
Enhancing Search Performance
on Gnutella-Like P2P Systems

Yingwu Zhu and Yiming Hu, Senior Member, IEEE

Abstract—The big challenges facing the search techniques on Gnutella-like peer-to-peer networks are search efficiency and quality of

search results. In this paper, leveraging information retrieval (IR) algorithms such as Vector Space Model (VSM) and relevance ranking

algorithms, we present GES (Gnutella with Efficient Search) to improve search performance. The key idea is that GES uses a

distributed topology adaptation algorithm to organize semantically relevant nodes into same semantic groups by using the notion of

node vector. Given a query, GES employs an efficient search protocol to direct the query to the most relevant semantic groups for

answers, thereby achieving high recall with probing only a small fraction of nodes. To the best of our knowledge, GES is the first to

identify node vector size as an important role in impacting search performance and to show that the node vector size offers a good

trade-off between search performance and bandwidth cost. Moreover, GES adopts automatic query expansion and local data

clustering to improve search performance. We show that GES is efficient and even outperforms the centralized node clustering system

SETS. For example, in the scenario where node capacity is heterogeneous, GES can achieve 73 percent recall when probing only

20 percent nodes, outperforming SETS by about 18 percent.

Index Terms—Peer-to-peer, topology adaptation, biased walk, semantic group, node vector, recall, information retrieval.

Ç

1 INTRODUCTION

IN the past few years, peer-to-peer (P2P) networks such as
Gnutella have become some of the fastest growing and

most popular Internet applications. They have demon-
strated the significance of distributed information sharing
by spreading storage, information, and computation cost
among nodes. To facilitate sharing of information, P2P
networks should provide an efficient and versatile search
functionality—the search mechanism should not only be
efficient in terms of resource consumption (e.g., band-
width), but also support rich (or complex) queries such as
keyword search and content-based full-text search.

Distributed Hash Tables (DHTs) [1], [2], [3], [4] and
unstructured P2P networks such as Gnutella provide
different data location mechanisms. DHTs are adept at
exact-match lookups: given a key, they can locate the
corresponding document with OðlogNÞ overlay hops in a
network of N nodes. However, extending exact-match
lookups to support complex queries on DHTs is nontrivial
[5], [6], [7], [8]. On the other hand, unstructured P2P
networks, like Gnutella, organize nodes into a random graph
and rely on flooding queries on the graph to retrieve relevant
documents. Each visited node evaluates the query locally on
its own content and thus arbitrarily complex queries can be
easily supported on Gnutella-like P2P networks. But, the
main drawback is search inefficiency—either a large fraction

of nodes have to be probed or some relevant documents have
to be missed.

A number of search solutions [9], [10], [11], [12], [13]
have been proposed to improve search performance on
Gnutella-like systems. However, with few exceptions [13],
most of them ignore information retrieval (IR) algorithms
such as Vector Space Model (VSM) and relevance ranking
algorithms, and thus may not be able to provide high
quality of search results (e.g., high recall). Worse yet, a query
containing popular terms may return a superfluous number
of documents beyond a user’s capability to deal with. GES
(Gnutella with Efficient Search), proposed here, combines
techniques from IR and P2P computing to enhance search
performance in terms of search efficiency and quality of search
results. For example, with the IR algorithms such as VSM
and relevance ranking algorithms, GES may return the
documents with the highest relevance scores which are
usually considered relevant to a query, thereby avoiding
forcing users to deal with a superfluous number of
documents. Moreover, exploiting IR algorithms such as
automatic query expansion [14] helps improve recall (which
measures completeness of search results) and precision
(which measures purity of search results).

1.1 Overview of GES

The design philosophy underlying GES is that GES aims to
improve search performance while retaining the simple,
robust, and fully decentralized nature of Gnutella. GES is
based on the intuition: if nodes are semantically relevant
(i.e., they have similar content), it is likely that they are
relevant to the same queries. To determine whether two
nodes are semantically relevant or not, GES introduces a
notion of node vector, a compact summary derived from a
node’s documents using VSM. Node vectors are used to
calculate node relevance. If the relevance score of two
nodes’ node vectors is high (e.g., higher than a certain
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relevance threshold), then the two nodes are semantically
relevant; otherwise, they are irrelevant.

The main components of GES are the distributed topology
adaptation algorithm and the search protocol. The topology
adaptation algorithm is performed periodically at each
node to restructure the overlay such that semantically
relevant nodes are organized into same semantic groups
through semantic links. Each node also connects to some
irrelevant nodes through random links by which GES can
efficiently discover different semantic groups. The search
protocol is a mix of biased walks and flooding. Given a query,
GES first uses biased walks through random links to locate
a relevant semantic group for the query, and then floods the
query through semantic links within the semantic group to
retrieve relevant documents. The search will continue this
process until sufficient answers are found.

By exploiting IR algorithms, can GES improve search
performance in terms of efficiency and quality of search
results? The answer mainly depends on quality of semantic
groups and efficiency of the search protocol.

The quality of semantic groups measures goodness of a
semantic group (i.e., nodes within a group are truly
semantically relevant), and is ultimately determined by
node vectors, which are used to calculate node relevance.
To the best of our knowledge, GES is the first to identify
node vector size, the number of terms in a node vector, as an
important role in impacting node relevance characterization
and ultimately the quality of semantic groups.

On the assumption that nodes within a semantic group
tend to be relevant to the same queries, the efficiency of the
search protocol depends on the efficiency of relevant
semantic group discovery for queries. Relying on one-hop
node vector replication, GES can quickly route the query to the
relevant semantic group by biased walks through random
links. Moreover, the capacity-aware mechanism of the
search protocol can exploit node capacity heterogeneity to
speed up the discovery of the relevant semantic group,
thereby improving search performance.

GES does not assume the documents on a node are
restricted to one single topic/area. A node’s documents
could be diverse in topics. The diversity of documents may
complicate the task of characterizing node relevance and
affect the quality of semantic groups. We thus explore local
data clustering to improve the quality of semantic groups,
with the aid of virtual nodes [1]. Moreover, we introduce the
IR technique, automatic query expansion, to improve the
quality of search results in terms of recall and precision.

1.2 Structure of the Rest of the Paper

The remainder of the paper is structured as follows:
Section 2 gives an overview of related work. Section 3
provides necessary background on VSM. In Section 4, we
describe the design of GES. In Section 5, we present our
evaluation metrics, data, and simulation methodology. We
provide our experimental results in Section 6. We finally
conclude the paper in Section 7.

2 RELATED WORK

A number of P2P keyword search systems [5], [6], [15] have
been built on top of DHTs. All of them are based on global

indexing where each node is responsible for the inverted list
of some keywords (or terms). Reynolds et al. [6] proposed
three techniques for multiple keyword search, including
Bloom filters, caches, and incremental results, to minimize the
amount of bandwidth consumed by intersection of inverted
lists and reduce end-user perceived latency. Li et al. [5]
focused their study on the feasibility analysis for multiple
keyword search based on the resource constraints and
search workload, and showed that the combination of
optimizations (e.g., clustering and gap compression) and
compromises on quality of search could make P2P-based
keyword search within feasibility range. eSearch [15]
exploits semantic information produced by IR algorithms
to selectively replicate complete lists of terms for docu-
ments based on top terms, thereby avoiding intersection of
inverted lists in multiple keyword search.

Recently, some content-based full-text search systems [7],
[8] based on DHTs have been proposed. pSearch [7]
distributes document indices to peer nodes based on
document semantics generated by Latent Semantic Index-
ing (LSI). The indexes of semantically related documents
are likely colocated in the overlay, thereby achieving good
search performance at low processing cost. In a similar vein,
Zhu et al. [8] proposed a content-based search system by
taking advantage of VSM and Locality Sensitive Hashing
(LSH). The indexes of semantically close documents are
stored on the same peer nodes with high probability (i.e.,
nearly 100 percent), and a query only needs to search a
small number of nodes (e.g., 20) for answers. Tang et al. [16]
proposed an eLSI algorithm to improve efficiency of LSI, by
using techniques such as document clustering plus term
selection or random projection. They showed that eLSI
makes pSearch more efficient while retaining retrieval
quality of LSI.

However, node churn in P2P networks complicates the
task of the DHT-based search solutions. To deal with node
churn, AESOP [17] imposes a hierarchy structure onto DHTs:
it partitions a DHT into DHT-structured clusters each of
which has at least one altruistic peer that undertakes more
responsibilities, and improves routing efficiency even in the
face of high churn with the aid of altruistic peers. Gupta et al.
[18] proposed two novel P2P lookup algorithms, with routing
performance of one and two hops, respectively. Their analytic
results show that the proposed solutions consume reasonable
bandwidth even in the presence of high churn. Bamboo [19]
addresses the issue of how to handle churn in DHTs. It
identifies and explores three factors that affect DHT
performance under churn, including reactive versus periodic
failure recovery, message timeout calculation, and proximity
neighbor selection (PNS).

Improvements to Gnutella’s flooding mechanism have
been studied along three dimensions: random walks, guided
search, and group-based search. Lv et al. [9] proposed random
walks in place of flooding to improve scalability. Random
walk is essentially a blind search in that at each step a query
is forwarded to a randomly chosen node without consider-
ing any hint of how likely the next node will have answers
for the query. To overcome the blindness of random walks,
Crespo et al. [11] introduced the notion of “routing indices”
to guide a query toward nodes which are more likely to
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have the requested documents. This search technique is
similar to GES’s biased walks which rely on replicated node
vectors to direct a query toward most relevant nodes for
answers. Systems such as [10], [12], [13], [20] organize nodes
into groups to improve search efficiency on Gnutella-like
P2P systems. However, with very few exceptions [13], most
of them ignore the IR algorithms and, thus, may not be able
to provide guarantee on recall. Cohen et al. [10] used guide-
rules to organize nodes satisfying some predicates into an
associative network. In a similar vein, Sripanidkulchai et al.
[12] used interested-based locality to organize nodes into
interest-based structure, by which a significant amount of
flooding on Gnutella-like systems can be avoided.

The closest work to GES is SETS [13]. SETS is a search
system using a topic-driven query routing protocol on a
topic-segmented overlay built from Gnutella-like P2P
systems. A topic segment in SETS contains nodes with
similar content and is similar to a semantic group in GES.
The topic-segmented overlay is constructed by performing
node clustering at a single designated node, and each cluster
corresponds to a topic segment (nodes within a topic
segment are connected by local links while nodes belonging
to different topic segments are connected by long-distance
links). Given a query, SETS first computes R topic segments
which are most relevant to the query and then routes the
query to these segments for relevant documents. When a
node joins the system, it first has to contact the designated
node for the information about all the C topic segments and
then joins the most relevant segment. Moreover, as nodes
join/leave or their document collections change, the
designated node has to recompute topic segments to keep
them up-to-date and then disseminates them throughout
the system. Several important features distinguish GES
from SETS. First, GES uses a distributed topology adapta-
tion algorithm to organize nodes into semantic groups
while in SETS a single designated node is responsible for
clustering nodes into topic segments. Such a centralized
structure may suffer from a single point of failure and
performance bottleneck. Second, GES’s search protocol is
capacity-aware, and it can exploit node capacity hetero-
geneity to significantly improve performance. Third, GES is
the first to identify the important role of node vector size in
search performance, and to show that an appropriate node
vector size is very important in system design. Finally, GES
is the first to adopt automatic query expansion and data
clustering into Gnutella-like P2P systems to improve search
performance.

The work done by Triantafillou et al. [21] is among the
first to propose peer clustering to improve search perfor-
mance. The nodes are organized into a set of clusters and
each node joins the clusters corresponding to the document
categories it belongs to. Routing efficiency is achieved by
forwarding the query to the relevant clusters. The clusters
are similar to the semantic groups in GES. However, this
work does not study the issues of how to derive document
categories, how to form semantic clusters, and quality of
search results.

PlanetP [22] uses Bloom filters to summarize content on
each node and floods the summaries to the entire system.
OceanStore [23] proposes a probabilistic location algorithm

to improve the location latency of existing DHT’s determi-
nistic lookups, if the replica of a requested document exists
close to query sources. The approach is based on attenuated
bloom filters, a lossy distributed index structure constructed
on each node. Due to the attenuated Bloom filters
maintained along each neighbor link, the algorithm can
find the nearby replicas very quickly. GES, instead, uses
node vectors to summarize content on each node and relies
on replicated node vectors to locate the relevant semantic
group for queries. To overcome the limitations of search on
both structured and unstructured P2P systems, Loo et al.
[24] proposed a hybrid search technique on Gnutella-like
systems in which structured P2P search techniques are used
to index and locate rare documents and flooding techniques
are used to locate highly replicated documents.

Gia [25] combines a number of techniques, including
random walks, topology adaptation, replication and flow
control, to improve scalability of Gnutella-like P2P net-
works. GES’s topology adaptation partly draws inspiration
from Gia’s. However, GES’s topology adaptation differs
from Gia’s in that it is mainly used to form semantic groups
to improve search performance while Gia uses topology
adaptation to improve system scalability.

Recent work [26], [27] explores the issue of information
retrieval in the environment of distributed collections.
COSCO [26] concentrates on gathering coverage and over-
lap statistics of collections and uses these statistics at query
time to best estimate which set of collections should be
searched. Bender et al. [27] proposed an overlap-aware P2P
Web search engine which considers mutual overlap among
collections. They have showed that the combination of the
mutual overlap estimates among collections with existing
quality estimation metrics can dramatically decrease the
number of collections that have to be contacted in order to
achieve a satisfactory level of recall. Viewing semantic
groups in GES as collections, these proposed techniques
may be applicable to GES in identifying the semantic
groups that have to be searched for a query.

3 BACKGROUND: VECTOR SPACE MODEL (VSM)

In VSM [28], each document/query is represented by a
vector of terms. The terms are stemmed words1 which occur
within the document/query. In addition, stop words2 and
highly frequent words are removed from the term vector.
Each term in the vector is assigned a weight by a term
weighting scheme. Terms with heavy weight are generally
deemed to be central to a document. To evaluate whether a
document is relevant to a query, VSM measures the
relevance between the query vector and the document
vector. Typically, for a document D and a query Q (suppose
the term vectors of D and Q have been already normalized),
the relevance score is computed as:

RELðD;QÞ ¼
X

t2D;Q
dt � qt; ð1Þ
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1. Stemmed words are the words that provide the root for other related
words. For example, the stemmed word for words restarted, restarts, and
restarting is restart by removing their suffixes.

2. Stop words are those words that are considered noninformative, like
function words of, the, a, etc.



where t is a term appearing in both D and Q, qt is term t’s

weight in query Q, and dt is term t’s weight in document D.

Documents with high relevance scores are deemed to be

relevant to the query.
A number of term weighting schemes have been

proposed, among which tf-idf is a scheme in which the

weight of a term is assigned a high numeric value if the

term is frequent in a document but infrequent in other

documents. The main drawback of tf-idf is that it requires

some global information (i.e., the document frequency df ,

which represents the number of documents where a term

occurs) to compute a term’s weight. Obtaining the global

information needs to perform information aggregation and

dissemination throughout the system, which is not an easy

task in the P2P environment. Thus, GES uses a “dampened”

tf scheme where each term t is assigned a weight in the form

of dt ¼ 1þ log ft, where ft is t’s term frequency in a

document. The “dampened” tf scheme has two main

advantages: 1) This scheme does not require any global

information and 2) it produces high quality document

clusters [29].

4 SYSTEM DESIGN

In this section, we detail the design of GES. We in turn

describe node vector, discuss topology adaptation algo-

rithm, present one-hop node vector replication, and discuss

search protocol.

4.1 Node Vector

Node vector summarizes a node’s content and is used to

determine relevance between nodes. A node X’s node

vector is derived from its documents using VSM as follows.

First, each document i is represented by a temporary term

vector where each term t’s weight is represented by its term

frequency ft;i. Second, all temporary term vectors of X’s

documents are summed up, and we get a new vector in

which each term component t has a weight ft ¼
Pn

i¼1 ft;i,

where n is the number of documents on X. For each term t,

we replace its weight ft with 1þ log ft by using the

“dampened” tf scheme. Finally, we normalize the new

vector and the normalized vector is X’s node vector.
Given two nodes X and Y , their relevance score is

computed as:

RELðX;Y Þ ¼
X

t2X;Y
wX;t � wY ;t; ð2Þ

where t is a term appearing in both X and Y , wX;t is term t’s

weight in X, and wY ;t is term t’s weight in Y . If the

relevance score is less than a certain relevance threshold,

nodes X and Y are deemed to be irrelevant; otherwise, they

are deemed to be relevant.
Node vectors are also used to calculate the relevance of a

node X and a query Q according to (3), as will be shown

later in biased walks during search.

RELðX;QÞ ¼
X

t2X;Q
wX;t � wQ;t: ð3Þ

4.2 Topology Adaptation Algorithm

The task of topology adaptation is to restructure an initial P2P
overlay such that 1) semantically relevant nodes are
organized into the same semantic groups through semantic
links and 2) each node maintains some random links to
facilitate semantic group discovery. The topology adaptation
algorithm is fully distributed: Each node periodically per-
forms neighbor discovery (Section 4.2.1) and neighbor adaptation
and maintenance (Section 4.2.2) to adjust its neighbor links,
thereby ultimately altering the overlay topology.

4.2.1 Neighbor Discovery

Each node may have two types of neighbors: random
neighbors (the semantically irrelevant nodes, which are
connected by random links) and semantic neighbors (the
semantically relevant nodes, which are connected by
semantic links). To adapt to the churn in node memberships
as well as the changes of node’s documents (e.g., document
addition or removal), each node periodically issues random
walk queries to discover new neighbor candidates.

A random walk query message contains the query
originator’s node vector, a relevance threshold REL
_THRESHOLD, the maximum number of responses MAX_
RESPONSES, and TTL (time-to-live). The random walk
returns a set of nodes. Actually, each node periodically
issues two queries, one requesting nodes whose relevance is
lower than REL_THRESHOLD, and the other requesting
nodes whose relevance is higher than or equal to
REL_THRESHOLD. Note that the relevance score is
computed using (2) (in Section 4.1). The returned nodes
are added to the query originator node’s two neighbor
candidate caches: random neighbor cache and semantic
neighbor cache, according to their relevance scores. Each
cache entry consists of a node’s IP address, port number, node
capacity, node degree, node vector, and relevance score.3 These
two caches are maintained throughout the lifetime of the
node. Moreover, each cache has a size constraint and simply
uses FIFO as replacement strategy.

4.2.2 Neighbor Adaptation and Maintenance

The task of neighbor adaptation and maintenance includes
selecting new neighbors from the neighbor candidate
caches and keeping track of the existing neighbors.

Each node (say, X) periodically updates its semantic
neighbors by choosing new neighbors from the semantic
neighbor cache, as outlined by adapt sem neighborsðÞ in
Fig. 1. MAX SEM LINKS is the maximum number of
semantic neighbors a node can have. Note that the node
attempts to choose the most relevant node as semantic
neighbors, while avoiding dropping the already poorly
connected semantic neighbors.4 In addition, each node
periodically updates its random neighbors by selecting new
neighbors from the random neighbor cache, as outlined by
adapt rnd neighborsðÞ. MAX RND LINKS is the maxi-
mum number of random neighbors a node can have. Note
that random neighbor update takes into account node
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3. Keeping precomputed relevance scores in cache avoids recomputing.
4. As will be shown in Section 5.3, each node has a minimum degree

constraint and a typical value is 3. If a node’s degree is less than or equal to
the minimum constraint value, this node is identified as a poorly connected
node.



capacity, hoping high capacity nodes have high degree and

low capacity nodes are within short reach of higher capacity

nodes. The capacity-aware random neighbor selection, as

will be shown later, makes biased walks (in Section 4.4)

more efficient in the scenarios where node capacity is

heterogeneous.
Each node also continuously keeps track of the node

vectors of its existing neighbors. Periodically, the node

requests the fresh node vectors from each of its neighbors,

and each neighbor responds to the request with its up-to-

date node vector. To minimize the bandwidth cost of

transferring the node vector, each neighbor can reply with

the update delta of its node vector. Note that the request

messages may be piggybacked onto keep-alive messages

between the node and its neighbors to reduce the number of

messages. Upon receiving the fresh node vectors (or the

update deltas), the node checks the relevance scores of its

semantic links and random links: if the relevance score of a

semantic link drops below REL THRESHOLD due to

dynamically changing documents in either node, GES

simply drops the semantic link and adds the neighbor

information into the random neighbor cache. Similarly, if
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Fig. 1. Pseudocode for neighbor adaptation.



the relevance score of a random link rises above
REL THRESHOLD, GES simply drops the random link
and adds the neighbor information into the semantic
neighbor cache. As a result, the neighbor adaptation and
maintenance performed thereafter can adapt to dynamically
changing node vectors of each node’s existing neighbors.

4.3 One-Hop Node Vector Replication

To assist biased walk decision making, each node maintains
the node vectors of all of its random neighbors in memory.
When a random-link connection is lost, either because the
random neighbor fails or due to topology adaptation, the
node vector for this random neighbor gets flushed from
memory. As discussed in Section 4.2.2, each node keeps
track of the node vectors of its existing neighbors. There-
fore, each node can keep the replicated node vectors up-to-
date and consistent.

4.4 Search Protocol

The search protocol is a mix of biased walks and flooding.
Given a query, GES first relies on biased walks (through
random links) to locate a relevant semantic group, and then
floods the query within this group (through semantic links)
to retrieve relevant documents. GES will continue this
search process until sufficient answers are found. Note that
the query flooding within the semantic group is based on
the intuition that semantically associated nodes are likely to
be relevant to the same queries.

Fig. 2 shows the pseudocode for the search protocol.
Given a query q, node X executes biased walkðÞ: each
document is evaluated using (1) and a relevance score is
computed.5 If the relevance score is high, this document is
identified as a relevant document for the query. If any such

a relevant document is identified, then the node X is called
a semantic group target node where the query terminates
biased walks and starts flooding. Otherwise, X executes
next hopðÞ to make a biased walk decision, picking a
random neighbor to which X forwards the query. Note that
the biased walk decision takes into account node capacity: it
favors the high-capacity neighbor, hoping that the high-
capacity neighbor can typically provide useful information
for the query. The biased walk decision also takes
advantage of the replicated node vectors and favors the
most relevant random neighbor if there is no high-capacity
random neighbor.

During flooding, each visited node evaluates the query
against its own documents and floods the query through its
own semantic links. The relevant documents found within
the semantic group are directly reported to the target node.
Note that each query contains a MAX RESPONSES

parameter. The target node aggregates the relevant docu-
ments, reports them directly to the query initiator node
which will present highest relevance ranking documents to
the user, and decreases MAX RESPONSES by the
number of relevant documents. If MAX RESPONSES

becomes less than or equal to zero, the query is simply
discarded. Otherwise, the query starts biased walks from
the target node again and repeats the above search process
until sufficient responses are found. In addition to
MAX RESPONSES, each query is also bound by a TTL

parameter. Note that flooding within semantic groups
keeps us from exactly keeping track of the TTL. For
simplicity, GES decreases the TTL by one at each step only

during biased walks. Once TTL hits zero, the query
message is dropped and no longer forwarded.

During both biased walks and flooding, we use book-
keeping techniques to sidestep redundant paths. Each
query is assigned a unique identifier GUID by its initiator
node, and each node keeps track of the neighbors to which
it has already forwarded the query with the same GUID.
During biased walks, if a query with the same GUID

arrives back at a node (say, X), it is forwarded to a different
random neighbor chosen by next hopðÞ from those random
neighbors to which X has not forwarded the query yet. This
reduces the probability that a query traverses the same link
twice. However, to ensure forward progress, if X has
already sent the query to all of its random neighbors, it
flushes the bookkeeping state and starts reusing its random
neighbors. On the other hand, during flooding, if a query
with the same GUID arrives back at the node, the query is
simply discarded.

5 PERFORMANCE EVALUATION

In this section, we discuss the design of experiments to
evaluate GES. We start by discussing performance metrics
and data for our evaluation. We then describe our
methodology.

5.1 Performance Metrics

The metrics we used to express the benefits and cost of GES
are:
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5. We may narrow down the local evaluation scope by clustering a
node’s documents first.



. Recall. It is a main metric used to quantify the quality
of search results, and is defined as the number of
retrieved relevant documents divided by the num-
ber of relevant documents.

. Precision@r. It is another metric used to quantify the
quality of search results, and is defined as the
number of retrieved relevant documents divided by
the number r of retrieved documents. We are
particularly interested in high-end precision (e.g.,
precision@15) because a recent study [30] has shown
that users only view top 10 search results.

. Query Processing Cost. It is defined as the fraction of
nodes in the system which are involved in a query
processing. A lower query processing cost increases
system scalability since system resource consump-
tion is proportional to the number of nodes visited
by a query. In addition, query processing cost
measures the quality of semantic groups. If the
quality of semantic groups is poor, a query may
probe many irrelevant nodes, thereby increasing
query processing cost.

. Bandwidth Cost (Kbps). It is used to quantify the
bandwidth overhead incurred by the topology
adaptation algorithm (Section 6.4).

5.2 Data

We used two sets of data in our experiments: TREC-1,2-AP
[31] and Reuters [32].

TREC. The TREC corpus is a standard benchmark widely
used in the IR community. TREC-1,2-AP contains AP News-
wire documents6 in TREC CDs 1 and 2. We extracted those
documents with text and valid author fields from this original
document collection. We assumed that each author corre-
spondstoanodeandhis/herassociateddocumentsarestored
on the corresponding node. This resulted in 80,008 documents
distributed over 1,880 nodes. The mean, 1st-percentile and
99th-percentile of the number of documents per node are 42.5,
1, and 417, respectively. The term vector of a document was
derived from the text field using VSM. The terms in each
document vectorwerestemmed.Wealsousedalistof571stop
words from SMART [33] to remove stop words from each
document vector. Each document vector on average has
179 unique terms.

We used a set of 50 queries from TREC-3 ad hoc topics,
with query number from 151 to 200. The query vector was
derived from the title field using VSM. The terms in each
query vector were stemmed and stop words were removed as
well. Thus, these 50 queries each has, on average, 3.5 unique
terms. Moreover, the 50 queries each comes with a query
relevant judgment file which contains a set of already
identified relevant documents by TREC-3 ad hoc query
assessors. Since we only used 80,008 AP Newswire docu-
ments with valid author and text fields, we removed those
documents which do not appear in this 80,008 document set
from the accompanying relevant judgment files.

Fig. 3 shows that about 50 percent of nodes provide
relevant documents for two or more queries (e.g., the
maximum is 12 queries). We found that the topics of these

queries are very different. We conclude that documents
created by an author (and, thus, stored on a node) are not
restricted to one single topic/area. Hence, the data used in
our evaluation does not assume a node specializes in one
single topic, and a very large portion of nodes hold diverse
documents indeed (the manual checking of documents also
confirmed this).

Reuters. The Reuters data (volume 1) contains news
articles each of which has text and author fields. Similarly,
we assumed that each author corresponds to a node and
his/her associated documents are stored on the correspond-
ing node. This resulted in 109,500 documents distributed
over 2,368 nodes. Unlike the TREC data, we generated a set
of 100 queries for the Reuters data. Each query was
generated by first randomly choosing a document and then
picking three terms uniformly from its term vector. The
relevant documents for a query are the documents which
contains all the terms in the query.

5.3 Methodology

GES simulation starts with a randomly-connected topology,
and then uses topology adaptation algorithm to restructure
the initial topology. GES’s topology adaptation algorithm
uses four preconfigured parameters, as shown in Table 1.
We set max links ¼ 8 in the experiments where node
capacity is assumed to be uniform. In the experiments
where node capacity is heterogeneous, we set max links to
128. However, there is a constraint on max links, i.e.,
max links ¼ minðmax links; b C

min unitcÞ, where C is a node’s
capacity and min unit represents the finest level of
granularity into which a node’s capacity is split, with a
typical value of 4.

For performance comparison, we consider two search
systems: Random and SETS. Random represents random
walks presented in reference [9], and is used as a baseline
system. We choose SETS due to two main considerations:
1) Both SETS and GES use the same IR algorithms such as
VSM and term weighting scheme. It is fair to compare their
performance based on the same IR algorithms, and 2) SETS
is a centralized node clustering system (as described in
Section 2) while GES is a decentralized node grouping
system. It is interesting to compare their performance with
different design philosophies.

ZHU AND HU: ENHANCING SEARCH PERFORMANCE ON GNUTELLA-LIKE P2P SYSTEMS 7

6. Associated Press news articles. They are part of the TREC ad hoc
document collections.

Fig. 3. Cumulative distribution of the number of queries for which a node

provides relevant documents.



In Random, there is no topology adaptation, and a
random graph is used as the overlay. In SETS, a designated
node performs topic segmentation to reconfigure the initial
randomly-connected topology. Each node has four long-
distance links and four local links. The number of topic
segments are 256, which represents the best case for
performance compared to 32, 64, and 128 topic segments.
Throughout all of our experiments, we choose uniformly
random graphs with an average degree of 8. The primary
purpose of choosing such uniformly random graphs is to
avoid unnecessarily biasing against Random.

In most of our experiments, node capacity is assumed to
be uniform unless otherwise specified. The whole node
vector on each node is used to compute node relevance in
topology adaptation unless otherwise noted. We ran each
experiment 10 times with different seeds. The experimental
results presented in the next section are the average
numbers of the experiments. All tests were run on all the
data sets, where the results are similar we present results on
one of the data sets due to space limitations.

6 EXPERIMENTAL RESULTS

6.1 Performance Comparison

Fig. 4 shows evaluation results comparing the performance
of GES against SETS and Random. Several observations can
be drawn from this figure:

1. GES and SETS outperform Random substantially,
achieving higher recall at lower query processing cost.

2. Compared to GES, SETS achieves higher recall for the
TRECdata whenprobing less than 30 percentof nodes.
This is explained by the fact that SETS takes advantage
of knowing the global Cð¼ 256Þ topic segments and,

therefore, can quickly and precisely locate the most
relevant topic segments to look up relevant docu-
ments. GES, instead has to rely on biased walks to
locate a semantic group target node, and then floods
the query within the semantic group for relevant
documents. If the target node is not a right one (which
actually does not contain relevant documents, though
some of its documents have relevance score high
enough to be deemed relevant), some irrelevant nodes
are unavoidably probed. The overhead of locating a
right target node hurts the performance of GES,
especially when probing only a small fraction of nodes.
However, GES still achieves about 71.6 percent recall
by probing only 30 percent nodes.

3. For the Reuters data, GES’s performance is very close
to that of SETS when probing less than 20 percent
nodes. This is because the queries for the Reuters data
are essentially simple keyword match.7 GES can exactly
identify a semantic group target node during search,
thereby avoiding the overhead introduced by a “false”
semantic group target node which unfortunately
happened in the TREC data.

4. GES outperforms SETS when exploring more than
30 percent of the network for the TREC data and
when exploring more than 20 percent of nodes for
the Reuters data. We give the following explana-
tions. First, the overhead of locating a right target
node (and, thus, the semantic group) is amortized by
probing more nodes. Second, the nature of GES’s
topology adaptation connects the most relevant
nodes through direct semantic links, and it ensures
a query probes the most relevant nodes first along
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Fig. 4. (a) Recall versus processing cost for TREC. (b) Recall versus processing cost for Reuters.

7. Search for documents containing all the keywords/terms in a query.

TABLE 1
The Parameters Used in GES



semantic links. However, SETS does not distinguish
the relevance between nodes within a topic segment
and local links do not necessarily reflect that the most
relevant nodes have direct connections. Therefore,
some irrelevant nodes within topic segments are
unavoidably visited when flooding the query within
topic segments.

5. When exploring the whole network, the recall
achieved by all three systems for the TREC data is
98.5 percent. This is because queries are short on
average with only 3.5 terms in the TREC data. Some
relevant documents could not be identified because
their relevance scores computed using (1) are zero
(note that simple keyword match does not need to
compute relevance score and, thus, it will not miss
identifying relevant documents for queries). During
query evaluation, they are mistakenly deemed to be
irrelevant due to such a low relevance score. In other
words, with such short queries, the maximum recall
achieved by a centralized IR system is 98.5 percent.

6.2 Effect of Node Vector Size

In the results presented for performance comparison, GES

uses the whole node vector on each node to compute node

relevance. To the best of our knowledge, SETS uses the

whole node vector for node clustering. Since GES relies on

node vector to compute node relevance, we believe node

vector size could affect the quality of semantic groups and

thus search performance. The node vector size, is defined as

the maximum number of terms considered in node relevance

calculation per node vector. Given a node vector v ¼
ft1; t2; . . . ; t100; . . . ; t500g with 500 terms where terms are in

decreasing order of weight, the node vector size of 100

represents a node vector v0 ¼ ft1; t2; . . . ; t100g, consisting of

the 100 top terms which have the top-ranking (or heaviest)

weight, while the node vector size of 800 will use the
original full node vector v.

Due to the varying number of documents across nodes,
the distribution of node vector sizes is skewed as shown in
Table 2. In this section, we explore the effect of node vector
size by conducting experiments to provide insight on the
following questions: 1) What is a good node vector size in
GES’s performance, i.e., recall? 2) How could a substantial
reduction in node vector size affect performance, i.e., recall?

Fig. 5 depicts the results for the TREC data. We observed
similar characteristics on the results for the Reuters data.
Fig. 5a plots the recall versus processing cost for various
node vector sizes. Several observations can be drawn from
this figure: 1) The node vector size of 1,000 performs the
best, achieving 81 percent recall when probing only
30 percent of nodes. Table 3 summarizes the recall
improvements made by the node vector size of 1,000 on
SETS and GES (full), respectively. 2) The node vector size of
100 works very well, achieving about 68 percent recall when
probing 30 percent of nodes. 3) The node vector sizes of 20
and 50, representing substantial reduction in node vector
size, perform surprisingly well, achieving 63 percent and
67 percent recall respectively when probing 30 percent of
nodes. Fig. 5b plots the cumulative distribution of recall for
the queries with respect to the node vector size when
probing 30 percent of nodes (we observed similar char-
acteristics on other cases). Note that the node vector size of
1,000 outperforms other node vector sizes significantly.

From the above observations, a question is naturally
raised: why does an appropriate node vector size (e.g.,
1,000) perform the best while both a substantially larger (or
even full) node vector size and a substantially smaller one
degrade performance? To answer this question, we now
look at Fig. 6.

For each document (vector), we sorted its terms in
decreasing weight and calculated the relative weight of
each term to the biggest term weight in the document. We
then averaged this normalized term weight across all
documents for each term rank, and plotted the mean for
each term rank in Fig. 6a. The Y axis is in log scale. Note
that the weight of the top 50 terms drops very fast. This
confirms our intuition that a small number of terms (e.g.,
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TABLE 2
The Distribution of Node Vector Sizes

across 1,880 Nodes for TREC

Fig. 5. (a) Recall versus processing cost for various node vector sizes. (b) Cumulative distribution of recall. s represents the node vector size and

“full” means the whole node vector.



50) are central to a document. They are capable of
characterizing a document like the “Keyword” section of
a technical paper.

Similarly, for each node vector, we sorted its terms in
decreasing weight and calculated the relative weight of
each term to the biggest term weight in the node vector. We
then averaged this normalized term weight across all node
vectors for each term rank, and plotted the mean for each
term rank in Fig. 6b. The Y axis is in log scale. Note that the
weight of the top 100 terms drops faster than Zipf
distribution, and the weight of the top 1,000 terms also
drops very fast. This shows that a relatively small number
of terms are capable of characterizing a node’s content
because a node vector is derived from its documents, each
of which is characterized by a small number of top terms
(with heaviest weight).

As a result, a substantially small node vector size (e.g., 20
or 50) still performs very well since the node relevance score
(according to (2)) is mostly determined by the top terms.
However, a substantially small node vector size misses
many important terms, and this degrades the performance
of topology adaptation, which fails to identify some
relevant nodes and put them within a semantic group,
thereby impairing search performance. On the other hand, a
substantially large node vector size (2,000, or even full size)
contains too many (i.e., tens or even hundreds) unimportant
terms which interfere with the calculation of the node
relevance score—two nodes may be irrelevant even if their
relevance score is high according to (2). We illustrate such
interference through an example. Suppose two node vectors
X and Y . They do not share top terms (say, 100 or 500), but
they share many (say, tens or hundreds) unimportant
terms. According to (2), their relevance score may be high
enough to be mistakenly deemed to be relevant. This will

negatively affect the quality of topology adaptation such
that irrelevant nodes could be clustered into a semantic
group. The node vector size of 1,000 strikes the balance. On
the one hand, it catches most (or all) of the top terms, and
on the other hand, it reduces the negative impact of tens or
even hundreds of unimportant terms, thereby achieving the
best performance.

An appropriate node vector size (e.g., 1,000) outperforms
both a substantially larger (or even full) node vector size
and a substantially smaller node vector size, because it
more precisely characterizes node relevance. Compared to a
larger node vector size, it also brings down the costs in
memory consumption (one-hop node vector replication), band-
width usage (reduced message size during topology adaptation),
and computation (the relevance score calculation consumes more
time for larger node vector sizes). A significantly smaller node
vector size (e.g., 20 or 50) can further bring down the
aforementioned costs, while still showing pretty good
performance. As a result, the node vector size exhibits a
good design trade-off between search performance and
resource consumption such as bandwidth cost. We leave the
issue of how to dynamically determine an appropriate node
vector size (e.g., through sampling) to our future work.

6.3 Flooding or Controlled Flooding?

The experiments so far assume that queries are flooded to
all members within a semantic group. In this section, we
investigate the effect of flooding radius on GES’s perfor-
mance. Recall that flooding originates from the target node
of a semantic group, so the flooding radius is the distance
(by hops) from the semantic group target node. With the
flooding radius constraint, a query may visit a fraction of
nodes within a semantic group (which we call controlled
flooding). Fig. 7 plots the effect of flooding radius within
semantic groups on GES’s performance with the node
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TABLE 3
The Recall Improvements with Respect to Query Processing Cost Made

by GES (1,000) on SETS and GES (full), Respectively, for TREC

Fig. 6. (a) Ranked term weight for the TREC documents, normalized to the biggest term weight in each document. (b) Ranked term weight for the

node vectors, normalized to the biggest term weight in each node vector.



vector size of 1,000. Other node vector sizes also show
similar characteristics. Due to space constraints, their results
are omitted here.

Several observations can be drawn from this figure:
1) The controlled flooding with a radius of 1 performs very
well. It achieves 71.7 percent recall when probing only
30 percent of nodes. This confirms that GES’s topology
adaptation connects the most relevant nodes with direct
semantic links. Therefore, if a right target node is located, its
most relevant neighbors will be visited to provide relevant
documents for the queries. 2) The controlled flooding with a
larger radius achieves better performance, and flooding the
whole semantic group achieves the best performance. This
confirms that the quality of semantic groups is good and
nodes clustered within a semantic group tend to be relevant
to the same queries. Thus, all the results presented in the
rest of the paper are based on flooding rather than
controlled flooding.

6.4 Topology Maintenance

GES relies on the periodically performed topology adapta-
tion to maintain semantic groups and random links. On the
one hand, each node every T seconds sends out two
random walk queries to discover and update random and
semantic neighbors; on the other hand, each node every T
seconds checks with its current neighbors for their node
vectors to remove disqualified neighbors. In this section, we
examine the bandwidth cost associated with topology
maintenance, by presenting both analytical and experi-
mental results.

Suppose there are n nodes in the system. Assume an
average of t terms per node vector, 4 bytes per term id,
4 bytes per term weight, and no compression of node
vectors. We also assume an average of h hops per random
walk query, an average of m neighbor candidates dis-
covered for each random walk query, � bytes for message
overhead (e.g., TCP/IP header), and an average of d
neighbors per node. On average, each random walk query
consumes the overall bandwidth bq ¼ ð�þ 8tÞ � h. The
response messages corresponding to each random walk
query consume bandwidth br ¼ ð�þ 8tÞ�m. Thus, every T
seconds, each node consumes bandwidth b1 ¼ 2ðbq þ brÞ to
discover new random and semantic neighbor candidates.
To check with its current neighbors, each node sends a node
vector request to a neighbor and receives a reply from the

neighbor. So, every T seconds, each node consumes
bandwidth b2 ¼ ð�þ �þ 8tÞ�d to check with its d existing

neighbors for fresh node vectors (including requests and
responses). Moreover, each node every T seconds uses keep-

alive messages to ensure the liveness of the neighbor
candidates in its two neighbor caches. Assuming the cache

size of s, the keep-alive messages consume bandwidth

b3 ¼ ð�þ �Þ�2s. As a result, during T seconds, the overall
bandwidth consumed by the topology adaptation across the

system is C ¼ n�ðb1 þ b2 þ b3Þ. Then, the average band-
width cost per node is c ¼ C

n�T bytes/sec.
Let us assume � ¼ 20 bytes, h ¼ 10, m ¼ 4, t ¼ 1; 000

terms, d ¼ 8, s ¼ 100, and T ¼ 300 seconds. We have the
average bandwidth cost per node c ¼ 989:6 bytes=sec. Put

another way, we have c ¼ 7:9 Kbps. The measurement

study [34] has shown that about 65 percent of nodes in
deployed P2P networks have low-speed access of 100 Kbps

and 35 percent nodes have higher access speeds of 1.5 Mbps
and 10 Mbps. Note that the topology adaptation consumes

only 7.9 percent of its bandwidth for low-speed access
nodes. Even for a node with dial-up access of 14.4 Kbps, the

topology adaptation consumes only 55 percent of its
bandwidth. Therefore, the bandwidth requirement for the

topology adaptation is small. Note that the analytical

number is in fact pessimistic since we do not apply any
optimizations here. For example, during neighbor discov-

ery, the response message corresponding to a random walk
query can return the relevance score (i.e., 4 bytes) instead of

the node vector (i.e., 8t bytes), thereby reducing the
bandwidth cost br by several orders of magnitude. Only

after the neighbor candidate is chosen as a neighbor will its
node vector be transferred. When a node checks with its

neighbors’ node vectors, the node’s neighbors can reply to

the node with the update delta of their node vectors instead
of the whole node vectors (e.g., most node vectors will not

change in successive T ¼ 300 seconds), thereby significantly
reducing the cost b2. Nodes within a semantic group can

also exchange the node information in their semantic
neighbor caches to reduce the neighbor discovery cost.

Moreover, optimizations such as compression may further
bring down the bandwidth cost. It is worth pointing out

that a substantially small node vector size (e.g., 20 or 50)

will greatly reduce the bandwidth cost while still showing
pretty good performance (as discussed in Section 6.2).

Table 4 shows the experimental results for the average

bandwidth cost per node with respect to the node vector
size during four hours of simulation time. Note that

bandwidth cost increases with the node vector size. The
node vector size of 1,000 not only achieves the best search

performance, but also incurs modest bandwidth overhead.
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Fig. 7. Effect of flooding versus controlled flooding on recall for TREC. r

represents the flooding radius within a semantic group for controlled

flooding.

TABLE 4
The Average Bandwidth Cost per Node for Topology
Maintenance during Four Hours of Simulation Times

T ¼ 300 seconds, h ¼ 10, m ¼ 4, s ¼ 100, and � ¼ 20 bytes. No
optimization is applied.



6.5 Automatic Query Expansion

Automatic query expansion [14] has been shown to be a
very effective technique to improve precision and recall in
centralized IR systems, especially for short queries. Assum-
ing that the top few documents retrieved for the initial
query are relevant, automatic query expansion adds
relevant terms identified from the retrieved documents
into the initial query to generate a new query. Then, the
new query is fed into the system to retrieve the final set of
results. Recall that in the TREC data, a query on average has
3.5 terms. Adopting automatic query expansion into GES
may improve the quality of search results. In this section,
we explore the effect of automatic query expansion on
precison@15 and recall with a set of 38 queries (the other
12 queries were excluded from this experiment because
each has less than 15 relevant documents). It is worth
pointing out that the queries in the Reuters data are simple
keyword match and, thus, do not need to do automatic
query expansion.

Given a query, GES first retrieved a small numberkof most
relevant documents. It used these documents as feedback
documents. GES computed the average weight of each term
appearing in the feedback documents and chose n top terms
which have the heaviest weight. Thesen terms were assumed
to be relevant to the query and were added to expand the
query (the weight of each of these terms were divided by a
constant c). The new query was then used to retrieve the final
set of relevant documents. Our experimental results showed
k ¼ 10 and c ¼ 16 worked very well. Fig. 8a shows automatic
query expansion improves precision, but not significantly.
For example, when the number of added terms is 30, the
improvement on precision@15 is about 10 percent. Fig. 8b
shows query expansion improves recall by about 26 percent
(the number of added terms is 30).

6.6 Local Data Clustering (LDC)

As shown in Section 5.2, the documents on a node are
diverse. A question is naturally raised: can we improve the
quality of semantic groups and, thus, search performance
by distinguishing diverse topics in a node’s documents? To
answer this question, we introduce a notion of virtual node
[1]. A node with diverse-topic documents locally clusters its
documents using data clustering techniques and each
cluster corresponds to a virtual node. A node with

diverse-topic documents thus may host multiple virtual
nodes, each of which independently participates in GES’s

topology adaptation and search protocol.
Clustering documents on a node can use many data

clustering techniques (e.g., hierarchical or k-means), each of

which may give a different group of a data set. We leave the
issue of exploring impact of different clustering techniques
to our future work. For simplicity, we assume only those

nodes with a certain number of documents (e.g., � 20)
needs to do LDC. This results in a total of about 38 percent
nodes (out of 1,880 nodes) which need to do LDC. The

number of clusters on a node is predefined by the number
of queries for which the node provides relevant documents.
This is based on the observation that the queries are diverse

in topics. Each cluster corresponds to a virtual node and its
center represents the node vector of the virtual node.

To avoid unnecessarily biasing against the design with-
out LDC, we keep unchanged the maximum number of

random links per physical node in the presence of virtual
nodes. Otherwise, a node may have more random links by

hosting virtual nodes, thereby improving the performance
of biased walks and, thus, overall search performance.
When forming random links, the node vector of a physical

node is involved; when forming semantic links, however,
the node vector of a virtual node is involved. As a result,
virtual nodes here are just used to improve quality of

semantic groups.
Fig. 9 depicts the cumulative distribution of recall

without LDC for queries when probing 30 percent of
nodes. Two main observations can be drawn from this

figure: 1) “full+ldc” performs better than “full.” This shows
LDC improves the quality of semantic groups, thereby
achieving better performance. 2) “1,000+ldc” shows not

much improvement over “1,000.” We give the following
explanations. First, the node vector size of 1,000 is already
capable of precisely characterizing the relevance between

nodes, thereby producing high quality of semantic groups.
Second, the number of documents per node is not very
large. Recall that the average number of documents per

node is 42.5 and the 99th percentile is 417. We expect that
LDC would perform much better in the scenarios where the

number of documents per node is much larger and the
topics are more diverse.
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Fig. 8. (a) Precision@15 with respect to the number of added terms. The query processing cost is 30 percent nodes. (b) The average number of

retrieved relevant documents for a query when retrieving 1,000 documents.



6.7 Impact of Heterogeneity

So far, all our experiments have been conducted by

assuming uniform node capacity. In this section, we explore

the performance gain achieved by GES’s capacity-aware

mechanism, which exploits node heterogeneity. Based on a

Gnutella-like profile [34], we assigned capacity of 1� ,

10� , 102 � , 103 � , and 104 � to nodes with probability of

20 percent, 45 percent, 30 percent, 4.9 percent, and

0.1 percent, respectively. Nodes with capacities 1; 000�
and 10; 000� were assumed to be supernodes.

Fig. 10 shows the performance of GES with heteroge-

neous and uniform capacity. “Heter” represents the

scenario where node capacity is heterogeneous while

“Uniform” represents the scenario where node capacity is

uniform. The number in parenthesis is the node vector size

and “full” represents the full node vector size. Note that

exploiting node capacity heterogeneity can significantly

improve performance (e.g., achieving 73 percent recall by

probing only 20 percent of nodes). Table 5 summarizes the

recall improvements made by GES (1,000) on SETS, which

does not have a capacity-aware mechanism.

7 CONCLUSIONS AND FUTURE WORK

GES is our first attempt at enhancing search performance in

terms of efficiency and quality of search results on Gnutella

by exploiting IR algorithms. Our main contributions are:

1. We use a fully distributed topology adaptation
algorithm to restructure overlay topology for search
performance enhancement while retaining the sim-
ple, robust, and fully decentralized nature of
Gnutella. Both analytical and experimental results
show that the bandwidth cost of topology adaptation
is modest.

2. GES is the first to show that the node vector size
plays an important role in search performance. We
found that the node vector size exhibits a good
design trade-off between search performance and
bandwidth cost. For example, to reduce bandwidth
cost, GES can use a substantially small node vector
size (i.e., 20) while still showing pretty good
performance (i.e., achieving 63 percent recall when
probing only 30 percent nodes).

3. GES employs IR algorithms such as automatic query
expansion and local data clustering to improve
search performance.

4. GES’s capacity-aware mechanism can exploit node
heterogeneity to enhance performance. Via simula-
tions, we show that GES outperforms the centralized
node clustering system SETS. For example, in the
system where node capacity is heterogeneous, GES
can achieve 73 percent recall when probing only
20 percent nodes, outperforming SETS by about
18 percent.

Several issues need to be addressed in our future work.
First, we need to examine the impact of data replication on
search performance because the data sets currently used in
our experiments do not have the characteristic of data
replication. Second, we will explore other IR algorithms
such as LSI in GES design. Finally, we plan to investigate
the impact of various data clustering techniques on search
performance.
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