acquire. We plan to crawl real social network graphs to validate
our results in our next step.
References
[1] J. Liang, R. Kumar, Y. Xi, and K. Ross, “Pollution in p2p file sharing

systems,” in Proceedings of IEEE INFOCOM, vol. 2, pp. 1174–1185,
March 2005.

[2] N. Christin, A. S. Weigend, and J. Chuang, “Content availability, pollu-
tion and poisoning in file sharing peer-to-peer networks,” in Proceedings
of the 6th ACM conference on Electronic commerce, pp. 68–77, 2005.

[3] “Overpeer.” www.overpeer.com, Sept. 2008.
[4] U. Lee, M. Choi, J. Cho, M. Y. Sanadidi, and M. Gerla, “Understanding

pollution dynamics in p2p file sharing,” in Proceedings of IPTPS, Feb.
2006.

[5] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and W. Zwaenepoel,
“Denial-of-service resilience in peer-to-peer file sharing systems,” in
Proceedings of ACM SIGMETRICS, pp. 38–49, June 2005.

[6] K. Walsh and E. G. Sirer, “Experience with an object reputation system
for peer-to-peer filesharing,” in Proceedings of NSDI, pp. 1–14, May
2006.

[7] “Sig2dat tool for fasttrack network.”
www.geocities.com/vlaibb/tools.html, Sept. 2008.

[8] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
Defending against sybil attacks via social networks,” in Proceedings of
ACM SIGCOMM, pp. 267–278, Sept. 2006.

[9] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A near-
optimal social network defense against sybil attacks,” in Proceedings of
the IEEE Symposium on Security and Privacy, May 2008.

[10] A. Mislove, A. Post, P. Druschel, and K. P. Gummadi, “Ostra: Leverag-
ing trust to thwart unwanted communication,” in Proceedings of USENIX
NSDI, April 2008.

[11] N. Tran, B. Min, J. Li, and L. Submaranian, “Sybil-resilient online
content voting,” in Proceedings of the 6th USENIX NSDI, 2009.

[12] J. Kleinberg, “The small-world phenomenon: an algorithm perspective,”
in Proceedings of ACM STOC, pp. 163–170, 2000.

[13] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, pp. 440–442, June 1998.

