
To Unify Structured and Unstructured P2P Systems

Honghao Wang, Yingwu Zhu and Yiming Hu
Department of Electrical & Computer Engineering and Computer Science

University of Cincinnati
e-mail: {wanghong, zhuy, yhu}@ececs.uc.edu

Abstract
Most of current peer-to-peer designs build their own system
overlays independent of the physical one. Nodes within un-
structured systems form a random overlay, on the contrary,
structured designs normally organize peers into an elegant
identifier ring. However, all of those overlays are far from
the physical one.
Noticed that the system overlay is crucial for building a

distributed system, this paper proposes to build system over-
lays based on the physical overlay. By making full use of phys-
ical network characteristics and taking advantages of both
structured and unstructured protocols, a network-based peer-
to-peer system is built in this paper. Not only the system is
highly efficient (the stretch is equal to one), but also it can
adapt extremely system churning. The most important is that
the maintenance overhead is very low, even under highly dy-
namic environment.

1 Introduction
The last few years have seen a tremendous increase in the in-
terest and research activities of Peer-to-Peer (P2P) systems.
While P2P research covers a wide spectrum of topics, such
as routing/lookup, security, file systems, load-balancing, etc,
one of the most fundamental research topics is how to pro-
vide efficient lookup services in a large-scale network which
is completely distributed and decentralized.
Currently, P2P systems can be classified into two main

categories: unstructured and structured. For unstructured P2P
systems, such as Gnutella [1] and KaZaA [2], peers are orga-
nized arbitrarily. Through simple Ping/Pongmechanism, each
peer in Gnutella connects with other peers randomly. An arbi-
trary overlay network is formed by those connections among
peers. Although the protocol is simple, it can keep nodes
highly connected even in event of major disasters. The search
protocol uses simple flooding mechanism. When a peer re-
ceives a query message, it simply forwards the query to all
neighboring peers. After several turns’ forwarding, one query
can reach most of peers in the network. The peers with re-
lated results will answer the query and send the results back.
However, such mechanism generates a large mount of mes-
sages per query, which makes the scalability problem when
the number of peers grows. Based on the proprietary Fast-

track technology that uses special supernodes design, KaZaA
becomes popular. Those supernodes always have higher band-
width and connectivity, and they make an index of all nearby
peers’ sharing files. As a result, all queries are routed to those
supernodes and processed there. Gnutella2 [3] also adopts
similar technique to make system more scalable.
Unstructured P2P systems have advantages on the simple

protocol, friendly key words searching and powerful ability
of locating well-duplicated objects, such as music files. How-
ever, they face difficulties on scalability and locating rare ob-
jects. Structured P2P systems, such as Chord [4], CAN [5],
Tapestry [6] and Pastry [7], leverage Distributed Hash Ta-
bles(DHT) to archive an administration-free, fault-tolerant
overly network and guarantee to deliver a message to the des-
tination within

� � � � � � � � �
hops. In contrast to the random

overlay in unstructured systems, all peers in structured sys-
tems are organized into a clear logical overlay, which is al-
ways an identifier ring. Also, each object in structured sys-
tems has been recorded in its unique place, which is opposite
to unstructured ones. By a small entries DHT in each peer, a
query will reach its destination within

� � � � � � � � �
hops.

While elegant from a theoretical perspective, these sys-
tems have two obvious mismatches or disadvantages. The
first mismatch is between the ideal logical overlay, which is
a linear identifier ring, and the physical overlay, which is a
power-law network. To a great extent, DHTs ignore the char-
acteristics of the physical network. As a result, a single "hop"
may be across two nodes connected via a high speed LAN,
or two nodes separated by a low-bandwidth, long-latency link
across half the world. The second one is between node’s ca-
pabilities or resources and their responsibility. Many systems
give every peer in the system equal responsibility, assuming
all nodes are uniform in resources such as CPU performance
and network bandwidth. However, this assumption does not
hold for real systems. For example, half of nodes in a typical
system are "week-nodes", with low performance, poor relia-
bility and intermittent network connection. In addition, nodes
in real P2P systems would like to join and leave the system
very frequently [8, 9]. Granting those nodes the responsibil-
ity beyond their capabilities significantly impacts the perfor-
mance and reliability of the system.
Not only structured systems, unstructured ones suffer

from the mismatch between the system overlay and the phys-
ical one. Previous research [8] showed that 40% nodes in

1
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Gnutella were within 10 top ASs, but only 5% communica-
tion happened within the same AS. The P2P traffic is becom-
ing the major part of Internet traffic. Being aware of the mis-
match problem, many works have been done. For unstruc-
tured systems, network proximity is used to optimize connec-
tions within a peer’s neighbor and neighbors’ neighbors for
Gnutella by Liu, etc. [10]. For structured systems, network
and geography proximity are widely used to optimize overlay
construction and selection of next hop. All those works im-
prove performance significantly, nevertheless, they have limi-
tation because of the restriction of logical overlay.
The gap between the system overlay and the physical one

becomes a serious obstacle for the growing of P2P systems.
Noticed that the system overlay is crucial for a distributed sys-
tem, this paper, from a different angle, proposes a new proto-
col for building P2P systems. Not only it makes full use of
physical network characteristics, but also it combines advan-
tages of structured and unstructured protocols and supports
both of them at the same time. Opposite current P2P designs,
which focus on their own system overlays, our approach fo-
cus on physical overlay, and builds system overlay based on
it. By directly using Internet routing mechanism, the whole
system is highly efficient, the stretch is equal to one. Also,
it can adapt highly dynamic environment, and has very low
maintenance overhead, because most of maintenance can be
done during system common procedures.
The contributions of this paper:

1. To our best knowledge, it is our first to propose building
P2P systems based on Internet physical overlay. While
pervious topology-aware designs used network topol-
ogy information just as the auxiliary approach, our sys-
tem directly exploits network topology to construct sys-
tem overlay. Instead of deploying system own routing
mechanism, the Internet routing is naturally employed,
which highly improves system efficiency.

2. A novel and practical approach is proposed to build
system overlay closely approximating the physical net-
work. Network topology and positioning techniques are
perfectly integrated to provide accurate Internet topol-
ogy.

3. Network characteristics, such as the power low, struc-
tured and unstructured protocols are incorporated to-
gether. Not only the whole system is highly efficient
in looking up, but also it can adapt extremely system
churning. The most important thing is that maintenance
works are naturally integrated into common procedures
of system. Thus, the overhead of maintenance is very
low, even under highly dynamic environment.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous works to optimize P2P systems by
network topology information. Section 3 provides the back-
ground of Internet topology and related techniques. Section 4
describes in detail how to build the system overlay closely ap-
proximating Internet topology. Section 5 provides the system

designs to build structured and unstructured systems based on
our network-based system overlay. In section 6, we evaluate
our approach using simulation. Section 7 concludes the paper.

2 Related Work
To exploit physical network information to optimize P2P
systems is not a new idea, current works can be classified
into three main categories: proximity routing, topology-based
node ID assignment and proximity neighbor selection [11].
Proximity routing is employed in Chord [4], CAN [5] and

their improvements, such as [12]. With proximity routing,
physical network information is not taken into account when
building system overlay. However, heuristic algorithms are
used to choose many hops with small latency instead of large
latency ones. Topology-based node ID assignment is em-
ployed in CAN. When a new node joins the overlay, it joins
a node that is close to it in IP distance. Proximity neighbor
selection is employed in Pastry [7] and Tapestry [6]. Routing
table entries are selected according to the proximity metric
among all peers that satisfy the constraints of logical overlay.
In Brocade [13] and Expressway [14], a secondary over-

lay network of supernodes based on AS-level topology is used
to improve routing performance. Nodes in the default network
establish direct connection to a supernode nearby. At the same
time, supernodes collect the information of connected nodes
and advertise their information in the second overlay. Rout-
ing from node A to B in those systems involves three sections.
Firstly, A sends the message to local supernode SA. Then this
message is routed in the second overlay to the supernode SB
which stores the object for B. Finally, the message reaches
node B. Although their benefits are limited by logical over-
lay restrictions, and they face the challenge of choosing ap-
propriate supernodes and frequently updating information of
connected nodes for supernodes, those systems produce sig-
nificant improvements compared to original designs.
Based on BGP routing table snapshots, Krishnamurthy

andWang [15] proposed a promising technique to cluster web
clients, called network-aware clustering. It can effectively
group clients that are topologically close and under common
administrative control. By this technique, they further pro-
posed a Cluster-based Architecture for P2P(CAP) [16]. Nodes
in CAP were clustered into groups by IP prefixes provided by
BGP routing tables. Then those groups acted as the normal
nodes in Gnutella. Although the method is simple, it signif-
icantly improves scalability and reduces the number of mes-
sages. However, CAP needed a centralized server to perform
network-aware clustering, which would be a bottleneck and be
vulnerable for the single failure. Furthermore, the BGP rout-
ing tables is not directly available to end-user applications.
They always require privileged access to internal network in-
formation from ISPs.

2
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

3 Internet Topology and Related Tech-
niques

3.1 Internet Topology
The Internet consists of many Autonomous Systems (ASs).
An AS is a network under a single administration authority
using a common Interior Gateway Protocol (IGP) for packet
routing. Computers within an AS are always geographically
close and connected by a high-speed network. Some border
routers running Border Gateway Protocol (BGP) [17] connect
the AS with its neighboring ones to form the Internet.
A good structure for system overlays should be clear, sta-

ble and easy to acquire. The topology of the Internet has three
levels, IP-level, router-level and Autonomous System (AS)-
level [18]. The granularity of IP-level topology is too small
to reflect Internet overlay structure. Also, it is almost impos-
sible to obtain such kind of topology for the sheer number
of IP addresses and a large number of frequently joining and
leaving machines at any given moment. The granularity of
router-level topology is the best to reflect Internet structure.
However, to acquire such kind of information needs either the
privileged access to BGP border routers or huge overhead of
probing. Both of them are not a general way to applicant
end users. At AS-level, Internet has an even cleaner topol-
ogy since the Internet is made up of those ASs, and many
public services provide that information, such as CIDR Re-
port [19] and IRR [20]. Although not as detailed as BGP rout-
ing tables, that information is publicly published and easily
obtained. The only drawback is that the granularity of AS-
level topology is too coarse to provide inside structure of the
network especially for large ASs.
Although router-level topology provides a better granular-

ity than AS-level, it is hard to be obtained. Also, the distribu-
tion of the nodes in P2P systems is far from uniform [21, 9].
The average nodes within one AS are 224 and 56 for KaZaA
and Gnutella respectively. Thus, in many cases, such detailed
Internet topology is overkill. Our researches show that AS-
level topology really provides a good frame for building sys-
tem overlay. Within the AS, a light topology-aware technique
can be used to provide further details.

3.2 Topology Aware Techniques
There are many methods and techniques to acquire network
topology information, such as BGP routing tables [22, 23, 19,
20], widely used landmark techniques [24, 25] and the net-
work of physical springs [12]. In terms of provided informa-
tion, those techniques can be classified into two categories:
real world network topology and proximate network position-
ing.
As we mention before, the whole Internet is formed by

thousands of ASs with border routers running BGP, which
connect one AS with its physical neighbors. Two ASs are
called connected when there is a direct BGP link between
them. By exchanging information with BGP peers, each BGP

router forms a detail routing table with AS paths to every ex-
isting AS. As a result, BGP routing tables can provide real
world Internet topology. ASs or routers and their connections
can be retrieved from those valuable tables. The advantages
of BGP tables are obvious. However, they have their disad-
vantages. Firstly, those BGP routing tables are not easily ob-
tained. Secondly, because BGP tables include lots of infor-
mation for routing selection, those tables are always too large
and complex to directly use. Fortunately, public services, such
as the CIDR Report [19] and WHOIS service from IRR [20],
announce that information at AS-level. All information about
one AS, such as AS number, IP address range and AS connec-
tivity, can be listed in details. The CIDR Report even updates
that information daily and provides thorough analyses.
Landmark techniques and the Vivaldi belong to network

positioning. They can provide some kind of network coordi-
nates to reflect each node’s relative network position or dis-
tance in the Internet. Different from network topology tech-
niques, which provide actual structure information based on
real routing tables, network positioning ones always use RTTs
between one node and other famous or pre-selected hosts,
called landmarks, to calculate network coordinates, which can
estimate related network distance between hosts. Since many
unpredictable factors, such as changes of routing, network
bandwidth and traffic, will affect the RTT between nodes,
those techniques are not as accurate and stable as network
topology ones, and do not directly reflect network structure.
However, network positioning techniques are distributed and
self-dependent, which are especially suitable for P2P systems.

4 Building a System Overlay based on
Internet Topology

Previous works make us believe that to make system overlay
closely approximating physical overlay is the right direction
to build large-scale P2P systems. Compared with current de-
signs, it at least has two major advantages. Firstly, under con-
sistency between system overlay and physical one, system op-
erations will be more efficient. Secondly, underlying network
mechanisms, such as routing, can be directly used to simplify
system design. In this section, we will show how to build a
system overlay closely matching the physical one by Internet
topology information.
Based on published Internet AS-level topology informa-

tion, all nodes are divided into groups by their AS residence.
Like the AS in the Internet, the group is the basic unit for rout-
ing and organizing nodes in the system. To partition nodes
only by their AS residences is too coarse in many cases, es-
pecially in large ASs with lots of nodes. The network-aware
clustering technique from Krishnamurthy and Wang is a suffi-
cient method to sub-divide nodes in large ASs. However, not
only such detailed informant is hardly obtained, but also it is
overkill, since nodes may sparsely distribute among routers in
the AS. Thus, we propose to use landmark technique to further
divide nodes into teams within an AS. Landmarks can be pre-

3
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

joined nodes or their default routers. Because all probes are
within the same AS, no traffic across Internet backbone, the
overhead for network coordinates will be little. Also all those
packets will not be denied as intrusion since they are under
the same administration. By landmark vectors technique pro-
posed by Ratnasamy, etc. [25], physical nearby nodes can be
easily clustered together to form a team.
The connections between groups will be also agree with

the Internet. We cannot directly use ASs connectivity for
groups, since not every AS is a group in P2P environment.
Also, previous research [26] showed that the distance infor-
mation provided by the AS-level topology could be too coarse
as it was only specified in AS-level hops. Though AS path
lengths are really too coarse to estimate most of distances,
which is always four or more AS hops, they are accurate
enough to predict short distance [26], which is one or two AS
hops. Thus, we define groups within two ASs path length
are physical neighbors. Some nodes with high bandwidth
and availability will be elected within each group as agents
to exchange information with neighboring ones. Although
each peer arbitrarily joins and leaves the system, previous re-
searches [8, 9] showed that their behaviors were highly skew.
Most of nodes have very short uptime, however, there are 18%
and 10% nodes with 90% uptime in Napster and Gnutella re-
spectively. Also, those 10% hosts also contribute about 90%
of the total traffic. Thus, about 10% nodes have high avail-
ability are decent bandwidth, which are suitable candidates
for agents. Our experiments also show nodes with normal
session time, about 30 minutes, will be enough for agents.
Within a team, a leader will be elected to serve teammates

and connect with agents. In small groups, which have tens
of teams, leaders will directly link to nearby agents. When
a group is very large, which has hundreds of teams, dissemi-
nation trees with agents as the root will be used to efficiently
transfer messages between agents and leaders. Based on each
team’s network coordinates, the agent can easily build that
dissemination tree. A two level tree is enough to support
hundreds of teams. In order to keep teams and nodes highly
connected, unstructured-like epidemic (or gossip) protocol is
used simultaneously. Physical nearby teams will make neigh-
bors each other. Nodes within one team will randomly se-
lect some others as their neighbors. Those arbitrary connec-
tions are important to keep nodes highly connected even in
the event of major disasters. Also, they can help the system to
quickly rebuild the organization within groups.

4.1 Hub Groups
In our research, we find an interesting characteristic of the
Internet. Due to the power law of the Internet, there are
some hub-like ASs that always connect with hundreds of ASs.
Those hub-likeASs are also highly connected with each other,
and average AS path length between them is only 1.47. More-
over, every AS in the Internet will at least encounter one of
such hub-like ASs within the AS path length of four. By
those hub-like ASs, called hub AS, all ASs of the Internet can

be further divided into areas, which include a hub AS and
all nearby ASs. This characteristic can be further used for
organizing groups, and efficient communication, because all
groups within one area naturally form a two level dissemina-
tion tree as we define groups within two ASs path length are
physical neighbors. The hub group connects nearby groups
within 2 AS path length, and those groups connect remote
groups. If no nodes in the hub AS, the physical nearest group
will become the hub group.

4.2 Keep System Overlay Up-to-date
As we all known, the Internet keeps evolving. Although previ-
ous studies showed that AS level topology of the Internet was
quite stable [27] and stale information world not affect the
correctness of system routing, some mechanism was needed
to update the system overlay. It is obvious not scalable to
update information from a centralized server, such as ICDR
report or IRR record. A novel scheme is developed in our sys-
tem to update topology information without overloading the
centralized server. Instead of storing a whole Internet topol-
ogy graph within each group’s agents, only the related part,
including only the ASs and links within 2 ASs path length
from current group, will be recorded. Moreover, previous re-
search [26] pointed out that previousmeasured RTTs were the
best way to detect network changes. Instead of periodically
update topology information, our system only updates infor-
mation in need. When agents exchanging information with
their neighbors, RTTs are also recorded. If the agent observes
major and persistent changes of the RTT, the nearby network
is considered changed. Instead of retrieving the whole topol-
ogy graph from the centralized server group by group, only
the nearest hub group collects this graph, which is no than
300KB, from the server daily and delivers to other hub groups
during information exchanges. Thus, when the nearby net-
work changes, the group will ask its nearest hub group for
related topology information.

4.3 Routing and Maintenance
Another advantage of building a system following a physi-
cal overlay is that the system can make use or even directly
use the routing mechanism of the physical overlay. Instead of
building a whole new routing mechanism, our system directly
uses the Internet routing. The routing table for the agents is a
list of group numbers and related IP addresses of their agents.
Currently all nodes in P2P systems are distributed in 4 to 5.5
thousands ASs [9]. The table size is about 60KB for three
agents each group. An old PC (with one 800MHz Pentium-
III CPU and 128M memory) can perform 24,000 sequential
lookup operations per second on this table. The routing pro-
cedure is much simplified. Given a destination group number,
the agent checks its list and selects one agent in that group to
drop the message. Like BGP routers in the Internet, agents
will exchange their tables with neighboring ones. Thus, all
groups will know each other. The exchanging of information

4
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

dose not need to be frequent, a period of 10 minutes is consid-
ered enough. Although agents are considered to have higher
availability than normal nodes, they are not well-maintained
routers. They will fail or arbitrarily leave the system. To
update agent information just depending on periodically ex-
changing information between nearby groups is not efficient
enough. Some mechanism is needed to fast up this kind of
updating.
The piggyback technique is used here. When agents send

or answer queries, latest information about agents, which is 12
bytes for three agents, will be appended to the messages. In
addition, the latest agents information will be periodically re-
ported to nearby hub group, and within 30 minutes all groups
will know that. In fact, the piggyback technique is very effi-
cient and can performmost of those updates even under highly
dynamic environment. Our experiments show that in a system
with 20,000 nodes in 200 ASs, assuming a median session
time of 5.5 minutes for each node, the piggyback technique
can guarantee that the success rate of first attempt is above
99%. The most important thing is it dose not involve any ad-
dition message. Thus, the whole system has very low mainte-
nance overhead or is even maintenance-exempted. Moreover,
the piggyback technique actually provides the ability of hot
swap for the system, which can highly improve the availabil-
ity and reliability of the system under drastic environments.

4.4 Node Joining and Leaving
When a node joins the system, its AS number can be deter-
mined by its IP address through either WHOIS service or the
agents in hub groups, which update that information daily.
Then the joining request is forwarded to the agent of that AS.
Normally the node will join one team according to its network
locality. The overhead of node joining is almost minimal since
only the leader has to update some book-keeping information.
If a team is too populous, it will split into two teams based

on network locality automatically. If the joining node is the
first node in that AS, the requirement will be forwarded to
an agent in hub group, which will find out the nearest group
from that AS to forward the request. Instead of forming a new
group, the node will initially become a teammate within the
nearest group, called mother group. When nodes within that
AS are enough for three teams, agents will be selected and
an individual new group is born. The information of the new
group will appear in the routing table of the mother group and
be reported to the nearby hub group. Within 30 minutes, all
groups will know it.
For the normal node, its leaving or failure is automatically

tolerated by the team. If many nodes leave a team, the team
may disappear. The remainder will join a physical nearby
team. The state will be similar when a group is disappearing.
All above are a framework for the system overlay, cooper-

ating with addition data structures, it can form different pur-
poses distributed systems. In the following section, we will
show how it can be enhanced to support structured and un-
structured P2P systems.

5 System Design for Structured and
Unstructured P2P Systems

5.1 Structured P2P Systems
In order to support structuredDHT designs, similar IDmecha-
nism is added to our system. Like current DHT designs, each
object in our system has a 128-bit ID, which can be gener-
ated by a basic hash function such as SHA-1 [28]. Instead
of mapping a small range of objects to each node in current
DHT designs, a two levels mapping mechanism is used in our
system. As mentioned before, our system is built up with AS-
like groups. The first level is among those groups. The second
level is among teams. Since valid Internet AS number is from
1 to 64511 and there are only about 17,000 active ASs cur-
rently, we believe that a 32bits ID for groups is enough. The
number of nodes within one team is around 10 for consider-
ation of performance, stability and asymmetric throughput of
major network connection, such as cable modem and DSL.
Each team will elect a leader with decent network bandwidth
and availability. Also, a 32bits team ID is considered enough.
Each group and teams within it will be assigned a unique ID
by random when they joins the system. The first 64bits of the
object ID is separated into two parts. The first 32bits is for
group ID, and the second 32bits is for team ID. Each group
charges the range of ID from its own to the one before next
group ID, and so is for teams.
The team is the basic unit to store objects. Two copies of

objects will be kept within one team. Because the object is
always the location information of a published file, 100,000
objects will occupy no more than 3MB hard disk, which is
obvious not a burden for current PCs. One copy is kept in
the leader to answer queries for all other peers. The other
one will be divided into blocks with erasure code technique
to store among teammates. Previous research [29] pointed
out erasure code technique can significantly improve avail-
ability and reliability of objects under P2P environment. The
overhead to transfer and store those objects between physical
nearby nodes is minimal and especially suitable for asymmet-
ric network of DSL and cable modems. When the leader is
suddenly dead, blocks from different nodes will quickly re-
build a whole copy for the new leader within seconds. Ev-
ery teammate will periodically report to the leader. As nodes
frequently joining and leaving, some teams may become un-
inhabited. When the leader finds that the rest blocks among
teammates are less than the number for rebuilding a copy, it
will connect with nearby teams to borrow some nodes to store
those blocks. This is called flexing among teams. Such kind
of flexing mechanism can not only significantly absorb the
impact of frequently joining and leaving, but also can make
the whole system gracefully degrade instead of churning. For
example, a team may disappear under continually leaving of
nodes, however, before the leader or the last teammate leave
the system, at least one copy of stored objects will be avail-
able in the nearby team under the flexing mechanism. The
state will be similar when a group is disappearing.

5
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Normally, there are 3 to 5 agents within one group. In ad-
dition to routing table for all other groups, they also keep a ta-
ble for all teams within it. All those agents work as backup of
each other, route queries for other groups and update routing
tables. Leaders will cache the latest routing table from nearby
agent and provide routing services for their teammates. The
piggyback technique is also can be used to update routing ta-
bles for leaders. When agents forward messages to responsi-
ble leaders, the latest update of routing table will be appended.

5.2 Unstructured P2P Systems
For unstructured P2P systems, we directly use the system
overlay to organize all nodes within the system. The leader
of each team will collect information of shared files among
teammates, and form a Query Hash Table (QHT), which is
used in Gnutella2 for filtering queries. A QHT is a table of

� �
bits, where each bit represents a unique word-hash val-

ues. Normally the
�
is 20, which has 1048576 possible word

hash values. When a searchable plain-text word is contained
in node’s content, the related bit is marked. QHTs provide
enough information to know with certainty that a particular
node will not be able to provide any matching objects for a
given query. Also, it is very efficient both in terms of ex-
change and maintenance and lookup cost.
Instead of blind flooding, search is done by expanding ring

model. When a node issues a query message. The query will
be firstly resolved by the leader, then following dissemination
trees, the query will reach the agents, which keep QHTs of
all teams. If the query still cannot be resolved, agent will
forward that query to nearby groups and then all groups within
the same area. If the query still cannot be solved, it will be
forwarded to groups within other areas, and finally reach the
all groups. Since this is a framework, the latest technique for
unstructured P2P systems mentioned by Chawathe etc. [30],
such as topology adaptation, flow control, one-hop replication
and random walk search, can be easily used or even get more
benefits from our network-based overlay. Of course, further
researches are needed.

6 Experiments and Results
In this section, we evaluate our approach using simulations
with the Internet AS-level topology, and compare with current
P2P systems.

6.1 Experiments Setups
The AS-level topology graph used in our experiments was
from CIDR [19] Report in Oct. 2003. We also downloaded
all BGP tables of that time from Oregon Routeviews [22]. By
inferring from those raw BGP dumping tables, we obtained
our own AS-level topology file. Those two topology files are
perfectly matched. In the graph, there are 15,800 ASs and
65,000 links. In order to compare with other P2P systems, we

use FreePastry1.3 from Rice University and latest Chord sim-
ulator from UC Berkeley. An event-driven simulator of our
system is developed under Java 1.4.2. For Pastry and Chord,
all nodes and objects are set to have a 32bits ID, because of
data structure limitation of the Chord simulator. The default
leaf set of FreePastry1.3 is 24, so simulator of Chord is also
set to have 24 successors and 128 fingers, which is the num-
ber of entries for 32bits ID in Pastry. All experiments were
performed in a Dell PC, which had one 2.8GHz Pentium IV
processor and 1.2GB RAM, running Linux.
Since our system is based on network topology, as fair, all

that information is also revealed to DHT designs. We modi-
fied FreePastry1.3 to build network proximity overlay based
on AS path length. We also adapted the Chord simulator to
support network proximity routing. In each hop of routing,
a node chooses the "best" node from three candidates to for-
ward the query. Our experiments show that to easily choose
the nearest node as the next hop will lead worse performance
in both average hops and stretch. Although the network dis-
tance for next hop maybe reduced, the overall hops for the
query is increased and the whole distance rises. A balance
point is needed to make benefit from network topology infor-
mation. As many times of experiments, we found out such
point in our environment, though it may not be the best one.
The density and distribution of hosts are important param-

eters in our experiments. Recent research [9] showed that the
average nodes for KaZaA and Gnutella were about 1 million
and 200 thousands respectively. All nodes distributed in about
5000 ASs, and the average nodes within one AS was 200 and
60 for KaZaA and Gnutella respectively. Although the host
density, connectivity and traffic volume of P2P systems can-
not be well modeled by Zipf’s distribution, they were highly
skewed and exhibited heavy tails. Since the detailed distri-
bution of nodes in each AS is not known, we will use Zipf
distribution instead in most of our experiments. The average
node density used in our experiments is 100 nodes per AS,
which is between the ones of KaZaA and Gnutella. The sys-
tem is modeled to have 20,000 nodes, which spread over 200
ASs under Zipf distribution. All ASs are randomly selected
in the AS-level topology graph, and topology within the AS
is ignored. Every result in our experiments is the average of
ten times repetitions. For Zipf distribution, the largest AS has
2,000 nodes and the smallest one has 29 nodes.

6.2 Experiments and Results
In the first experiment, we compare three systems, Pastry,
Chord and our network based system, with 20,000 nodes un-
der uniform and Zipf distribution in 200 ASs. The system
overlay is built firstly, and then 1,000,000 queries are per-
formed, no node joining or leaving during that period. Fin-
ger 1 shows the result of stretches among three systems un-
der the different distributions and systems. Network proxim-
ity systems for Pastry and Chord perform better than original
ones. Also, the distribution of nodes takes little impact to sys-
tems. The performance under uniform is very slightly better

6
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

0

0.5

1

1.5

2

2.5

3

3.5

4

Unifrom Zipf
Chord ChordProx Pastry PastryProx NBDesign

Figure 1: Stretch comparison between Network-based system
and structured P2P systems. Shown is the average stretch for
1,000,000 queries under different systems and distributions.

than Zipf ones. This is because uniform distribution of nodes
gives averagely more benefit to each node than skewed one.
However, the stretches of all DHT systems are still more than
2.5. On the contrary, the stretch of our network-based system
is equal to one under all distributions.
In the following experiments, we test our system under

highly dynamic environment. All 20,000 nodes are distributed
in 200 ASs under Zipf distribution. We firstly bring up all
nodes within one group to make it active, then other nodes
are brought up, one every 2 second, each with a randomly
assigned hub group agent. We then churn nodes until the sys-
tem performance levels out, this phase normally lasts about
20 30 minutes since groups will exchange information ev-
ery 10 minutes, and 3 hops is enough to reach every group.
Nodes’ joining and leaving are timed by a Poisson process and
therefore uncorrelated and bursty. Previous research [31, 32]
pointed out, in a Poisson process, an event rate � corre-
sponded to a median inter-event period of � � � � . Therefore
a churn rate of � corresponds of a median node session time
of

�
nodes within a network is

� � � � 	 � � � �
 � �

In our experiments, we use churn rates from 100/second to
1/second, equal to median session times from 2.3 minutes to
3.8 hours. All nodes are chosen randomly, though leaders and
agents are consider to have longer session time than normal
nodes. In this set of experiment, we focus on the impact of
leaving of agents. The effect of leaving of leader is ignored,
because nodes within one team are physically nearby, before
the leader finally leaving that team, a nearby node can replace
it in seconds. The piggyback technique is used to fresh routing
tables for remote agents.
Finger 2 shows our system has very high success rate even

under extremely dynamic environment. For the query rate of
one query per node per second and median session time of 5.5
minutes, the first query fail rate is less than 1%. Because of the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 100 150 200

P
e
r
c
e
n
t
a
g
e

o
f

F
a
i
l
u
r
e

Median Session Time(min)

1st Fail(query rate 0.1/s)
2nd Fail(query rate 0.1/s)

1st Fail(query rate 1/s)
2nd Fail(query rate 1/s)

Figure 2: Network-based System under churn. Shown is the
percentage of failure lookups under increasing levels of churn
and different request rate. Churn increase to the left. Each
point is the average rate during 30 minutes.

piggyback technique, higher overload can help update routing
tables between agents. That is to say more frequent queries
will have higher success rate than less ones. Under modest
churn rate, the median session time of 23 minutes, and lower
request rate, the first query success rate is also above 99%. In
another words, most of nodes with decent session time will
be suitable for agents. The most important thing is that all
those updates/maintenance are done during common proce-
dures and do not involve any addition message. In contrast
to current structured P2P designs, which always suffer from
maintenance overhead, our system is maintenance-exempted,
even under highly dynamic environment.

Node capacity Percentage of nodes
5 6%
50 29%
500 48%
5000 7%

Table 1: Distribution of Node Capacity

Since all requests must go to the agents before finally
reaching their destination team, those agents may become the
bottleneck of the whole system. In following experiments, we
will examine the capacity of handling queries of the system.
To capture the effect of query load on the system, our sim-
ulator imposes capacity constraints on each node within the
system. Every node is modeled to have a capacity C, which
represents the number of messages that it can issue or pro-
cess per unit time. If a node receives queries at a rate higher
than its capacity, it is considered overloaded and messages
will be discarded. We assign capacities to nodes based on the
distribution that is derived from the measured bandwidth dis-
tribution for Gnutella as reported by Saroiu et al. [8]. Our
capacity distribution has four levels as shown in Table 1. This

7
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

distribution reflects reality that Gnutella clients are made up
of fair dial-up connections, major cable-modem or DSL and
small part of high-speed connections. In order to explore the
highest throughput of the whole system, all normal nodes and
leaders are assigned unlimited capacity, and the each group
has 3 nodes with highest capacity as its agents. The whole
system is made up of 20,000 nodes that are distributed within
200 ASs as Zipf distribution. Each query is issued from the
random node to the random destination.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100

W
o
r
k
l
o
a
d
/
D
i
c
a
r
d
e
d

Q
u
e
r
i
e
s

P
e
r
c
e
n
t

Node Query Rate(per node per second)

Discarded by Agent
Average Workload of Agents

Figure 3: Throughput of the network-based system. Shown is
the percentage of queries discarded by overflowed agents and
average workload of the agents under different query rates.

Finger 3 shows the percentage of queries discarded by
overloaded agents and average workload of all agents under
different query rates. Under query rate of 10 per node per
second, queries discarded by agents are no more than 1%. Al-
though the average workload of the agents is no more than
80% under query rate of 100 per node per second, more than
15% queries are discarded. The main reason for this is the
highly skewed distribution of node resources and randomly
assigned group IDs. The agents within the small group and
charging a large ID range will be easily overloaded. This may
imply that some kind of balance algorithm is needed to assign
responsibility, such as charged ID range, to each group ac-
cording their capacities. Since the information of each group
can be reflected in the routing table within every agent, suck
kind of balance algorithm is practical. Of course, further re-
searches are needed. In fact, in the real system, the average
query rate of 10 per node per second is very bursty. The
network traffic volume for just query messages at that rate
of a 20,000 nodes system is about 350GB per day, which is
more than the total volume, about 300GB per day [9], of the
Gnutella with more than 300,000 nodes in the real world. In
addition, the capacity of the system can be easily improved
by increasing agents or Hop Swapping overloaded ones. That
is, when an agent is being overloaded, a new agent will be
selected and broadcast to other groups by the piggyback tech-
nique.
In the real system, the team size and the capacity of lead-

ers are also crucial to the system. By imposing capacity con-

straints for normal nodes and leaders, we repeat above exper-
iments under different team size. As the left one in finger 4
shows, discard rates of leaders for smaller team is much less
than the ones for bigger team, for the leader is easily over-
flowed by queries from lots of nodes. On the contrary, discard
rates of agents for smaller team are a little higher than the ones
for bigger team. This is because a fair fraction of queries are
discarded by overloaded leaders and cannot reach the agents.
In another words, the leader of smaller team can service more
queries and improve the throughput of the system. However,
larger team can significantly improve the stability of the sys-
tem. We measure the percentage of defect teams, which have
less than half of default number of nodes, under different node
failure rates. As the right one in finger 4 shows, as nodes fail-
ure rate increasing, much more smaller teams become defect
than bigger ones. When 50% nodes failure, about 18% small
teams, which have average 5 nodes, become defect, but only
affect about 4% big teams, which have average 15 nodes. The
size of team is a tradeoff between the performance and the
stability of the system.

0%

20%

40%

60%

80%

100%

0.1% 0.5% 1.0% 2.0% 3.0% 4.0% 5.0%
Replication Factor

Su
cc
es
sR
at
e

Local Team Local Group Nearby Groups Nearby Hub Groups Globe

Figure 5: Keywords search for unstructured-like P2P systems.
Shown is the search success rate of different search range un-
der various replication factors. The system has 20,000 nodes,
which Zipf distributed in 200 ASs, and the average team size
is 15.

At last, we give the result of our expanding search method
for unstructured-like P2P system. Queries are modeled as
searching for specific keywords. Each keyword maps on to a
set of files. All files associated with specific keywords are po-
tential answers for the query of that keyword. Replication fac-
tor is used to refer to the fraction of nodes at which answers to
queries reside. A query will be firstly resolved by the leader,
then following dissemination trees, the query will reach the
agents, which keep QHTs for each team. If the query still
cannot be resolved, agent will forward that query to all nearby
groups and other groups within the same area. And then the
query will be sent to nearby hub groups, and finally reach the
all groups. Finger 5 shows the success rate of different range
of search under various replication factor. With the replica-
tion factor increasing, more queries can be solved within the

8
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40 45 50

P
e
r
c
e
n
t
a
g
e

o
f

D
i
s
c
a
r
d
e
d

Q
u
e
r
i
e
s

Node Query Rate(per node per second)

Discarded by Leaders(TeamSize 5)
Discarded by Agents(TeamSize 5)

Discarded by Leaders(TeamSize 15)
Discarded by Agents(TeamSize 15)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30 35 40 45 50

P
e
r
c
e
n
t
a
g
e

o
f

D
e
f
e
c
t

T
e
a
m
s

Node Failure Percentage

Defect Teams(TeamSize 5)
Defect Teams(TeamSize 15)

Figure 4: Impact of team size to the system. Shown on left is the percentage of queries discarded by overflowed agents and
leaders under different query rates. Shown on right is percentage of defect teams under different node failure rates.

range of nearby groups or even local group. With a not high
replication factor of 0.5%, 48% queries are solved within the
group, and no more than 5% queries will go out to nearby
hub groups. Though our experiments are simple, we believe
that, for locating well-duplicated objects, our network-based
design will be more efficient for less traffic and lower latency
compared with current unstructured P2P systems.

7 Conclusions
From a different angle, this paper proposes a new approach to
build P2P systems. In contrast to current P2P system designs,
which focus on their own system overlays, our approach focus
on physical overlay, and build system overlay following it. By
making full use of physical network properties and character-
istics of both structured and unstructured protocols, our net-
work based P2P system has the advantages of both of them.
Not only the whole system is highly efficient in looking up,
the stretch of which equals to one, but also it can adapt ex-
tremely system churning. The most important thing is that
maintenance work is naturally integrated into common proce-
dures of system. Thus, the overhead of maintenance is very
low, even under highly dynamic environment.
This paper is the first step towards building large-scale

P2P infrastructures based on Internet physical overlay. Many
difficulties faced by current P2P systems, such as scalability,
searching overhead of unstructured ones, efficiency and main-
tenance overhead, are smoothly solved in our design. We be-
lieve that to build system overlay following physical one is
a promotion way toward peer-to-peer, large-scale distributed
applications.

References
[1] Gnutella, “Gnutella hosts.”
http://www.gnutellahosts.com.

[2] KaZaA, “KaZaA Media Desktop.”
http://www.kazaa.com.

[3] Gnutella2, “Gnutella2 Developer’ Network.”
http://www.gnutella2.com.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup service for internet applications,” in Proceedings
of the 2001 conference on applications, technologies, ar-
chitectures, and protocols for computer communications
(SIGCOMM), (San Diego, CA), pp. 149–160, 2001.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A Scalable Content Addressable Network,”
in Proceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer
communications (SIGCOMM), (San Diego, CA), 2001.

[6] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph,
“Tapestry: An infrastructure for fault-tolerant wide-area
location and routing,” Tech. Rep. UCB/CSD-01-1141,
UC Berkeley, Apr. 2001.

[7] A. Rowstron and P. Druschel, “Pastry: Scalable, decen-
traized object location and routing for large-scale peer-
to-peer systems,” in Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Plat-
forms (Middleware), (Heidelberg,Germany), Nov. 2001.

[8] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A mea-
surement study of Peer-to-Peer file sharing systems,” in
Proceedings of Multimedia Computing and Networking
2002 (MMCN ’02), (San Jose, CA), January 2002.

[9] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic
Across Large Networks,” in In Proc. ACM SIGCOMM
Internet Measurement Workshop, Marseille, France,
Nov. 2002., 2002.

9
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

[10] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang,
“Location-Aware Topology Matching in P2P Systems,”
in Proceedings of the 23st Annual Joint Conference
of the IEEE Computer and Communications Society
(INFOCOM-04), 2004.

[11] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Ex-
ploiting network proximity in Peer-to-Peer overlay net-
works,” in International Workshp on Future Directions
in Distributed Computing (FuDiCo), 2002.

[12] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R.Morris, “Vi-
valdi: A Decentralized Network Coordinate System,”
in Proceedings of the 2004 conference on applications,
technologies, architectures, and protocols for computer
communications (SIGCOMM), 2004.

[13] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubi-
atowicz, “Brocade: Landmark routing on overlay net-
works,” in Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS ’02), (Cambridge,
MA), 2002.

[14] Z. Xu, M. Mahalingam, and M. Karlsson, “Turning
Heterogeneity into an Advantage in Overlay Routing,”
in Proceedings of the 22st Annual Joint Conference
of the IEEE Computer and Communications Society
(INFOCOM-03), 2003.

[15] B. Krishnamurthy and J. Wang, “On network-aware
clustering of web clients,” in Proceedings of the
2000 conference on applications, technologies, architec-
tures, and protocols for computer communications SIG-
COMM, pp. 97–110, 2000.

[16] B. Krishnamurthy, J. Wang, and Y. Xie, “Early mea-
surements of a cluster-based architecture for P2P sys-
tems,” in ACM SIGCOMM Internet Measurement Work-
shop (San Francisco, Nov. 2001), (San Francisco, CA),
2001.

[17] RFC1771, “A Border Gateway Protocol 4 (BGP-4).”
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1771.html.

[18] H. Chang, S. Jamin, and W. Willinger, “Inferring AS-
level Internet topology from router-level path traces,” in
Proceeding of SPIE ITCom 2001, (Denver, CO), August
2001.

[19] CIDR-Report, “The CIDR Report.” http://www.cidr-
report.org.

[20] M. Network, “Internet Routing Registry.”
http://www.irr.net.

[21] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the
Gnutella network: Properties of large-scale Peer-to-Peer
systems and implications for system design,” IEEE In-
ternet Computing Journal, vol. 6, no. 1, 2002.

[22] Routeviews.org, “Route Views Archive.”
http://www.routeviews.org.

[23] Traceroute.org, “Public Route Server List.”
http://www.traceroute.org.

[24] Z. Xu, C. Tang, and Z. Zhang, “Building topology-aware
overlays using global soft-state,” in Proceeding of the
23nd Internatinal Conference on Distributed Computing
System(ICDCS03), 2003.

[25] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically-aware overlay construction and server
selection,” in Proceedings of the 21st Annual Joint Con-
ference of the IEEE Computer and Communications So-
ciety (INFOCOM-02), 6 2002.

[26] B. Huffaker, M. Fomenkov, D. J. Plummer, D. Moore,
and k claffy, “Distance Metrics in the Internet,”
in IEEE International Telecommunications Sympo-
sium(ITS) 2002, 2002.

[27] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker,
and W. Willinger, “The Origin of Power-laws in Inter-
net Topologies Revisited,” in Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and
Communications Society (INFOCOM-02), vol. 2, (Pis-
cataway, NJ), pp. 608–617, June 23–27 2002.

[28] F. 180-1, “Secure Hash Standard.” U.S. Department of
Commerce/NIST, National Technical Information Ser-
vice, Apr. 1995.

[29] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Cod-
ing vs. Replication: A Quantitative Comparison,” in
Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS’02), 2002.

[30] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker, “Making Gnutella-like P2P Systems Scal-
able,” in Proceedings of the 2003 conference on appli-
cations, technologies, architectures, and protocols for
computer communications (SIGCOMM), 2003.

[31] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Han-
dling Churn in a DHT,” in Proceedings of the USENIX
Annual Technical Conference, 2004.

[32] D. Liben-Nowell, H. Balakrishnan, and D. Karger,
“Analysis of the Evolution of Peer-to-Peer Systems,” in
Proceedings of ACM PODC, July 2002.

10
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

