
Peer-to-Peer Netw Appl
DOI 10.1007/s12083-007-0001-3

An efficient and scalable framework for content-based
publish/subscribe systems

Yingwu Zhu · Haiying Shen

Received: 21 March 2007 / Accepted: 22 November 2007
© Springer Science + Business Media, LLC 2008

Abstract Challenges for content-based publish/sub-
scribe systems include efficient subscription manage-
ment and event matching, load balancing, and efficient
and scalable event delivery. This paper presents an ef-
ficient and scalable framework for content-based pub-
lish/subscribe systems. We propose using K-D trees
to dynamically partition and organize subscriptions,
thereby preserving subscription locality, minimizing
event matching load and ensuring load balance across
nodes. We propose an efficient event delivery mecha-
nism that cleverly exploits embedded trees in distrib-
uted hash tables to disseminate events. We show that
the latency of event publication and delivery is low. The
event delivery mechanism can deliver events to a large
number of subscribers at low latency and overhead,
consuming modest bandwidth.

Keywords Distributed hash tables ·
Content-based publish/subscribe ·
Subscription management · K-D trees ·
Event matching · Event delivery

Y. Zhu (B)
Department of CSSE, Seattle University,
Seattle, WA 98122, USA
e-mail: zhuy@seattleu.edu

H. Shen
Computer Science and Computer Engineering Department,
University of Arkansas, Fayetteville
AR 72701, USA
e-mail: hshen@uark.edu

1 Introduction

Content-based publish/subscribe (pub/sub) [1] is a pow-
erful paradigm for information dissemination from
publishers (data/event producers) to subscribers (data/
event consumers) in large-scale distributed networks. A
data event specifies values of a set of attributes associ-
ated with the event. Subscribers register their interests
in future events through subscriptions, which can be
very expressive, and specify complex filtering criteria
by using a set of predicates over event attributes. Upon
receiving an event published by a publisher, the system
matches the event to the subscriptions which serve
as filters and delivers the event to the matched sub-
scribers. A content-based pub/sub system is required to
store the subscriptions installed by the users and upon
an event, find all subscriptions matching the event and
deliver the event to the matched subscribers.

Content-based pub/sub is valuable to many appli-
cations, including personalized information dissemina-
tion (e.g., online stock quotes), monitoring and alerting
(e.g., sensor networks), and application integration.
Current content-based pub/sub systems are either cen-
tralized or distributed. Centralized solutions [2], while
simple, have an inherent scalability problem. Distrib-
uted systems [3–6], which usually use multicast trees
to deliver events, however, may suffer from the fol-
lowing limitations. First, most systems distribute sub-
scriptions randomly across nodes and fail to preserve
subscription locality, thereby increasing system-wide
event matching load. Second, using dedicated multicast
trees for event dissemination incurs nontrivial band-
width cost in per-tree construction and maintenance,
especially in dynamic systems where nodes join or leave
at will. Third, event delivery is inefficient in terms of

Peer-to-Peer Netw Appl

bandwidth. Finally, with few exceptions [7], most so-
lutions have a load balance issue as subscriptions
and events in real-world applications are highly non-
uniform.

Distributed hash tables (DHTs) [8–11] are particu-
larly attractive for supporting content-based pub/sub
systems due to their scalability, decentralization, fault-
tolerance and self-organization. In this paper, we
present a novel apPRroach to Efficient and Scalable
content-based publish/Subscribe (pub/sub) systems
(PRESS) on top of DHTs. In particular, the goals of
this proposed approach that make our contributions,
are to meet the following requirements.

• Subscription locality preservation. subscription
management is based on content such that similar
subscriptions are stored close together on a (or a
small number of) node(s) while dissimilar subscrip-
tions will be distributed across different nodes.
Consequently, the system-wide event matching
load can be minimized, by only matching those
subscriptions most likely relevant to the event. In
addition, with subscription locality, current tech-
niques of collapsing similar subscriptions [12] and
subscription covering and merging [13], as a means
of reducing the matching load which is in propor-
tion to the number of subscriptions, will be more
effective.

• Load-balancing. Real-world subscriptions can be
highly non-uniform. Locality-aware subscription
distribution can result in skewed load distribution
among nodes. The system thus should balance the
load such that each node that stores subscriptions
should be responsible for roughly same number of
subscriptions.

• Light-weight, efficient and timely event delivery.
Current solutions use multicast trees for event
dissemination, introducing nontrivial cost of per-
tree construction and maintenance. Hence, the sys-
tem should minimize or even eliminate such cost
imposed on the underlying DHT. Moreover, the
event delivery should be efficient in terms of band-
width cost and timely in terms of user-perceived
latency.

The remainder of the paper is structured as follows.
Section 2 gives an overview of related work. Section 3
presents the framework of PRESS. We discuss sub-
scription organization in Section 4, describe event pub-
lication and matching in Section 5, and present event
delivery in Section 6. Section 7 discusses experimental
setup and results. We conclude the paper in Section 8.

2 Related work

2.1 Content-based pub/sub model

Pub/sub systems can be classified into two categories:
topic-based and content-based. Topic-based pub/sub
systems assign each event to one of a set of pre-
defined topics (also referred to as groups, channels or
subjects). Each event itself specifies the topic that is
associated with the event. A user subscribes to a set
of topics he/she is interested in and is informed of
all the events which are associated with these topics.
Topic-based pub/sub systems take only coarse-grained
subscriptions. As a result, a user has to receive all
events pertinent to a topic though he/she might be
interested in only a subset of the events. By contrast,
content-based pub/sub systems allow fine-grained sub-
scriptions by enabling restrictions on the event con-
tent. A subscriber can specify multiple predicates as
a subscription and only those events satisfying all the
predicates are notified to the subscriber. Subscriptions
in content-based pub/sub systems are more expressive,
which makes the system harder to implement.

Fabret et al. [1] proposed a content-based pub/sub
scheme with multiple attributes, defined as: S =
{A1, A2, · · ·, An}, where each Ai corresponds to an
attribute. Each attribute has a name, type, and domain,
and can be specified by a tuple (name, type, min, max).
The attributes are identified by their unique names.
type could be integer, float, and string, etc. The min and
max define the range of domain values taken by the
given attribute. An event is a set of < attribute, value >

pairs, and it can be represented as e = {A1 = c1, A2 =
c2, · · ·, An = cn}. A subscription is a conjunction of
predicates over one or more attributes. Each predicate
has a name, type, operator and value and is used to spec-
ify a constant value or range for an attribute. An exam-
ple subscription is (A1 = v1)∧(v2≤A3≤v3). An event e
matches a subscription s if each predicate of s is satisfied
by the value of the corresponding attribute contained
in e. The content-based pub/sub system stores the sub-
scriptions from all subscribers and given an event, finds
all subscriptions matching the event and delivers the
event to the subscribers. In this paper, we base our
discussion on this model.

2.2 Centralized pub/sub systems

One example system is Elvin [2]. It uses a central
server that stores all the subscriptions, evaluates the
subscriptions upon events and delivers events to the
matched subscribers. Centralized solutions, however,
have an inherent scalability problem as the number

Peer-to-Peer Netw Appl

of events and subscriptions in the system increases.
Hence, Fabret et al. [1] proposed novel data structures
and application-specific caching policies and query
processing to support high rates of subscriptions and
events in the system. Specifically, Fabret et al. used
the data structures including a set of indexes, a predi-
cate bit vector and a cluster vector to achieve efficient
event matching that is based on clustering and maxi-
mizes temporal and spatial locality. However, restric-
tions have to be placed on subscriptions such that they
must contain at least one equality predicate, sacrificing
flexibility and expressiveness of subscriptions.

2.3 Decentralized pub/sub systems

Many distributed pub/sub systems [3–6, 14–16] have
been proposed by using routing trees to perform event
delivery based on multicast techniques. Siena [15]
builds a symmetric spanning tree and each pub/sub
server can be a publisher or subscriber. Gryphon [16]
organizes the pub/sub network into a single-source tree
and proposes a link matching algorithm to forward
events towards directions of matching subscriptions.

In MEDYM [6], some matcher nodes matches an
event to the subscriptions and obtains a destination
list of the matched subscribers. Then, the event deliv-
ery message containing the destination list is routed
through a dynamically generated dissemination tree
with the help of topology knowledge. Our event de-
livery mechanism is similar to MEDYM in that the
event message carries a subscriber list. However, our
proposed approach differs from MEDYM in that it
exploits embedded trees in the underlying DHT to
deliver events, thereby incurring no cost in multicast
tree construction and maintenance.

To improve event routing efficiency, Kyra [17] pro-
poses content clustering to create multiple pub/sub net-
works each of which is responsible for a subset of the
content space. In the similar vein, HYPER [18] dynam-
ically identifies a number of virtual groups based on
common subscriptions. The event message is matched
only at the entry point of a group and then forwarded
to the group members if the group is a match.

2.4 DHT-based pub/sub systems

We have seen many attempts in designing DHT-based
pub/sub systems. Scribe [19] and Bayeux [20] are es-
sentially topic-based pub/sub systems. They do not
directly support content-based pub/sub services. Split-
Stream [21] is an application-level multicast system
built from Scribe for high-bandwidth data dissemina-
tion. To balance forwarding load over participating

nodes with heterogeneous bandwidth constraints, Split-
Stream splits content into k stripes each of which cor-
responds to a Scribe multicast tree. Tam et al. [22]
proposed a content-based pub/ sub system built from
Scribe. The system places some restrictions on subscrip-
tions and thus sacrifices expressiveness in subscriptions.

Terpstra et al. [23] proposed a content-based pub/
sub system built on top of Chord. Both filter up-
dates (e.g., due to subscribing and un-subscribing) and
event routing actually use a broadcasting algorithm.
Triantafillou et al. [24] proposed to distribute subscrip-
tions on the Chord nodes based on the keys produced
by hashing the attribute and its values. If the subscrip-
tion specifies a range over an attribute, the subscription
would be stored on a number of nodes by hashing
the attribute and each of its possible values within this
range. The main drawback is that subscription installa-
tion and update are expensive due to the large number
of nodes and messages potentially involved.

Reach [25] maintains a semantic overlay network
and uses a Hamming-distance based routing scheme.
Each node serves as a rendezvous point for those sub-
scriptions with suffix matching the node’s identifier. In
the similar vein, HOMED [26] maintains a semantic
overlay where each node’s identifier is derived from
its subscriptions. However, they have two main lim-
itations. First, they assume a globally-static attribute
space. Second, they have a load balancing issue since
non-uniformly distributed subscriptions would cause
unevenly distributed nodes on the overlay. Meghdoot
[7] is based on CAN. Subscriptions are stored on a zone
according to the coordinate determined by event at-
tribute values. Considering skewed distributions of sub-
scriptions and events in a real application, Meghdoot
addresses the load balancing issue by zone splitting and
zone replication. The major limitation of Meghdoot
is that the overlay dimension is proportional to the
number of event attributes.

Our previous work Ferry [27] provides a preliminary
study of exploiting the embedded trees in DHTs to de-
liver events. The work presented in this paper is moti-
vated by the lessons learned from Ferry. It distinguishes
itself from Ferry by proposing a new architecture that
aims to preserve subscription locality in subscription
management, minimize event matching load, balance
load across nodes, and offer efficient and scalable event
delivery.

2.5 Other related work

K-D tree [28] is a widely used index tree for high dimen-
sional data. We use K-D tree to distribute subscriptions,
thereby preserving subscription locality and reducing

Peer-to-Peer Netw Appl

event matching load system wide. Brushwood [29] is
another example to use K-D tree to support locality-
sensitive applications in the P2P environments, by or-
ganizing the K-D tree leaf nodes into skip graph for
complex queries (e.g., range queries). Inspired by Prefix
Hash Tree (PHT) [30], we layer the K-D tree on top of
a DHT to support subscription distribution and event
publication.

One challenge faced by content-based pub/sub sys-
tems is the ability to handle a vast amount of subscrip-
tions and events. Li et al. [13] proposed using modified
binary decision diagrams to represent subscriptions by
exploiting subscription covering and merging. Aguil-
era et al. [12] proposed sublinear matching algorithms
based on building subscription trees that collapse sim-
ilar subscriptions. The proposed subscription covering
and merging techniques complement our work in re-
ducing subscription management and event matching
load.

3 Framework

The framework of PRESS is based on the following
three key mechanisms:

Subscription Organization Mechanism (SOM). SOM
uses K-D tree techniques to organize subscriptions in a
hierarchical tree manner, and stores the subscriptions
only on leaf nodes. The goals of SOM are to meet
the following requirements. First, it aims to preserve
locality of subscriptions, i.e., similar/relevant subscrip-
tions are stored on a (or a small number of adjacent)
leaf node(s). Second, each leaf node is responsible for
roughly same number of subscriptions, ensuring load
balance across leaf nodes. SOM layers the tree struc-
ture on top of a DHT, by which each tree node is hosted
by a DHT node and the tree inherits fault-resilience
and self-organizing properties of the underlying DHT.
Subscription installation is a process of tree navigation
from the tree root to the corresponding leaf node(s).
The subscription installation, however, has two draw-
backs: (1) It may involve multiple overlay hops since
the tree spans the DHT overlay, thereby incurring
high latency. (2) Every installation goes through the
root, creating a potential bottleneck. Hence,PRESS
uses KDT-lookaside cache at client/subscriber side to
alleviate the problems.

Event Publication and Matching Mechanism
(EPMM). EPMM allows event publishers to publish
an event along the K-D tree to the leaf node that
stores the subscriptions relevant to the event. The leaf
node then matches the event to the subscriptions and
starts delivering the event to the matched subscribers.

Similar to subscription installation, event publication
could incur high publication latency and create a
potential bottleneck on the tree root node. To alleviate
the problems, the KDT-lookaside cache is employed
at the client/publisher side. Event matching algorithms
can adopt current subscription covering and merging
techniques [12, 13] at the leaf node to reduce sub-
scription management and event matching load.

Event Delivery Mechanism (EDM). EDM is virtu-
ally maintenance-free. It smartly exploits embedded
trees inherent in the underlying DHT to deliver events,
thereby eliminating the cost of multicast-tree construc-
tion and maintenance. After a leaf node matches an
event to the subscriptions stored on it, the leaf node
multicasts the event through the corresponding DHT
links of its DHT host node. The event is then dissem-
inated along the embedded tree rooted at the DHT
node hosting the leaf node, and finally reaches each
subscriber. EDM aggregates messages along event dis-
semination paths, thus reducing the number of event
delivery messages and bandwidth consumption. More-
over, exploiting DHT links for event delivery, EDM
has three major advantages: (1) The underlying DHT
maintenance messages could be piggybacked onto the
event delivery messages to reduce the DHT mainte-
nance cost. (2) Proximity neighbor selection (PNS) in
the underlying DHT, as a means of improving rout-
ing performance, makes event dissemination along the
embedded tree proximity-aware, achieving good event
delivery performance. (3) The fault-tolerance and self-
organizing nature of DHT overlays makes event deliv-
ery along the DHT links resilient to node/link failures.

For ease of exposition, the discussions of PRESS is
based on the content-based pub/sub scheme described
in Section 2.1.

4 Subscription organization

A subscription s in the system is expressed by a pair
(sid, p), where sid is the subscriber’s node ID1 (sub-
scriber ID for short) and p is a conjunction of predi-
cates specifying the subscriber’s interests (e.g., (A1 =
c1)∧(c2≤A2≤c3)).

4.1 Using K-D tree to organize subscriptions

K-D tree (KDT) [28] is a widely used index tree for
high dimensional data. Using KDT, PRESS dynam-
ically partitions the subscription space of a pub/sub

1In DHTs, node ID can be either obtained when a node joins the
overlay or determined by hashing its IP address or public key.

Peer-to-Peer Netw Appl

scheme S [1] into smaller and smaller regions. A KDT
here is essentially a binary trie in which each node
corresponds to a subscription region (i.e., a region in
the multi-dimensional space) and only leaf nodes store
subscriptions. Each internal node specifies a partition
attribute attrsplit and a split position possplit along this
attribute, and splits itself into two children. Each node
has a distinct label which is derived recursively: Given
a node with label L, its left child and right child nodes
are labeled as L0 and L1 respectively. The root node
has a label “0” by default. Each node of the KDT has
either zero or two children.

Except the root, each node maintains a split his-
tory, a list of tuples < attrsplit, possplit, 0/1 > (where
0/1 represents the path to the left/right child. The left
child is responsible for the subscriptions with (attrsplit ≤
possplit) and the right child is responsible for the sub-
scriptions with (attrsplit > possplit)). The split history is
also derived recursively. Consider a node with split
history H, partition attribute attrsplit and split position
possplit. The split histories for its left child and right
child are HL = H∪{< attrsplit, possplit, 0 >} and HR =
H∪{< attrsplit, possplit, 1 >}, respectively. Each node is
responsible for a subscription space specified by its split
history. The label of a node represents the path in the
KDT from the root to the node and can be derived from
its split history.2 Figure 1 illustrates a KDT in which
node E maintains a split history of {< A1, c1, 0 >, <

A2, c2, 1 >} and its label is “001”. Node E stores the
subscriptions with (A1≤c1)∧(A2 > c2).

4.2 Subscription installation

Given a KDT described above, subscription installation
is a process of tree traversal from the root until meeting
a leaf node which is the right place to store subscrip-
tions. To ensure load balance among leaf nodes, the
KDT imposes a threshold T on the number of sub-
scriptions each single leaf node can store. When a leaf
node fills to T, it must split into two descendants by
partitioning the most distinguishing attribute along the
median of the attribute values in the subscriptions.3 The
leaf node then transfers the corresponding partition
of the subscriptions and gives the corresponding copy
of the split history to the two new child nodes, records

2We need to prefix “0” to the string of 0s and 1s extracted from
the split history.
3This is two-fold. First, the subscriptions in the two partitions
are probably less similar if we choose the most distinguishing
attribute as the split attribute. Second, splitting along the median
of the attribute values is to balance the load between two descen-
dant nodes.

Fig. 1 Illustration of a KDT. < Ai, ci > is the partition attribute
and split position

the split attribute and position, and marks itself as an
internal node.

Consider the KDT shown in Fig. 1. To install a sub-
scription s = (sid, (A1 < c1)∧(A2 > c2)), the subscrip-
tion is first forwarded to the root A which in turn
forwards s to node B according to its split attribution
and position < A1, c1 >. B performs similar operations
and forwards s to the leaf node E, which determines
whether to store s or trigger a split operation if the
number of subscriptions reaches T.

However, subscription installation may cause split
of subscription along the traversal path, resulting in a
small number of subscriptions stored on a small number
of different leaf nodes. Consider a subscription s =
(sid, (A1 < c1) ∧ (c4 < A2 < c5)), where c4 < c2 < c5.
The installation starts from the root A and then
reaches node B. Upon s, node B splits s into two sub-
scriptions s1 = (sid, (A1 < c1)∧(c4 < A2≤c2)) and s2 =
(sid, A1 < c1)∧(c2 < A2 < c5)), according to the split
attribute A2 and position c2. Then, s1 and s2 each takes
different paths and finally reaches the leaf nodes D and
E respectively. Node D and E each will independently
determine whether to simply store the subscription or
cause expansion of the KDT by a split operation. Note
that s1 and s2 could be stored in a simpler form on
D and E respectively, i.e., s1 = (sid, (A1 < c1)∧(c4 <

A2)) and s2 = (sid, (A1 < c1)∧(A2 < c5)).

4.3 Unsubscribing

If we associate each subscription with a TTL (time-
to-live), then subscribers do not need to perform
unsubscribing operation. The main drawback is that

Peer-to-Peer Netw Appl

subscribers need to refresh their subscriptions before
the subscriptions expire. If a subscription does not have
TTL, then subscribers need to explicitly remove their
subscriptions installed previously. The unsubscribing
operation is essentially similar to the subscription in-
stallation. The main difference is that subscription re-
moval may cause shrink of the KDT, i.e., it coalesces
two sibling leaf nodes into a single parent node if the
total number of subscriptions on the two leaf nodes
drops below T. In this case, the parent node takes all
the subscriptions stored on its two child nodes, trim
the two child nodes, and becomes a leaf node. The
merge operation is essentially reverse of splits during
subscription installation and can be performed lazily in
the background.

4.4 Layering KDT on top of a DHT

DHTs distribute objects in a load-balanced and de-
terministic manner and they allow efficient lookup by
their IDs. Recall that KDT nodes have distinct labels.
We layer a KDT on top of a DHT as follows. For
each KDT node (say, A), we produce a unique ID by
hashing its label LA. Resorting to the put/get/remove
interface offered by the underlying DHT, each KDT
node A is hosted by a DHT node (represented as
DHT_host(LA)) which is responsible for the gener-
ated ID h(LA) (in Chord, the DHT host node is the suc-
cessor of the generated ID). In addition, unsubscribing
may cause shrink of the KDT, which can also be com-
pleted by using put/get/remove interface. Leveraging
DHT’s self-organizing property and data replication
mechanisms under node churn, the DHT-hosting KDT
inherits all of the resilience and failure recovery proper-
ties of the underlying DHT. One distinction should be
made between a KDT node and DHT node: the node
on the KDT is called KDT node while the peer node
on the DHT overlay is called DHT node; A DHT
node hosts the KDT nodes whose IDs fall into the DHT
node’s responsible ID region.

Given a KDT (as shown in Fig. 1) layered atop the
DHT, the installation of subscription s = (sid, (A1 <

c1)∧(A2 > c2)) is performed as follows. The subscriber
first routes s to the DHT node hosting the KDT node A
with label “0”, represented as DHT_host(“0”). Upon
receiving s, A uses its split attribute A1 and position c1

to make a decision and routes s to the DHT node host-
ing the KDT node B with label “00”, DHT_host(“00”).
Similarly, B uses its split attribute A2 and position c2

to make a decision and finally routes s to the DHT
node hosting the KDT leaf node E with label “001”,
DHT_host(“001”). Upon receiving s, E determines
whether to store s or trigger a split operation. It is worth

pointing out the subscription routing is based on the
underlying DHT’s routing mechanism. The subscrip-
tion installation takes d·logN overlay hops, where d is
the average depth of the KDT and N is the number of
nodes in the underlying DHT.

4.5 Discussion

Using KDTs to organize subscriptions guarantees sub-
scription locality such that subscriptions are simi-
lar/relevant on each leaf node and subscriptions close to
each other in the subscription space are on adjacent leaf
nodes. Moreover, the subscription number threshold T
aims to balance the load among leaf nodes, ensuring
that the number of subscriptions stored on a single leaf
node is within [T/2, T].

However, subscription installation described above
has two main drawbacks. First, it needs to traverse the
KDT spreading on top of a DHT, involving a number
of overlay hops. The multiple overlay hops could be
translated into high latency4 since DHT nodes could be
scattered in the Internet and a single DHT hop could
be high-latency WAN link. Second, it creates potential
bottleneck at the KDT root since each traversal starts
from the root. Below, we discuss how to use KDT-
lookaside cache at client/subscriber side to improve
performance and avoid the potential bottleneck.

4.6 Caching to improve performance

The primary purpose of KDT-lookaside cache is to
(1) improve performance and (2) bypass the root and
start subscription installation from lower levels in the
KDT. To achieve this, each subscriber maintains a
KDT-lookaside cache that keeps track of the shape
of the KDT based on previous subscription installa-
tion operations. Each cache entry consists of a KDT
node’s label and split history. Subscription installa-
tion is first checked against the lookaside cache. The
cache returns the longest matching-prefix Lpf x of KDT
node’s label.5 Formally speaking, the cache returns the
smallest multi-dimensional region (corresponding to
the pub/sub scheme S) that encloses the region spec-
ified by s. Then, the installation starts from the KDT
node with label Lpr f (or DHT node DHT_host(Lpr f)).

4Subscription installation may not be so performance critical as
event publication.
5Search for the longest matching-prefix for a subscription s in the
cache is a greedy algorithm which starts checking from the entry
with the longest label. Each cache entry uses its split history to
find the longest prefix of its label for s and we choose the longest
matching-prefix among all the entries.

Peer-to-Peer Netw Appl

(One optimization is that the client/subscriber can first
split the subscription accordingly by referring to the
cache, allowing the subscription installation operations
to start from lower levels of the KDT. Split of sub-
scriptions at the client-side requires the subscriber issue
multiple installation request messages. We currently do
not apply this optimization in our experiments.) When
a subscription reaches a KDT leaf node, the leaf node
informs the subscriber of its label and split history,
allowing the subscriber to record the information in its
cache. The newly added cache entry may evict those
entries whose labels are prefix of the newly added label
to make efficient use of cache space.

However, cache entries could be outdated due to
the shrink of the KDT which has invalidated some
KDT nodes. For example, if the KDT node with la-
bel Lpr f returned by cache lookup are not present
any more due to merge operations performed on the
KDT, the subscriber can retry the installation operation
from a KDT node with a shorter label, i.e., a prefix
of Lpr f by trimming the rightmost character(s). In the
meantime, the subscriber invalidates the corresponding
cache entry, and adds a new cache entry that has been
verified by the last successful retry if it does not exist in
cache yet.

5 Event publication and matching

5.1 Event publication

Event publication is essentially similar to subscription
installation. Formally speaking, viewing e as a point
in the multi-dimensional space corresponding to the
pub/sub scheme S, event publication is a process of
projecting the point into a multi-dimensional region
that encloses this point and is maintained by some KDT
leaf node. This leaf node should store the subscriptions
that enclose this point in the multi-dimensional space.
(If a subscription encloses the point, then the subscrip-
tion is a match for e) As shown in Fig. 2, publisher P
publishes an event e, which is first routed to a KDT
node A. Upon receiving e, node A bases its decision
on the split attribute and position and then routes e
to node B. Similarly, node B makes its own decision
and routes e to node C that is a leaf node enclosing
e. Node C matches e to the subscriptions and finally
starts delivering the event to the matched subscribers. It
is worth pointing out that using KDT to organize sub-
scriptions and perform event publication ensure that,
events will be published to the leaf node that stores
the most relevant subscriptions, thereby minimizing
event matching load system wide. For example, many

A B CP

event
delivery

1.a

1.b
2.a

2.b

3.b

3.a

DHT routing

Direct message

Fig. 2 Event publication. P is the publisher who publishes an
event e. A, B and C are KDT nodes and C is a leaf node

existing distributed pub/sub systems distribute sub-
scriptions randomly across nodes. As a result, events
have to be published to all these nodes and matched
to the subscriptions scattered on all these nodes.

Similar to subscription installation, event publication
presented above suffers from two limitations. First,
event publication takes d· log N overlay hops, and thus
may introduce high latency. Second, event publication
requires KDT traversal starting from the root, making
the root a potential bottleneck.

5.1.1 Caching to improve performance

To address the aforementioned problems, we use KDT-
lookaside cache on the client/publisher side. Note that
each node on the DHT overlay can be a publisher
and subscriber. Hence, the lookaside cache keeps track
of the shape of the KDT based on past subscription
installation and event publication operations. Consider
the event publication example illustrated in Fig. 2. The
information (i.e., split history and node label) included
in response messages 1.b , 2.b and 3.b are used to
refresh old cache entries or add new cache entries. Note
that the response messages could be sent back to the
publisher asynchronously in the background.

5.2 Event matching

Matching from an event to a large number of sub-
scribers could be very inefficient if we use linear match-
ing algorithm. Fortunately, our design can alleviate the
problem to some extent. First, the matching load on
a leaf node is bound by T, the subscription number
threshold. Second, the property of subscription locality
in our system has already filtered many irrelevant sub-
scriptions for event matching, thereby minimizing the
matching load system wide. Moreover, the subscription

Peer-to-Peer Netw Appl

locality property allows current subscription covering,
merging and collapsing techniques, as a means of re-
ducing event matching load, to be more effective. For
example, Aguilera [12] proposed sublinear matching
algorithms based on building a subscription tree that
collapse similar subscriptions in order to reduce the
matching load. Since similar subscriptions are clus-
tered together on the leaf node, we argue that these
techniques which exploit subscription relationships to
reduce subscription management and event matching
load would be more effective than the alternative
design that distributes subscriptions randomly across
nodes.

6 Event delivery

In this section, we start with embedded trees inherent
in a DHT, then present event delivery algorithm that
cleverly exploits the embedded trees in the underlying
DHT to disseminate events, and finally give a brief
discussion on the event delivery.

6.1 Embedded trees in a DHT

DHTs such as Chord [8], Pastry and Tapestry have
inherent embedded trees formed by DHT links (or
neighbor links). Here, we take Chord as a DHT exam-
ple. In Chord, each node has a 160-bit ID, and the s
nodes whose identifiers immediately follow a key are
considered responsible for that key: they are the key’s
successors. The ID space in Chord wraps around such
that zero immediately follow 216 − 1. Each Chord node
(say, i) maintains a routing table: namely finger table
and successor list. The finger table consists of the IP ad-
dresses and IDs of nodes which follow i at power-of-two
distances in the identifier space

(
i.e., 1

2 , 1
4 , 1

8 , 1
16 , · · ·).

The successor list refers to i’s immediate successors.
In Chord, nodes consult their routing tables including
successor lists and finger tables to route a message with
a key k to a destination node whose ID is the successor
of k. Consider each subscriber with a subscriber ID sid.
The routing paths from a Chord node r (e.g., the DHT
host node of a KDT leaf node A: r = DHT_host(A))
to all these sids (or subscribers) form a tree rooted at
the node r, say EmdTreer (embedded tree rooted at r).
As discussed below, the embedded tree will be used to
disseminate events.

6.2 Event delivery using embedded trees

After event matching on a KDT leaf node (say, A)
which has identified a list of matched subscribers (for
simplicity, we use sids to represent subscribers here), A
will exploit the embedded tree EmdTreer rooted at A’s
host node r = DHT_host(A) to deliver events. Before
starting event delivery, A first groups the matched sub-
scribers according to r’s neighbors including successors
and finger nodes. Put another way, each subscriber s
corresponds to a r’s neighbor whose ID is equal to or
most immediately precedes s’s sid. This is based on the
observation that when routing a message from r to s’s
node, r will forward the message to its neighbor whose
ID is equal to or most immediately precedes s’s node
ID. As shown in right part of Fig. 3, subscribers x and
y are grouped at r’s neighbor f2; subscribers z, w and v

are grouped at r’s neighbor f3.
Event delivery is performed along the embedded

tree EmdTreer. Algorithm 1 and 2 outline the event
deliver algorithm (match_set[1..k] corresponds to the
current node’s k neighbors and match_set[i] stores the
subscriber IDs grouped at the i-th neighbor). The event
delivery starts from r which sends out an event delivery
message carrying a corresponding subscriber ID list
along its neighbor links (as shown in Fig. 3). Upon
receiving the message, each neighbor node (e.g., node
s2, f2, or f3) executes route_message(): If there is a
subscriber ID matching its own ID, then it delivers
the event to its local application/users; it also parti-
tions the remaining subscriber IDs (if any) according
to its own neighbor nodes (i.e., for each subscriber ID,

Fig. 3 Event delivery. r is the DHT host node for a KDT leaf
node on the Chord ring. s1 and s2 are r’s successors. f1, f2 and
f3 are r’s finger nodes. s2, x, y, z, w and v are subscribers for the
event e. For ease of presentation, we use s2, x, y, z, w and v to
represent their subscriber IDs as well as their subscriptions here

Peer-to-Peer Netw Appl

choose a neighbor node whose ID is equal to or most
immediately precedes the subscriber ID), and performs
deliver_event() to deliver the messages each of which
may carry a corresponding list of subscriber IDs to the
remaining subscribers.

Algorithm 1: deliver_event(Event e,
vector<ID> matched_set[1..k])

1) for i=1 to k
2) if matched_set[i] is not empty
3) Message M = e + match_set[i]

//+ is a concatenation operator
4) send M to the i-th neighbor node,

which then calls route_message(M)
upon receiving M

5) endif
6) endfor

Algorithm 2: route_message(Message M)
1) vector<ID> matched_set[1..k]
2) Event e = extract the event from M
3) vector<ID> list = extract the list of

subscriber IDs from M
4) for each subscriber ID sid in list
5) if sid == this node’s ID
6) deliver e to its local applications

or users
7) else
8) find the i-th neighbor node whose node

ID is equal to or most
immediately precedes sid among
all the neighbor nodes

9) matched_set[i].push_back(sid)
10) endif
11) endor
12) if matched_set is not empty
13) deliver_event(e,matched_set)
14) endif

6.3 Discussion

The basic idea behind the event delivery algorithm is
that all event delivery messages to those subscribers
who share common ancestor nodes on the EmdTreer

are aggregated into one single message along the path
from the root r to their lowest common ancestor node,
thus minimizing the number of messages. This event de-
livery is essentially a recursive process where each node
along the dissemination paths of EmdTreer performs
deliver_event() until the event reaches all subscribers.

The event delivery mechanism has several important
features. First, it is a match-first approach: An event

is first matched against the subscriptions in the KDT
leaf node, generating subscriber ID lists each of which
corresponds to a neighbor node of the leaf node’s
DHT host node. No subscription matching operation
is performed along the dissemination paths except the
embedded tree root node, due to the subscriber ID
list contained in the message. Second, it exploits the
embedded trees formed by the underlying DHT links to
deliver events, eliminating nontrivial per-multicast tree
construction and maintenance cost. To the best of our
knowledge, we are the first to extensively yet smartly
exploit the DHT overlay links to disseminate events.
Exploiting DHT links allows some optimizations. E.g.,
the DHT link (or routing table) maintenance messages
sent periodically can be piggybacked onto the event de-
livery messages to reduce the maintenance cost which
is inherent and nontrivial in terms of bandwidth in
a DHT. Finally, proximity neighbor selection (PNS)
in the underlying DHT naturally ensures that event
delivery on the embedded tree is proximity-aware.

However, encapsulating a subscriber ID list in an
event delivery message may raise an issue if the sub-
scriber ID list is undesirably long. We argue that our
system can avoid this issue. First, the subscription num-
ber threshold T on the KDT leaf node gives the upper-
bound of the list length. Second, the matched subscriber
IDs on the KDT leaf node will be partitioned by its
DHT host node’s O(log N) neighbors if the subscribers
are uniformly from the DHT overlay. Thus, the max-
imum size of the subscriber ID list contained in each
event delivery message is T/O(log N). In addition, the
subscriber ID list carried in each event delivery mes-
sage is expected to be reduced by a factor of O(log N)

at each step along the dissemination path. Finally, we
propose a new technique, one-hop subscription push
that could further make this a lesser issue. The basic
idea is that a KDT leaf node A asks its DHT host
node r to push the subscriptions corresponding to r’s
finger node f to f (as discussed earlier, a subscription
is assigned to a node’s neighbor whose ID is equal
to or most immediately precedes the subscription’s
sid). The leaf node A then uses a summary filter6

to represent the subscriptions pushed away. Upon an
event e, A matches the event with the summary filter.
If it is amatch, the node asks its DHT host node r

6A summary filter covers the subscriptions pushed away by ex-
ploiting covering relationships between subscriptions [31].

Peer-to-Peer Netw Appl

RT entry

Stored subscriptions

Pushed
subscriptions

Pushed
subscriptions

subscriptions

Fig. 4 One-hop subscription push. r is the DHT host node for a
KDT leaf node on the Chord ring. s1 and s2 are r’s successors.
f1, f2 and f3 are r’s finger nodes. For simplicity, we use s2, x, y,
z, w and v to represent their corresponding subscriptions. sf ilter
represents the summary filter

to deliver e to the corresponding finger node (at this
point, no subscription ID list is carried in the event
delivery message) which in turn serves as an leaf node
agent for those subscriptions pushed by r (or A) and
starts delivering e to the matched subscribers. Figure 4
illustrates the one-hop subscription push. The leaf node
asks its DHT host node r to push subscriptions {x, y}
and {z, w, v} to r’s finger nodes f2 and f3, respectively.

One-hop subscription serves two main purposes: (1)
It reduces the maximum subscription ID list carried
in an event delivery message and thus bandwidth cost.
Note that with one-hop subscription push, no subscrip-
tion ID list is carried from node r to its finger nodes
f2 and f3. Only the event delivery messages sent from
f2 and f3 will contain a subscriber ID list. As a result,
the maximum size of the subscription ID list contained
in the event delivery messages from f2 and f3 would
be reduced to T/O(log 2 N) (The subscriber IDs is first
split among r’s O(log N) neighbors and then each such
neighbor’s O(log N) neighbors). (2) It allows a node
to move part of its load (including subscription storage
and event matching) to its neighbors for load balancing,
if the neighbor node is lightly loaded or is willing to take

some load. Note that all the load information can be
piggybacked onto the DHT routing table maintenance
messages sent periodically.

7 Evaluation

Our evaluation is based on a pub/sub scheme S
for stock quotes application initially proposed in
Meghdoot [7]. We focus our measurement effort on
(1) KDT mechanism and the way it behaves under
subscription installation and event publication and (2)
performance and cost of event publication and event
delivery.

7.1 Experimental setup

We implemented our system based on p2psim 3.0.
P2psim can simulate Chord and it does not simulate
link transmission rate or queuing delay. The number
of successor nodes for each Chord node is 16 and the
finger table base is 2. We set both finger stabilization
interval and successor stabilization interval to be 72 sec-
onds. We also configured Chord with proximity neigh-
bor selection (PNS) which allows each Chord node to
choose physically close nodes as routing table entries
to improve lookup latency.

The simulated network consists of 1024 nodes with
inter-node latencies derived from measuring the pair-
wise latencies of 1024 DNS servers on the Internet us-
ing King method. The average round-trip time is 152ms.
Unless otherwise specified, our experimental results
presented in this paper are based on this simulated
network.

Simulations were initialized with one node. A new
node joins the system at a randomly chosen time, until
the total number of nodes reaches the bound (e.g.,
1024 nodes). After system stabilization, we scheduled
subscription installation events which create a KDT

Fig. 5 a CDF of leaf node
depth for a KDT with 1
million subscriptions and T
of 500, 1000 and 5000
respectively. b Variation in
tree depth as a function of T
with 1 million subscriptions

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
D

F
 o

f
le

a
f
n
o
d
e
s

(%
)

Node depth in KDT

500
1000
5000

a

 0

 2

 4

 6

 8

 10

 12

 14

 16

50001000500

A
vg

.
d
e
p
th

 o
f
le

a
f
n
o
d
e
s

Threshold T

b

Peer-to-Peer Netw Appl

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

S
ub

sc
rip

tio
n

lo
ad

Leaf nodes ranked by load

500
1000
5000

Fig. 6 Subscription load in the KDT leaf nodes for varying Ts.
The number of subscriptions is 1 million

and dynamically expand it on top of Chord as sub-
scriptions are installed. After subscription installation,
we simulated event publication which triggers event
delivery across the system.

The pub/sub scheme S for the stock quotes appli-
cation is defined as S = {(Date, string, 2/Jan/98, 31/Dec/02),

(Symbol, string, “aaa”, “zzzzz”), (Open, f loat, 0, 500), (Close,

f loat, 0, 500), (High, f loat, 0, 500), (Low, f loat, 0, 500), (Vol-

ume, integer, 0, 310000000)}. Specifically, Symbol is stock
name. Open and Close are opening and closing prices
for a stock on a given day. High and Low are the
highest and lowest prices for the stock on that day.
Volume is the total amount of trade in the stock on that
day. Given the scheme S, an example subscription s is
(123456, (Symbol = “yhoo”)∧(High > 35.23)), subscribed by
a subscriber with sid = 123456 for events on the stock of
Yahoo when its highest price is greater than $35.23.

We generated subscriptions by using five template
subscriptions suggested in Meghdoot with different
probabilities. The five templates are T1 = {(Symbol

= P1)∧(P2 ≤ Open≤P3)} with probability 20%, T2 =
{(Symbol = P1)∧(Low≤P2)} with probability 35%, T3 =

{Symbol = P1∧(High≥P2)} with probability 35%, T4 =
{Symbol = P1∧(Volume≥P2)} with probability 5%, and
T5 = {Volume≥P1} with probability 5%. The templates
with general interests (e.g.,T4 and T5) are assigned low
probabilities due to the fact that in a real application
subscribers are usually interested in specific events re-
lated to their narrow interests. The number of stocks
and subscriptions used in simulations were 100 and 106

respectively by default, unless otherwise specified. The
events were generated randomly from S and we used
105 events in simulations.

7.2 Understanding KDT

In the first set of experiments, we measured the prop-
erties of a KDT using 1 million subscriptions and 105

events. We used three metrics: (1) Tree depth. (2) Sub-
scription load (number of subscriptions per KDT leaf
node as a fraction of the subscription number threshold
T). (3) Access load (number of DHT accesses per tree
level as a percentage of the total DHT accesses)

Tree Depth: Figure 5a depicts the CDF of the depth
of leaf nodes in a KDT for varying Ts. Figure 5b shows
the variation in average depth of the KDT with respect
to T. We can see that the tree depth decreases with T,
i.e., larger Ts result in shallower trees.

Subscription Load: The purpose of this experiment is
to explore (1) how full the leaf nodes are as a fraction of
T and (2) the variation in subscription load among the
leaf nodes. Figure 6 shows the subscription load among
the leaf nodes for varying Ts. Two main observations
can be made from this figure. First, smaller Ts exhibit
more load balanced among the leaf nodes. Second,
larger Ts (i.e., 5000) result in higher utilization as a
fraction of T in some leaf nodes.

Access Load: Unlike traditional linked-based tree
structure, KDT lookups can bypass the root and start
from the lower levels in the tree. This experiment is
to look at the access load on the nodes by tree level

Fig. 7 a DHT accesses to a
KDT at each tree level for
installing 1 million
subscriptions where
T = 1000. b DHT accesses to
a KDT at each tree level for
publishing 105 events where
T = 1000

10-3

10-2

10-1

100

101

 0 2 4 6 8 10 12

%
 o

f
D

H
T

 a
cc

e
ss

e
s

Node depth in KDT

no cache
cache enabled

a

10-3

10-2

10-1

100

101

 0 2 4 6 8 10 12

%
 o

f
D

H
T

 a
cc

e
ss

e
s

Node depth in KDT

no cache
cache enabled

b

Peer-to-Peer Netw Appl

Fig. 8 a Plot of total latency
and event delivery latency for
each event cluster when
publishing 105 events.
T = 1000. b Plot of total
latency for varying T when
publishing 105 events

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600
A

vg
.

la
te

n
cy

(m
s)

Event clusters

total latency
delivery latency

a

 0

 200

 400

 600

 800

 1000

 1200

 1400

102 103 104 105

A
vg

.
la

te
n

cy
(m

s)

Number of events averaged

1000
500

5000

b

with and without the client-side KDT-lookaside cache
enabled. As discussed earlier, using lookaside cache at
client-side allows us to avoid having the upper levels
of the tree be potential bottleneck. Figure 7a and b
show the spread of DHT accesses across KDT lev-
els for subscription installation and event publication
respectively. When the cache is enabled, the client
(subscriber or publisher) starts with an empty cache
and continuously fills the cache if necessary after an
operation of subscription installation or event publica-
tion. From the graphs, we can see that the look-aside
cache could effectively avoid the hotspots at the levels
close to the root. Note that the bulk of activities for
subscription installation occur in the tree depth of 6 to 9
while the bulk of activities for event publication occur
in lower levels of tree and leaf nodes. This is because
events were generated uniformly from the event space
and a few number of events can quickly fill the cache
with the current shape of the KDT, avoiding access-
ing the higher levels of the KDT for successive event
publications. However, in subscription installation, the
dynamic expansion of the KDT and possible splits of
subscriptions during installation prevent the installa-
tion operations from starting from the lower levels of
the KDT.

7.3 Event publication and delivery

In the second set of experiments, we investigated the
event publication and delivery latency. The client-side
cache is enabled. We pre-loaded the KDT with 1 mil-

lion subscriptions. After installing the subscriptions, we
started the client (or publisher) with an empty looka-
side cache. Then, the publisher continuously published
105 events into the system, each of which was delivered
to the matched subscribers. The percentage of nodes
as subscribers per event is about 25%. We used total
latency to represent the latency of event publication and
delivery. Event-matching processing delay on the leaf
node is not counted. Figure 8a depicts total latency and
event delivery latency for the first 30, 000 events. Each
data point is the average number of every 50 events
in the order of arrival times. For example, the first
event cluster represents the earliest arrived 50 events.
Two main observations can be made: (1) The client-side
lookaside cache effectively improves the total latency.
E.g., after about 1, 500 events, the total latency for
the remaining events is almost flat. This is because the
lookaside cache effectively reduces event publication
latency. (2) Event delivery is very efficient, incurring a
latency of 119ms.

Figure 8b shows the total latency for varying Ts.
The x-axis represents the number of events considered
(by their arrival times) for computing the average total
latency. Again, the lookaside cache is very effective
in reducing total latency, that is, by improving event
publication latency. In addition, larger Ts result in shal-
lower trees and thus reduce total latency significantly,
especially when the lookaside cache has not yet been
filled with the shape of the KDT. When the cache is
filled with the shape of the KDT, there is not much
difference in total latency among different Ts.

Table 1 Results for varying percentages of nodes as subscribers per event

Metric 5% 10% 20% 30% 40% 50% 60% 70% 80%

Latency(ms) 119 119 119 119 119 119 119 119 119
BW_cost(Bytes/node) 60.75 62.73 64.82 65.96 66.67 67.17 67.54 67.82 68.03
Overhead 0.86 0.53 0.28 0.18 0.12 0.08 0.05 0.04 0.02

Peer-to-Peer Netw Appl

 50

 55

 60

 65

 70

 0 20 40 60 80 100

B
an

dw
id

th
(B

yt
es

/n
od

e)

% of nodes as subscribers

without one-hop push
with one-hop push

Fig. 9 Bandwidth cost per event delivery w/o one-hop subscrip-
tion push

7.3.1 Event delivery

In this set of experiments, we measured the perfor-
mance and cost of event delivery, by using the following
metrics: (1) Latency. (2) Overhead: It is defined as
the ratio of the number of intermediate nodes (non-
subscriber nodes) involved during the delivery of an
event to the number of subscribers for this event. The
lower the overhead, the more efficient is the event de-
livery. Low overhead results from message aggregation
in event delivery. (3) Bandwidth cost: It is defined as
ratio of the total bandwidth cost incurred by an event
delivery to the number of nodes involved (including the
intermediate nodes and subscriber nodes). The size in
bytes of each event delivery message is counted as 20
bytes for headers, 33 bytes for the event, and 4 bytes
for each subscriber ID carried in the message.

Table 1 summarizes the results of event delivery
for varying numbers of subscribers as a percentage of
1024 nodes. One-hop subscription push is not used.
For a given number of subscribers, the number of
events is 105. As the number of subscribers per event

increases, the delivery latency keeps constant at 119ms
while the bandwidth cost increases modestly due to the
increased size of the subscriber ID list carried in the
event delivery message. However, the overhead drops
dramatically as the number of subscribers per event in-
creases. This shows that the event delivery mechanism
can efficiently deliver events to a large number of sub-
scribers, involving only a small number of intermediate
(or non-subscriber) nodes by its message aggregation
along dissemination paths.

Figure 9 shows the bandwidth cost w/o one-hop
subscription push for event delivery. As mentioned
earlier, one-hop push eliminates the subscriber ID list
contained in the event delivery messages sent from the
leaf nodes and could decrease the initial subscriber
ID list by a factor of O(log2 N), thereby reducing the
bandwidth cost. Note that the reduction in bandwidth
cost is per event. A small reduction could lead to huge
reduction in overall bandwidth consumption across the
system.

Performance Comparison. We also compared
PRESS against Meghdoot [7] in terms of event delivery
performance because event delivery is critical to a pub/
sub system. We used two metrics: (1) CDF of event
distribution with respect to the percentage of nodes
visited per event (which measures the cost of event
delivery), and (2) event delivery load, defined as the
ratio of event messages a peer receives to the total
number of messages processed in the system (which
measures event delivery load distribution). However,
we admit the comparison is by no means complete.
In our next step, we plan to develop a more detailed
Meghdoot simulator and compare the two systems
more thoroughly.

Figure 10a shows CDF of event distribution with
respect to the number of nodes visited during event
delivery. The x-axis represents the percentage of nodes
visited to deliver an event out of the total number of
nodes in the system. PRESS shows better performance

Fig. 10 Comparisons in a
1024-node system with 104

subscriptions and 105 events.
a CDF of event distribution
with respect to the number
of nodes visited.
b Distribution of event
delivery load by peer group

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

p
e
rc

e
n
ta

g
e
 o

f
e
ve

n
ts

 (
%

)

percentage of nodes visited (%)

PRESS
Meghdoot

a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

p
e
rc

e
n
ta

g
e
 o

f
m

e
ss

a
g
e
 r

e
ce

iv
e
d
 (

%
)

peer group ranked by message load

PRESS
Meghdoot

b

Peer-to-Peer Netw Appl

than Meghdoot in that all event deliveries end up with
visiting at most 10% nodes. The is mainly due to mes-
sage aggregation during event delivery. Event delivery
load measures message load imposed on a node during
event delivery. We sorted the peer nodes in decreasing
order of the load and grouped them by their rank into
group size 10% each. Figure 10b shows the average load
on each group. The load distribution among peers is
more balanced in PRESS than Meghdoot. For example,
the maximum load on a node in PRESS is about 0.3%
of the total messages, which is very good. This shows
that PRESS is able to fairly distribute event delivery
load among the nodes in the system.

8 Conclusions

PRESS uses KD-trees to dynamically partition and
organize subscriptions, thereby preserving subscription
locality, minimizing event matching load, and ensuring
load balance among nodes. PRESS exploits the embed-
ded trees in the underlying DHT for event dissemina-
tion, thereby imposing little overhead on the DHT. Via
simulations, we have showed that PRESS can deliver
events to a large number of subscribers at low over-
head and latency while incurring modest bandwidth
cost. The framework can be used to support multiple
content-based pub/sub systems. For example, we can
layer the KDT corresponding to a pub/sub scheme S
on top of a DHT by planting each KDT node (with
label L) in a DHT node which is responsible for the
key k = h(S, L). Due to the uniformity of the hash-
ing function, the KDTs (corresponding to the multiple
pub/sub schemes) span different DHT nodes with high
probability, thereby ensuring load balance across DHT
nodes.

PRESS currently does not well support underspeci-
fied (or wild-card) attributes in the subscription space.
For example, in an extreme case, all the subscriptions
are of the form A1 > c1, though this might be barely
true in real applications. It would be difficult to split
the subscription space into disjoint sub-spaces. We are
currently investigating techniques to address this issue.
One possible solution we are considering is to use a
“hybrid” KDT tree: upon this extreme case, the KDT
node may split the subscriptions randomly into its two
child nodes; during event matching, an event entering
the KDT node will be multicast to its two child nodes.
One alternative is to let the KDT internal nodes main-
tain such wild-card subscriptions to avoid subscription
partitioning, and then events are published to not only
the relevant leaf nodes but also the relevant internal
nodes.

Acknowledgements We thank Adair Dingle for her valuable
comments and inspiring discussions on the first draft of this
paper. We also thank anonymous reviewers for their constructive
feedbacks which helped improve the paper.

References

1. Fabret F, Jacobsen HA, Llirbat F, Pereira J, Ross KA, Shasha
D (2001) Filtering algorithms and implementation for very
fast publish/subscribe systems. In: Proceedings of the 2001
ACM SIGMOD, vol. 30. Santa Barbara, CA, pp 115–126

2. Segall B, Arnold D (1997) Elvin has left the building:
a publish/subscribe notification service with quenching. In:
Proceedings of AUUG. Brisbane, Australia, pp 243–255,
September

3. Triantafillou P, Economides A (2004) Subscription summa-
rization: a new paradigm for efficient publish/subscribe sys-
tems. In: Proceedings of the 24th IEEE ICDCS. Tokyo,
Japan, pp 562–571, March

4. Carzaniga A, Wolf AL (2003) Forwarding in a content-based
network. In: Proceedings of ACM SIGCOMM. Karlsruhe,
Germany, pp 163–174, August

5. Carzaniga A, Rutherford MJ, Wolf AL (2004) A routing
scheme for content-based networking. In: Proceedings of
IEEE INFOCOM. Hongkong, China, pp 918–928, March

6. Cao F, Singh JP (2005) MEDYM: match-early and dy-
namic multicast for content-based publish-subscribe service
networks. In: Proceedings of the 4th international work-
shop on distributed event-based systems. Washington, DC,
pp 370–376

7. Gupta A, Sahin OD, Agrawal D, Abbadi AE (2004)
Meghdoot: content-based publish/subscribe over P2P net-
works. In: ACM/IFIP/USENIX 5th international middleware
conference. Toronto, Ontario, Canada, October

8. Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan
H (2001) Chord: a scalable peer-to-peer lookup service for
internet applications. In: Proceedings of ACM SIGCOMM.
San Diego, CA, pp 149–160, August

9. Rowstron A, Druschel P (2001) Pastry: scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In: Proceedings of the 18th IFIP/ACM international
conference on distributed system platforms (Middleware).
Heidelberg, Germany, pp 329–350, November

10. Zhao BY, Kubiatowicz JD, Joseph AD (2001) Tapestry: an
infrastructure for fault-tolerance wide-area location and rout-
ing. Tech. Rep. UCB/CSD-01-1141, Computer Science Divi-
sion, University of California, Berkeley, April

11. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S
(2001) A scalable content-addressable network. In: Proceed-
ings of ACM SIGCOMM. San Diego, CA, pp 161–172,
August

12. Aguilera MK, Strom RE, Sturman DC, Astley M, Chandra
TD (1999) Matching events in a content-based subscrip-
tion system. In: Proceedings of the 8th ACM symposium on
principles of distributed computing (PODC). Atlanta, GA,
pp 53–61, May

13. Li G, Hou S, Jacobsen H-A (2005) A unified approach to
routing, covering and merging in publish/subscribe systems
based on modified binary decision diagrams. In: Proceedings
of international conference on distributed computing systems
(ICDCS), Columbus, OH, June

14. Banavar G, Chandra T, Mukherjee B, Nagarajarao J, Strom
RE, Sturman DC (1999) An efficient multicast protocol for

Peer-to-Peer Netw Appl

content-based publish-subscribe systems. In: Proceedings of
the 19th IEEE ICDCS. Washington, DC, pp 262–272, June

15. Carzaniga A, Rosenblum DS, Wolf AL (2001) Design and
evaluation of a wide-area event notification service. ACM
Trans Comput Syst 19(3):332–383

16. Banavar G, Chandra T, Mukherjee B, Nagarajarao J, Strom
RE, Sturman DC (1999) An efficient multicast protocol
for content-based publish-subscribe systems. In: Proceedings
of the 19th IEEE international conference on distributed
computing systems(ICDCS). Austin, TX, pp 262–272, May

17. Cao F, Singh JP (2004) Efficient event routing in content-
basedpublish/subscribe service networks. In: Proceedings of
INFOCOM, vol. 2. Hong Kong, China, pp 929–940, March

18. Zhang R, Hu YC (2005) HYPER: a hybrid approach to
efficient content-based publish/subscribe. In: Proceedings of
international conference on distributed computing systems
(ICDCS). Columbus, OH, June

19. Rowstron AIT, Kermarrec A-M, Castro M, Druschel P
(2001) SCRIBE: the design of a large-scale event notifica-
tion infrastructure. In: Proceedings of the 3rd international
networked group communication, pp 30–43

20. Zhuang SQ, Zhao BY, Joseph AD, Katz RH, Kubiatowicz
J (2001) Bayeux: an architecture for scalable and fault-
tolerant wide-area data dissemination. In: Proceedings of the
eleventh international workshop on network and operating
system support for digital audio and video (NOSSDAV). Port
Jefferson, New York, pp 11–20, June

21. Castro M, Druschel P, Kermarrec A-M, Nandi A, Rowstron
A, Singh A (2003) Splitstream: high-bandwidth multicast in
cooperative environments. In: Proceedings of the 19th ACM
symposium on operating systems principles (SOSP). Bolton
Landing, NY, October

22. Tam D, Azimi R, Jacobsen H-A (2003) Building content-
based publish/subscribe systems with distributed hash tables.
In: Proceedings of the international workshop on databases,
information systems and peer-to-peer computing. Berlin,
Germany, September

23. Terpstra WW, Behnel S, Fiege L, Zeidler A, Buchmann
AP (2003) A peer-to-peer approach to content-based pub-
lish/subscribe. In: Proceedings of the second international
workshop on distributed event-based systems (DEBS). San
Diego, CA, June

24. Triantafillou P, Aekaterinidis I (2004) Content-based
publish-subscribe over structured P2P networks. In: Pro-
ceedings of the third international workshop on distributed
event-based systems (DEBS). Edinburgh, Scotland, UK,
pp 104–109, May

25. Perng G, Wang C, Reiter MK (2004) Providing content-based
services in a peer-to-peer environment. In: Proceedings of
the third international workshop on distributed event-based
systems (DEBS). Edinburgh, Scotland, UK, pp 74–79, May

26. Choi Y, Park K, Park D (2004) HOMED: a peer-to-peer
overlay architecture for large-scale content-based publish/
subscribe systems. In: Proceedings of the third interna-
tional workshop on distributed event-based systems (DEBS).
Edinburgh, Scotland, UK, pp 20–25, May

27. Zhu Y, Hu Y (2007) Ferry: an P2P-based architecture for
content-based publish/subscribe services. IEEE Trans Paral-
lel Distrib Syst 18(5):672–685

28. Bentley JL (1975) Multidimensional binary search trees used
for associative searching. Commun ACM 18(9):509–517

29. Zhang C, Krishnamurthy A, Wang RY (2005) Brushwood:
distributed trees in peer-to-peer systems. In: Proceedings of
4th international workshop on peer-to-peer systems (IPTPS),
Ithaca, NY, February

30. Chawathe Y, Ramabhadran S, Ratnasamy S, LaMarca A,
Shenker S, Hellerstein J (2005) A case study in building
layered DHT applications. In: Proceedings of SIGCOMM.
Philadelphia, PA, pp 97–108, August

31. Wang Y-M, Qiu L, Achlioptas D, Das G, Larson P, Wang
HJ (2002) Subscription partitioning and routing in content-
based publish/subscribe systems. In: Proceedings of the 16th
international symposium on distributed computing (DISC).
Toulouse, France, October

Yingwu Zhu received the PhD degree in Computer Science &
Engineering from University of Cincinnati in 2005. He received
the BS and MS degrees in Computer Science from Huazhong
University of Science & Technology, at Wuhan, China, in 1994
and 1997, respectively. He is an assistant professor of Computer
Science and Software Engineering at Seattle University. His re-
search interests include operating systems, storage systems, peer-
to-peer computing, distributed systems, and computer networks.

Haiying Shen received the BS degree in Computer Science and
Engineering from Tongji University, China in 2000, and the MS
and Ph.D. degrees in Computer Engineering from Wayne State
University in 2004 and 2006, respectively. She is currently an
Assistant Professor in the Department of Computer Science and
Computer Engineering of University of Arkansas. Her research
interests include distributed and parallel computer systems and
computer networks, with an emphasis on peer-to-peer and con-
tent delivery networks, mobile computing, high performance
cluster and grid computing. She is a member of IEEE and ACM.

	An efficient and scalable framework for content-based publish/subscribe systems
	Abstract
	Introduction
	Related work
	Content-based pub/sub model
	Centralized pub/sub systems
	Decentralized pub/sub systems
	DHT-based pub/sub systems
	Other related work

	Framework
	Subscription organization
	Using K-D tree to organize subscriptions
	Subscription installation
	Unsubscribing
	Layering KDT on top of a DHT
	Discussion
	Caching to improve performance

	Event publication and matching
	Event publication
	Caching to improve performance

	Event matching

	Event delivery
	Embedded trees in a DHT
	Event delivery using embedded trees
	Discussion

	Evaluation
	Experimental setup
	Understanding KDT
	Event publication and delivery
	Event delivery

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

