IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005 349

Efficient, Proximity-Aware Load Balancing
for DHT-Based P2P Systems

Yingwu Zhu, Student Member, IEEE, and Yiming Hu, Senior Member, IEEE

Abstract—Many solutions have been proposed to tackle the load balancing issue in DHT-based P2P systems. However, all these
solutions either ignore the heterogeneity nature of the system, or reassign loads among nodes without considering proximity
relationships, or both. In this paper, we present an efficient, proximity-aware load balancing scheme by using the concept of virtual
servers. To the best of our knowledge, this is the first work to use proximity information in load balancing. In particular, our main
contributions are: 1) Relying on a self-organized, fully distributed k-ary tree structure constructed on top of a DHT, load balance is
achieved by aligning those two skews in load distribution and node capacity inherent in P2P systems—that is, have higher capacity
nodes carry more loads; 2) proximity information is used to guide virtual server reassignments such that virtual servers are reassigned
and transferred between physically close heavily loaded nodes and lightly loaded nodes, thereby minimizing the load movement cost
and allowing load balancing to perform efficiently; and 3) our simulations show that our proximity-aware load balancing scheme
reduces the load movement cost by 11-65 percent for all the combinations of two representative network topologies, two node capacity
profiles, and two load distributions of virtual servers. Moreover, we achieve virtual server reassignments in O(log V) time.

Index Terms—Proximity-aware, peer-to-peer, virtual server, load balancing.

1 INTRODUCTION

HT-BASED P2P systems such as Chord [2], Pastry [3],
Tapestry [4], and CAN [5], offer a distributed hash
table (DHT) abstraction for object storage and retrieval.'
Due to the theoretical approach taken in these DHTs, they
assume that nodes in the system are uniform in resources,
e.g., network bandwidth and storage. By providing such a
simple and homogeneous abstraction, while theoretically
elegant, these DHTs have two main limitations. First,
simply resorting to the uniformity of the hash function
used to generate object IDs in DHTs does not produce
perfect load balance. It could result in an O(log N)
imbalance factor in the number of objects stored at a peer
node, where N is the number of nodes in the system.
Second, with a homogeneous structure overlay network,
they ignore the heterogeneity nature of P2P systems. Recent
measurement studies (e.g., [6]) have shown that node
capabilities (in terms of bandwidth, storage, and CPU) are
very skewed in deployed P2P systems such as Gnutella.
The primary goal of P2P systems is to harness all
available resources (e.g., storage, bandwidth, and CPU) in
the P2P network so that users can access all available objects
efficiently. From the P2P system perspective, “efficiently” is
interpreted as striving to ensure fair load distribution
among all peer nodes. As a result, achieving load balance
is of fundamental importance in a DHT, due to the

1. They all provide two basic operations: DHT _put(key, object) stores an
object into the DHT with a key and DHT _get(key) retrieves a corresponding
object from the DHT given a key.

o The authors are with the Department of Electrical & Computer Engineering
and Computer Science, University of Cincinnati, PO Box 210030,
Cincinnati, OH 45221-0030. E-mail: {zhuy, yhuj@ececs.uc.edu.

Manuscript received 12 Feb. 2004; revised 8 July 2004; accepted 10 Sept.
2004; published online 23 Feb. 2005.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0047-0204.

1045-9219/05/$20.00 © 2005 IEEE

assumption that nodes are supposed to be uniform in
resources, the resulting O(logN) load imbalance by a
random choice of object IDs, and the fact that heterogeneous
capabilities prevail among the nodes.

Many solutions [2], [7], [8], [9] have been proposed to
tackle the load balancing issue in DHT-based P2P systems
(see Section 2 for more details). However, existing load
balancing approaches have some limitations in our opinion.
They either ignore the heterogeneity of node capabilities, or
transfer loads between nodes without considering proxi-
mity relationships, or both. In this paper, we present a
proximity-aware load balancing scheme by using the
concept of virtual servers previously proposed in [7]. The
goals of our scheme are not only to ensure fair load
distribution over nodes proportional to their capacities, but
also to minimize the load-balancing cost (e.g., bandwidth
consumption due to load movement) by transferring virtual
servers (or loads) between heavily loaded nodes and lightly
loaded nodes in a proximity-aware fashion. We achieve the
latter goal by using proximity information to guide virtual
server reassignments, as will be discussed later in this
paper. There are two main advantages of a proximity-aware
load balancing scheme. First, from the system perspective, a
load balancing scheme bearing network proximity in mind
can reduce the bandwidth consumption (e.g., bisection
backbone bandwidth) dedicated to load movement. Second,
it can avoid transferring loads across high-latency wide-
area links, thereby enabling fast convergence on load
balance and quick response to load imbalance. To the best
of our knowledge, this is the first work that approaches the
load balancing issue in a proximity-aware manner.

In particular, we make the following contributions:

1. Relying on a self-organized, fully distributed k-ary
tree structure constructed on top of a DHT, load
balance is achieved by aligning those two skews in

Published by the IEEE Computer Society

350 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

load distribution and node capacity inherent in P2P
systems—that is, have higher capacity nodes carry
more loads.

2. Proximity information is used to guide virtual server
reassignments such that virtual servers are reas-
signed and transferred between physically close
heavily loaded nodes and lightly loaded nodes,
thereby minimizing the load movement cost and
allowing load balancing to perform efficiently.

3. Our simulations show that our proximity-aware
load balancing scheme reduces the load movement
cost by 11-65 percent for all the combinations of two
representative network topologies, two node capa-
city profiles, and two load distributions of virtual
servers. Moreover, we achieve virtual server reas-
signments in O(log N) time.

The remainder of the paper is organized as follows:
Section 2 provides a survey of related work. Section 3
describes the system design of our load balancing scheme.
Section 4 presents the proximity-aware load balancing
scheme. In Section 5, we evaluate the load balancing
scheme using detailed simulations. Finally, we conclude
in Section 6.

2 RELATED WORK

DHT-based P2P systems [2], [3], [4], [5] address the load
balancing issue in a rather naive way, by simply resorting to
the uniformity of the hash function used to generate object
IDs. Such a random choice of object IDs, however, does not
produce perfect load balance. It could result in an O(log N)
load imbalance. Moreover, such systems ignore the hetero-
geneous nature of the system while measurement studies
(e.g., [6]) have shown the prevalence of heterogeneity in
deployed P2P systems.

Many load balancing approaches have been proposed for
DHT-based P2P systems. Chord [2] was the first to propose
the concept of virtual servers to address the load balancing
issue by having each node simulate a logarithmic number of
virtual servers. While theoretically elegant, virtual servers
do not completely solve the load balancing issue. Also,
Chord assumes nodes are homogeneous. CFS [7] accounts
for node heterogeneity by having each node host some
number of virtual servers in proportion to its capacity.
When a node becomes overloaded, the node simply sheds
part of its loads by removing some of its virtual servers.
However, simply deleting virtual servers by overloaded
nodes may make other nodes become overloaded, thereby
causing a load thrashing problem.

Rao et al. [8] propose three simple load balancing
schemes for DHT-based P2P systems: One-to-One, One-to-
Many, and Many-to-Many. The basic idea behind their
schemes is that virtual servers are moved from heavy nodes
to light nodes for load balancing. In particular, One-to-Many
achieves load balance by allowing each heavy node to
contact a randomly chosen directory node. The directory
node stores the load information of a random set of light
nodes and performs virtual server reassignments from the
heavy node to some of its light nodes. Many-to-Many
achieves load balance by storing load information of both

heavy nodes and light nodes in a number of directory nodes.
The directory nodes periodically schedule reassignments of
virtual servers. Recent work by Godfrey et al. [9] extends
One-to-Many (for emergency load balancing of one particu-
larly overloaded node) and Many-to-Many (for periodic load
balancing of all nodes) to dynamic structured P2P systems.
This is the first work to provide dynamic load balancing in
structured P2P systems. In particular, the proposed load
balancing algorithm deals with a system where 1) data
items are continuously inserted and deleted; 2) nodes join
and leave the system continuously; and 3) the distribution
of data item IDs and item sizes can be skewed.

Our work presented in this paper bears similarity to
previous work [8], [9]. For example, we all use the concept
of virtual servers to achieve load balance and the virtual
server reassignments performed along the k-ary tree in our
approach is similar to Many-to-Many scheme [8], [9] in the
sense that the rendezvous points along the k-ary tree are
similar to the directory nodes in Many-to-Many. However,
two important features distinguish our approach from those
proposed in [8], [9]. First, our approach uses proximity
information to guide virtual server reassignments such that
virtual servers are reassigned between physically close
nodes, thereby reducing the load movement cost and
allowing efficient load balancing. Second, our approach
performs virtual server reassignments along the k-ary tree
in a bottom-up fashion and it can bound virtual server
reassignments in O(log N) time. In the Many-to-Many
scheme, randomly rehashing heavy nodes and light nodes
into the directory nodes may not be able to bound the virtual
server reassignment time.

Byers et al. [10] address the load balancing issue in DHTSs
from a different viewpoint. They propose using the “power
of two choices” paradigm to achieve load balance: Each
data item (say t) is hashed to a small number d (> 2) of
different IDs and then is stored in the least loaded node (say
X) among the nodes which are responsible for those IDs. To
avoid hurting lookup performance significantly, the other
nodes maintain a redirection pointer to X for ¢. This work is
complementary to our work. Recent work by Karger and
Ruhl [11] proposes two load balancing protocols, namely,
address-space balancing and item balancing, whose provable
performance guarantees are within a constant factor of
optimal. Address-space balancing balances the distribution of
the address space (or DHT’s identifier space) to nodes. It
improves consistent hashing in that each node is respon-
sible for O(1/N) fraction of the whole address space with
high probability by keeping one of O(log N) virtual servers
at each node active at any time. On the other hand, item
balancing aims to directly balance the distribution of data
items among the nodes when the distribution of items in the
address space cannot be randomized (e.g., range searches in
database applications). It allows nodes to move to arbitrary
positions along the address space. The basic idea behind
item balancing is that underloaded nodes migrate to portions
of the address space occupied by too many data items for
load balance.

The k-ary tree structure presented in this paper is similar
to the metadata overlay proposed in [12]. Both are built on top
of a DHT using soft state and used for information

ZHU AND HU: EFFICIENT, PROXIMITY-AWARE LOAD BALANCING FOR DHT-BASED P2P SYSTEMS 351

aggregation and dissemination. But, the k-nary tree in our
work is built on top of a DHT where each DHT node hosts
multiple virtual servers and it also serves as an infra-
structure for performing virtual server reassignments.

Proximity information has been used in both topologi-
cally-aware DHT construction [13] and proximity neighbor
selection in P2P routing tables [14], [15]. The primary
purpose of using the proximity information in both cases is
to improve the performance of DHT overlays. However, the
proximity information used in our work is to make load
balancing fast and efficient.

3 SysTEM DESIGN

3.1 Background: Virtual Servers

The concept of virtual servers was first proposed in Chord
[2] to improve load balance. Like a physical peer node, a
virtual server is responsible for a contiguous portion of the
DHT’s identifier space. A physical peer node can host
multiple virtual servers and, therefore, can own multiple
noncontiguous portions of the DHT’s identifier space. Each
virtual server participates in the DHT as a single entity. For
example, each virtual server has its own routing table and
stores data items whose IDs fall into its responsible region
of the DHT’s identifier space.

From the perspective of load balancing, a virtual server
represents certain amount of load (e.g., the load generated
by serving the requests of the data items whose IDs fall into
its responsible region). When a node becomes overloaded, it
may move part of its loads to some lightly loaded nodes to
become light in which the basic unit of load movement is
virtual servers [8], [9]. Hence, load balance can be achieved
by moving virtual servers from heavy nodes to light nodes.
Note that the movement of a virtual server can be simulated
as a leave operation followed by a join operation, both of
which are supported by all DHTs. Therefore, using the
concept of virtual servers could make our load balancing
scheme simple and easily applied to all DHTs.

3.2 System Overview

The load balancing scheme we present in this paper is not
restricted to a particular type of resource (e.g., storage,
bandwidth, or CPU). However, we make two assumptions
in our work. First, we assume that there is only one
bottleneck resource in the system, leaving multiresource
balancing to our future work. Second, we assume that the
load on a virtual server is stable over the timescale it takes
for the load balancing algorithm to perform. Basically, our
load balancing scheme consists of four phases:

1. Load balancing information (LBI) aggregation. Aggre-
gate load and capacity information in the whole
system.

2. Node classification. Classify nodes into overloaded
(heavy) nodes, underloaded (light) nodes, or neutral
nodes according to their loads and capacities.

3. Virtual server assignment (VSA). Determine virtual
server assignment from heavy nodes to light nodes
in order to have heavy nodes become light. The VSA
process is a critical phase because it is in this phase

struct KT_node {
DHT key key
DHT _region region
DHT_node host
struct KT_node *child[1..k]
struct KT_node *parent

Fig. 1. KT node data structure.

that the proximity information is used to make our
load balancing scheme proximity-aware.

4. Virtual server transferring (VST). Transfer assigned
virtual servers from heavy nodes to light nodes. We
allow VSA and VST to partly overlap for fast load
balancing.

It is worth pointing out that the load balancing
information aggregation (phase 1) may not be needed
under some circumstances, though the load balancing
scheme we discuss in this paper relies on it to perform
node classification (phase 2). As suggested in recent work
[9], each node may depend solely on its own load and
capacity to determine whether it is overloaded or under-
loaded, without requiring the system-wide load balancing
information. Consider a node ¢ with the load L; and the
capacity Cj. Node i’s utilization U; is the fraction of its
capacity that is used: U; = L;/C;. If U; > 1, node i is
identified as a heavy node. Otherwise, it is a light node or
neutral node (U; = 1).

As mentioned earlier, our load balancing scheme uses
the concept of virtual servers—that is, we assume each node
in the system hosts a set of virtual servers. Hence, in the rest
of the paper, we restrict our discussion to a DHT where
each node has multiple virtual servers.

Roadmap. In Section 3.3, we present a distributed k-ary
tree which is used for load balancing information aggrega-
tion/dissemination and virtual server reassignments. We
then describe the load balancing information aggregation
(phase 1) and node classification (phase 2) in Section 3.4 and
Section 3.5, respectively. In Section 3.6, we discuss virtual
server assignment (phase 3) which is proximity oblivious.
The virtual server transferring (phase 4) is described in
Section 3.7.

3.3 Building a Distributed k-ary Tree

The aggregation of load balancing information (LBI)
naturally leads to the construction of a tree-based structure
on top of DHT overlays. In this section, we discuss how to
construct a k-ary tree on top of a DHT for load balancing
information aggregation/dissemination and virtual server
reassignments. For the sake of clarity, in the rest of the
paper we refer to the k-ary tree node as the KI" node while
the node in the DHT overlay is the DHT node or just node.

The distributed k-ary tree is constructed as follows: Each
KT node is responsible for a portion of the DHT’s identifier
space, while the KT root node is responsible for the whole
DHT’s identifier space. Fig. 1 describes the basic structure
of a KT node. The member key is a DHT key used for the
storage (to plant a K" node X into a virtual server by using
the DHT interface DHT put(X.key, X)) and retrieval (to

352 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

procedure plant_KT_node(KT_node X)

1: X.key = CenterRegion(X.region)
2: X.host = DHT put(X.key, X)

Fig. 2. Plant a KT node.

locate the KT node X by using the DHT interface
DHT _get(X .key)). The member region is the portion of the
DHT’s identifier space the K7 node is responsible for. The
key is produced by taking the center point of its responsible
region.

Each KT node is planted in a virtual server which is
responsible for the KT node’s key. Fig. 2 describes this
operation. CenterRegion(X.region) produces a key by taking
the center point of X.region. DHT _put(X.key, X) then stores
X into a virtual server (say V') which is responsible for X . key.
Note that DHT put(X.key, X) also returns the DHT node
which owns V. Consider a KT node Y with a responsible
region (3,5] and a virtual server S with a responsible region
(3,6]. The KT node Y will be planted in the virtual server S,
because the DHT key for Y is 4 by taking the center point of its
responsible region (3, 5].

A KT node X’s responsible region is further partitioned
into k equal parts, each of which is taken by its k children.
That is, X’s ith child will be responsible for the ith fraction
of X.region. Each of X’s k children (say X;, ¢ =1...k) then
performs the routine plant_KT _node() to reside on its own
hosting virtual server. As shown in Fig. 1, X keeps track of
its k children in child. Note that X.child[i]—host allows X to
communicate its child X; directly without resorting to the
DHT lookup infrastructure, thereby achieving better per-
formance. In addition, each of X’s children X; keeps track
of X in X;.parent. And, also, X;.parent—host allows X; to
communicate its parent X directly.

In the beginning of building the k-ary tree, there is only
the KT root node. The partitioning of the DHT’s identifier
space starts from the KT" root node and is continued until a

certain termination condition is satisfied (as will be shown
below).

To deal with the dynamism of P2P systems such as node
joins and departures, each KT node (say X) will periodi-
cally run the routine check_KT _node(), as outlined in Fig. 3.
If X’s responsible region is completely covered by that of
X’s hosting virtual server (i.e., the termination condition of
the partitioning of X’s region is met), then X is already a
leaf node and there is no need to grow any more children.
In addition, X needs to prune its children (if any) (e.g., due
to node departures from the underlying DHT) by running
the subroutine delete_ KT children(). If X’s responsible
region cannot be fully covered by that of X’s hosting
virtual server (e.g., due to node additions into the under-
lying DHT), X needs to grow its children by running the
subroutine add_KT _children().

Note that each virtual server owns a portion of the DHT’s
identifier space, it is therefore guaranteed that a K'T"leaf node
will be planted in it. As a result, each DHT node will host
multiple KT leaf nodes.

As mentioned earlier, the k-ary tree we are building is
used for load balancing information aggregation/dissemi-
nation and virtual server reassignments. Such an infra-
structure must have the following properties:

e Self-repair and fault-tolerant. This property is very
important due to the churn in memberships as nodes
join or leave the system. It is achieved due to the
following facts: First, the k-ary tree is built atop a DHT
which already has the self-organizing property.
Although the crash of a DHT node (say D) will take
away the KT nodes its virtual servers are hosting, the
responsible regions of D’s virtual servers will be taken
over by other DHT nodes after repair. Hence, the
periodical checking of all K" nodes (as described in
Fig. 3) ensures that the k-ary tree can be completely
reconstructed in O(log, N) time in a top-down
fashion. Note that the KT root node is hosted by a

procedure check_KT_node(KT_node X)

2: delete_KT_children(X)
3: else
4: add KT-children(X)
5: end if
procedure delete_KT_children(KT_node X)
1: fori = 1to k do
2: if (X.child[i]# NULL) then
3; delete X.childli]
4. X.child[i] = NULL
5: endif
6: end for
procedure add_KT_children(KT_node X)
1: fori = 1to k do

¢ =new KT _node

3

4

5 X.child[i] =c
6: c—parent =X
7 plant KT_node(c)
8: endif

9: end for

1: if (X.regionC the responsible region of X.host) then

if (X.child[i] == NULL && X .child[i]—region ¢_ the responsible region of X.host) then

c—region = the i-th fraction of X.region

Fig. 3. Check a KT node.

ZHU AND HU: EFFICIENT, PROXIMITY-AWARE LOAD BALANCING FOR DHT-BASED P2P SYSTEMS 353

procedure KT_node_report LBI(KT_node X)

1: if (X is a KT leaf node) then

2! < Lg,Cqy Ly, min > «— receive < L;, C;, L min > from X .host
3: else

4: Receive < L;, Cy, L min > from k children /¥ =1, ...,k */

50 Le—Yk L

6: C.—Yk .G

7. Lgmin < the smallest L; min

8: endif

9: if (X is not a KT root node) then

10: Report < Ly, Cq, L¢,min > to X.parent /* report to the parent node */
11: endif

Fig. 4. LBI aggregation algorithm.

virtual server which is responsible for the center point
of the whole DHT’s identifier space and, thus, it can be
located deterministically. Second, all the states the
k-ary tree relies on use the principle of soft-state and
can be refreshed and reconstructed in the event of
system changes. Note that each K" node monitors all
k children KT nodes for faults using heartbeats sent
periodically at certain time interval. Recent work [12]
has already shown that such a tree structure built atop
of DHTs is able to be self-repair and fault-tolerant
upon any failure in the system.

o Fully distributed. This property is easily achieved
due to the fact that each operation in the k-ary tree
involves at most k+ 1 interactions (with a parent
node and k children nodes).

3.4 Load Balancing Information (LBI) Aggregation

Based on the k-ary tree structure, LBI aggregation is quite
straightforward. Each KT node periodically, at an interval 7',
requests LBI from its children, while each KT leaf node
simply asks its hosting virtual server to report LBI. Recall that
it is guaranteed that a KT leaf node will be planted in each
virtual server. As such, having each KT leaf node ask its
hosting virtual server to report LBI can gather the LBI of the
underlying DHT. Note that a DHT node hosts multiple
virtual servers. In order to avoid reporting redundant LBl of a
DHT node, a DHT node (say i) randomly chooses one of its
virtual servers to report LBI, in the form of < L;, C;, L min >
(where L;, C;, and L;,,;, stand for the total load of virtual
servers, the capacity, and the minimum load of virtual servers
on the node ¢, respectively).

Each KT node (say X) runs the routine KT _node_
report_LBI() as outlined in Fig. 4. This process is continued
along the k-ary tree in a bottom-up fashion until the KT root
node is reached. As a result, the K'T" root node produces a
system-wide LBI < L,C, Ly, >, where L, C, and Ly,
represent the total load, the total capacity, and the smallest
load of virtual servers in the system, respectively.

Note that the LBI aggregation completion is in O(log, N)
time. In the event of the crashing of DHT nodes during the
process of LBI aggregation, as discussed earlier, the k-ary
tree can recover in O(log, N) time. Hence, the LBI process
can continue along the k-ary tree in a bottom-up sweep after
the tree is reconstructed.

3.5 Node Classification

After the LBI aggregation, the K7T' root node disseminates
<L,C, Ly, > along the k-ary tree in a top-down fashion to

each KT leafnode, which in turn distributes the <L, C, L, >
to its own hosting virtual server. As a result, all DHT nodes
are guaranteed to have a copy of the < L,C, L,,,;, > . Let L;
denote the sum of the loads of all virtual servers on a DHT
node 4, and C; represent the capacity of a DHT node . Note
that one of the goals of our load balancing scheme is to ensure
fairload distribution over DHT nodes by assigning theload to
a DHT node in proportion to its capacity. Let T; denote the
target load of a DHT node i proportional to its capacity. We
have T} = (5 + ¢)C; (¢ is a parameter for a trade off between
the amount of load moved and the quality of balance
achieved. Ideally, ¢ is 0).
Therefore, a DHT node ¢ can be defined as:

o A heavy node if L; > T;.
e A light node if (T; — L;) > Lyin.
e A neutral node if 0 < (T; — L;) < Lyn.

3.6 Virtual Server Assignment (VSA)

Similar to the LBI aggregation, the VSA process is performed
along the k-ary tree in a bottom-up fashion. Initially, each
heavy DHT node (say ¢) chooses a subset of its virtual servers
{vi1,.,Vim} (m > 1) that minimizes Y-, L; subject to the
condition that (L; — Y"1~ L;x) < T; (Where L;; denotes the
load of the virtual server v; , on the DHT node 7). This subset of
virtual servers are expected to be moved to make the heavy
node i to become light. Note that this choice of virtual servers
on heavy nodes would minimize the total amount of load
moved for load balancing throughout the system. Then, the
heavy DHT node i randomly chooses one of its virtual servers
to report the VSA information

< Liy,vig, ipaddr(i) >, ..., < Lim, Vim, ip-addr(i) >

to its hosted KT leaf node, which in turn propagates the
VSA information upward along the tree. For a light DHT
node (say j), it randomly chooses one of its virtual servers to
report the VSA information < AL; = T; — L;, ip_addr(j) > to
its hosted KT leaf node, which in turn propagates the VSA
information upwards along the tree.

During the propagation of VSA information along the k-ary
tree, each KT node (say X) runs the routine KT _node_V S A()
as described in Fig. 5. It collects the VSA information into
V' SA_pool from either its hosting virtual server or its children
(lines 2-6). If the number of VSA information reaches a
predefined paring threshold, the node X would serve as a
rendezvous point for virtual server assignments, by running the
subroutine KT _node_rendezvous_point(). This subroutine
uses a best-fit heuristic approach® to perform virtual server
assignments. The successfully assigned VSA information is
sent back to corresponding DHT nodes for virtual server
transferring, while the unpaired VSA information is propa-
gated to X’s parent. This VSA process is continued in a
bottom-up fashion along the k-ary tree until it reaches the
KT root node. Then, the root node serves as the last
rendezvous point (without a pairing threshold constraint)
for virtual server assignments.

2. Computing an optimal reassignment of virtual servers from heavy
nodes to light nodes is NP-complete [8], [9]. We use this simple greedy
algorithm to find an approximation solution to minimize the load to be
reassigned and moved.

354 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

procedure KT_node_VSA(KT_node X)
1 VSA_pool «—
. if (X is a KT leaf node) then

else
V' S A_pool «— VSA information from k children
end if

OG0 OGN B O

. else

11: endif

3: pool +— @
4: while (heavy_list #) do

5
subject to the condition that AL; > L; ..
6: if (v, can be assigned) then
7 Remove < ALj,ip_addr(j) > from light list
8 if (ALj — L;,r > Ly;y) then

16: pool «— pool U light_list
17: if (pool.size > 0 && X is not a KT root node) then

19: endif

V' SA_pool «—— VSA information from X.host /* receive the VSA information from its hosting virtual server */

. if (VS A_pool.size > pairing_threshold || X is a KT root node) then
KT _node_rendezvous_point(X,VSA_pool) I* X serves as a rendezvous point*/

10: Report V.SA_pool to X.parent /* propagate the VSA information to its parent */
procedure KT_node_rendezvous_point(KT_node X, VSA information pool)

1: light.list «— remove all < AL; = Tj — Lj,ip-addr(j) >s from pool /* light_list maintains the VSA information of light nodes */
2: heavy_list «—— remove all < Lj v, v,r, ip_addr(i) >s from pool /* heavy_list maintains the VSA information of heavy nodes */

Remove the most loaded virtual server v; , from heavy_list, and assign it to a DHT node j in light_list such that AL; is minimized and

9: Insert < AL; — L; r, ip_addr(j) > into light list

10: end if

11: Send the assigned information < v; ., ip-addr(3), ip-addr(j) > to DHT nodes ¢ and j /* prepare for virtual server transferring */
12: else

13: pool «— pool U {< Lj r,v;,r,ip-addr(i) >}

14: endif

15: end while

18: Report pool to X.parent /* report un-assigned VSA information to its parent */

Fig. 5. Virtual server assignment algorithm.

In summary, as the VSA process proceeds along the k-ary
tree in a bottom-up sweep, it recursively assigns virtual servers
among DHT nodes scattered in an increasingly larger contiguous
portion of the DHT’s identifier space® until the whole DHT's
identifier space (for which the k-ary tree root node is responsible).
In other words, the VSA process is identifier space-based in
that the virtual server assignments are performed earlier
among those DHT nodes which are closer to each other in
the DHT’s identifier space. Similar to the LBI aggregation
process, the VSA process is also resilient to system failures
due to the robustness of the k-ary tree it depends on. After
the k-ary tree recovers from DHT node’s failures, the VSA
process can continue along the tree in a bottom-up fashion.

It is worth pointing out that the VSA process discussed
above is proximity-ignorant because the logical closeness in
the DHT’s identifier space does not necessarily reflect
physical closeness of DHT nodes. We name it proximity-
ignorant VSA. In essence, the proximity-ignorant VSA is
similar to the Many-to-Many scheme proposed in [8] in the
sense that the rendezvous points along the k-ary tree can be
viewed as the directory nodes in the Many-to-Many scheme.
We believe the performance of the proximity-ignorant VSA
is similar to that of the Many-to-Many scheme except that
the proximity-ignorant VSA completes quickly in O(log N)
time. Thus, the results of the proximity-ignorant load
balancing scheme reported in Section 5.2.3 can represent
those of the Many-to-Many scheme.

3. Note that here the location of a DHT node in the identifier space is
represented by its randomly chosen virtual server.

As mentioned earlier, we assume that the load on a
virtual server is stable over the timescale it takes for the
load balancing algorithm to perform. However, if this
assumption does not hold in some case, we need to address
the issue of stale VSA information. If a node relies on the
system-wide information (e.g., obtained by the load
balancing information aggregation/dissemination process
along the k-ary tree) to determine its status (i.e., heavy or
light), the information may be up to 3-T (T = O(log N))
time old. On the other hand, if a node could determine its
status solely dependent on its own information (as
suggested in [9]), the information may be up to T' time
old. But, most information is expected to be less than 1" time
old since the internal k-ary tree nodes can serve as the
rendezvous points for virtual server assignments. More-
over, inspired by [9], a rendezvous point could schedule
emergency balancing for some urgent heavy nodes.

3.7 \Virtual Server Transferring (VST)

The VST process is quite simple and straightforward. Upon
receiving the paired VSA information (say < v;,, ip_addr(i),
ip_addr(j) >), the heavy DHT node ¢ will transfer the virtual
server v;, to the light DHT node j. Note that the VST process
can be performed partly overlapping with the VSA process
for fast load balancing.

The transferring of a virtual server unavoidably causes
the k-ary tree to restructure because the KT' node which is
planted in a virtual server has to migrate with the virtual
server. In order to keep the k-ary tree relatively stable, we
could adopt a lazy migration protocol for the KT node.

ZHU AND HU: EFFICIENT, PROXIMITY-AWARE LOAD BALANCING FOR DHT-BASED P2P SYSTEMS 355

Only after the transferring of a virtual server is fully
completed or after the whole VSA process is fully
completed will the KT node migrate. Note that the
restructuring of the k-ary is fully distributed and inexpen-
sive because each K7 node migration only involves at most
k + 1 messages.

4 PRroximiTY-AWARE LOAD BALANCING

The load balancing scheme we have discussed so far is
proximity-ignorant. In this section, we present the proxi-
mity-aware load balancing scheme. The basic idea behind
the proximity-aware load balancing is to make virtual
server assignments (i.e., the VSA process) proximity-aware
by using proximity information. We first describe how to
generate proximity information using landmark clustering
techniques in Section 4.1, and then discuss the proximity-
aware VSA process which uses the generated proximity
information in Section 4.2.

4.1 Generating Proximity Information

Landmark clustering has been widely used to generate
proximity information (e.g., [13], [14], [15]). It is based on an
intuition that nodes physically close to each other are likely
to have similar distances to a few selected nodes.

In a DHT overlay network, the landmark nodes can be
chosen from either the overlay itself or the Internet. For a
DHT node D, it measures the distances to a set of
m landmark nodes (e.g., m = 15) and obtains a landmark
vector < dy,ds,...,dy, >. Node D is then mapped into a
point in a m-dimensional Cartesian space by having the
landmark vector as its coordinates. We call this Cartesian
space the landmark space. As such, two physically close DHT
nodes (say, D and E) would have similar/close landmark
vectors and be close to each other in the landmark space.
Note that a sufficient number of landmark nodes need to be
used to reduce the probability of false clustering where
nodes that are physically far away have similar/close
landmark vectors. In our study, 15 landmark nodes are
used in the landmark clustering.

Landmark clustering is a coarse-grained approximation
and is not very effective in differentiating nodes within close
distance [14], [15]. However, our experimental results (as will
be shown in Section 5.2.3) show it works well for our load
balancing scheme. This is largely because our load balancing
scheme does not need very precise measurements. The
pairing threshold constraint at rendezvous points during
the VSA process naturally provides a trade off between load
balance (a bigger pairing threshold means more DHT nodes’
VSA information and is expected to provide a better load
balance as will be shown in Section 5.2.4) and landmark
clustering. Moreover, our experimental results as well as
recent work [14], [15] have shown that 15 landmark nodes are
pretty good in landmark clustering.

4.2 Proximity-Aware VSA Using Proximity
Information

After generating proximity information, a big challenge we

now face is how to effectively use it to guide virtual server

assignments such that they are assigned between physically

close heavynodes and lightnodes. As discussed in Section 3.6,

the bottom-up VSA process along the k-ary tree is identifier
space-based in that virtual servers are assigned earlier among
DHT nodes if they are logically closer to each other in the
DHT'’s identifier space. Therefore, the basic idea behind the
proximity-aware VSA is to use proximity information to map the
VSA information of heavy nodes and light nodes into the underlying
DHT such that physically close nodes’” VS A information is also close
to each other in the identifier space—that is, preserve the proximity
relationships in the identifier space. As such, the bottom-up VSA
process along the k-ary tree naturally guarantees that virtual
servers are assigned earlier among physically closer heavy
nodes and light nodes.

Itis worth pointing out that, unlike [13], we do not alter the
DHT overlay structure such that physically close nodes are
also close to each other in the identifier space and, instead, we
just simply map the VSA information of heavy nodes and light
nodes into the underlying DHT. For example, consider two
physically closenodesiand j (iis aheavy node whichneeds to
shed a virtual server v; ;, to become light and j is a light node).
We just map their VSA information < L, j, v; 1, ip-addr(i) >
and <Tj—L;, ip_addr(j) > into the underlying DHT accord-
ing to the information derived from two nodes’” landmark
vectors (as will be shown later) such that their VSA
information <L; , v; 4, tp_addr(i)> and <T;,—L;, ip_addr(j)>
is also stored close to each other in the DHT’s identifier space.

Recall that, in a DHT, an object is mapped into the
identifier space with a DHT key by the interface of
DHT _put(key, object). If two objects have similar/close
DHT keys (close to each other in the identifier space), then
these two objects will be stored close to each other in the
DHT overlay (or the identifier space). Hence, the key issue
(in mapping the VSA information of physically close nodes
into the underlying DHT so that their VSA information is
also stored close to each other in the identifier space) is how
to derive similar/close DHT keys for physically close nodes
from their similar/close landmark vectors. In other words,
how do we preserve the closeness when deriving DHT keys
from similar landmark vectors?

4.2.1 Deriving DHT Keys from Landmark Vectors

In this section, we address the issue of how to preserve the
closeness when deriving DHT keys from similar landmark
vectors. The first solution is that we can simply use the
landmark vector of a node as a DHT key. However, due to
the fact that the landmark space is usually of relatively high
dimension compared to the DHT’s identifier space, we
cannot adopt this simple solution. To solve this problem, we
could follow the approach suggested in [14], [15] by using
space-filling curves [16].

Space filling curves such as the Hilbert curve [16] are a
class of continuous, proximity preserving mappings from a
m-dimensional space to a one-dimensional space, i.e.,
N™+— N!, such that each point in N™ is mapped to a
unique point or index in N'. The mapping can thus be
thought of as laying out a string within the m-dimensional
space so that it completely fills the space. The one-
dimensional mapping generated by the space-filling curve
serves as an ordered indexing into the m-dimensional space.
One property of space filling curves is that points that are
close together in the m-dimensional space will be mapped to

356 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

points that are close together in the one-dimensional space,
i.e., proximity is preserved by the mapping.

Therefore, we divide the m-dimensional landmark space
into 2" grids of equal size (where n controls the number of
grids used to divide the landmark space) and fill a Hilbert
curve within the landmark space to number each grid. We
then number each DHT heavy/light node with the grid
number of the grid in which its landmark vector falls. We
call this grid number the Hilbert number, which will serve as
a DHT key. Due to the proximity preserving property of the
Hilbert curve, closeness in the Hilbert number reflects
physical proximity. Moreover, a smaller n increases the
likelihood that two physically close nodes have the same
Hilbert number. It should be pointed out that using space-
filling curves to reduce a high-dimension landmark vector
could introduce inaccuracy. However, we believe our load
balancing scheme can tolerate this inaccuracy. This is
because our load balancing scheme does not need very
precise information due to the paring threshold constraint
at the rendezvous points during the VSA process.

4.2.2 Proximity-Aware VSA

Without loss of generality, we use Chord as the example,
but the techniques discussed here are applicable or easily
adapted to other DHTs such as Pastry and Tapestry.

Initially, each DHT heavy/light node independently
determines its landmark vector < dy,ds, ..., d,, > to aset of
m landmark nodes, and derives a DHT key from the
landmark vector as described above. Then, each DHT
heavy/light node (say) publishes its VSA information
(e.g., < Liy,vig, ip-addr(i) > /< T, — L;,ip_addr(i) >) into
the DHT overlay with the DHT key. As such, the VSA
information published by physically close nodes will be
close together in the DHT’s identifier space.

Given the published VSA information by all participat-
ing DHT nodes, the proximity-aware VSA differs from the
proximity-ignorant VSA in that each individual virtual
server independently reports the VSA information (if any)
which has been mapped into its responsible region of the identifier
space® to the KT leaf node which it hosts. In the case of
multiple KT leaf nodes planted in a virtual server, the
virtual server reports the VSA information to only one of its
KT leaf nodes to avoid sending redundant information.

As a result, each KT leaf node has the VSA information
of DHT heavy nodes and light nodes which are physically
close together unless no VSA information is reported by its
hosting virtual server. If the KT leaf node has the VSA
information, it performs the following operations:

1. If the number of the VSA information reaches the
predefined pairing threshold, it can immediately
serve as a rendezvous point for the virtual server
assignments by running the routine KT _node_
rendezvous_point(), as outlined in Fig. 5.

2. Otherwise, it propagates the VSA information to its
KT parent node.

Then, the VSA process proceeds along the k-ary tree in a

bottom-up sweep, as described in Section 3.6. Note that a

4. In the proximity-ignorant VSA, one of a DHT node’s virtual servers
instead is randomly chosen to report the DHT node’s own VSA information.

k-ary subtree covers a contiguous portion of the DHT’s
identifier space and the subtree’s root node may serve as a
rendezvous point for virtual server assignments, so this
bottom-up VSA process naturally guarantees that the
virtual servers are assigned among DHT nodes, recursively
in a decreasing physical closeness order as the rendezvous
point moves up along the k-ary tree.

5 EXPERIMENTAL EVALUATION

5.1 Experiment Setup

We built two k-ary trees (with k = 2 and 8, respectively) on
top of a Chord simulator (32-bit identifier space) for both
load balancing information aggregation/dissemination and
virtual server assignments.

We assumed the load of a virtual server is associated
with the fraction of the DHT’s identifier space it owns. And,
we also assumed the fraction of the identifier space (let f
denote the fraction) owned by a virtual server is exponen-
tially distributed because it is true in Chord [2] and CAN
[5]. To simulate the load of a virtual server, we used two
distributions proposed by Rao et al. [8] (let 1 and o
represent the mean and standard deviation of the total load
in a DHT, respectively):

o Gaussian distribution. The load of a virtual server is
generated using a Gaussian distribution with mean
wuf and standard deviation o+/f. This distribution
would result if the load of a virtual server comes
from the independent individual loads on a large
number of small objects the virtual server stores [8].

e Pareto distribution. The load of a virtual server is
generated using a Pareto distribution with the shape
parameter a=1.5 and mean pf. The standard
deviation is infinite. Due to the heavy-tailed nature
of this distribution, it presents a particularly bad
case for load balancing [8].

To account for heterogeneity in node capacity, we used

two capacity profiles (which were used in [17]):

e Gnutella-like. We assigned capacity of 1, 10, 10%, 10,
and 10* to Chord nodes with probability of 20 percent,
45 percent, 30 percent, 4.9 percent, and 0.1 percent,
respectively.

e Zipf-like. When sorted, the ith Chord node has

capacity of 1,000 -i~" (where 3 is 1.2).

We evaluated the proximity-aware load balancing using
two transit-stub topologies with approximately 5,000 nodes
each, produced by GT-ITM [18]. These two topologies have
10 graphs each and we ran all these graphs in our
simulations:

e “tsSk-large” has five transit domains, three transit
nodes per transit domain, five stub domains
attached to each transit node, and 60 nodes in each
stub domain on average. The average degree is 17.8.

e “tsbk-small” has 120 transit domains, five transit
nodes per transit domain, four stub domains attached
to each transit node, and two nodes in each stub
domain on average. The average degree is 7.4.

ZHU AND HU: EFFICIENT, PROXIMITY-AWARE LOAD BALANCING FOR DHT-BASED P2P SYSTEMS 357

Latency (s)

Number of Nodes

Fig. 6. Each DHT node hosts five virtual servers. k represents the
degree of the tree. Each link in the physical network on top of which the
DHT is layered has a uniform latency of 20 ms.

“tsbk-large” represents a situation in which the Chord
overlay consists of nodes from several big stub domains,
while “ts5k-small” represents a situation in which the Chord
overlay consists of nodes scattered in the entire Internet. To
account for the fact that interdomain routes have higher
latency each interdomain hop counts as 3 hops of units of
latency while each intradomain hop counts as 1 hop of unit of
latency. We chose 15 nodes as landmark nodes to generate the
landmark vectors from which we derived the DHT keys for
each Chord node. Nodes in a stub domain have close DHT
keys. We expect that the proximity-aware load balancing
could perform very well in “ts5k-large.”

It is worth pointing out that the focus of our experi-
mental evaluation is to investigate the impact of our
proximity-aware load balancing algorithm while consider-
ing the heterogeneity nature of P2P systems. We do not
claim that our algorithm is bullet proof. Other aspects such
as the robustness of the algorithm need further exploration
in our future work.

5.2 Experimental Results

5.2.1 The Distributed k-ary Tree

The first set of experiments measured the overhead of k-ary
tree construction. We used two metrics to measure the
overhead:

e Node stress. It is defined as the number of messages
a node receives and is used to quantify the load on
nodes.

e Link stress. It is defined as the number of messages
sent over a physical network link and is used to
quantify the load on the network.

The experimental results showed that the mean node
stresses for “tsSk-large” and “tsSk-small” are 11.6 and 13.9,
respectively. The mean link stresses for “ts5k-large” and
“tsSk-small” are 15.9 and 18.7, respectively. The results
demonstrate that both node stress and link stress during the
k-ary tree construction are low. In addition, we believe some
future optimization methods could be applied to further
reduce the overhead, e.g., by piggybacking the messages
into DHT overlay maintenance messages.

Fig. 6 shows the latency as a function of network size we
observed in the experiments for LBI aggregation as well as

virtual server assignments (we assumed during the VSA
process the cost of pairing process at each rendezvous point
along the k-ary tree is negligible). Note that the latency is
very small. For example, for a network of 4,096 nodes, the
latencies for k=2 and k=8 are about 1.8s and 0.7s,
respectively. LBI dissemination is essentially the reverse:
information is distributed along the tree down to the leaves
and, therefore, the latency is similar to that of the LBI
aggregation.

During the LBI aggregation/dissemination and VSA
process, each KT node involves at most k£ + 1 interactions
(one with the parent, and k with children). Thus, the
overhead in a k-ary tree operation is a constant. The
entities involved are actually the DHT nodes which host
the k-ary tree. It seems that toward the KT root node the
hosting DHT nodes need to have increasingly higher
bandwidth and stability. However, stability is not a
concern because, as discussed earlier, the k-ary tree
hierarchy can be recovered in O(log N) time. As for
bandwidth, it is not a problem because the message size
is constant during the LBI aggregation and, during the
VSA process the pairing operation at each rendezvous
point reduces the VSA information (only the unpaired
VSA information needs to be sent upward) and, thereby,
brings down the bandwidth requirements (the pairing
threshold gives a trade off). Moreover, the VSA informa-
tion (ie., < Lig,vig, ip-addr(i) > /< T; — L;,ip_addr(i) >)
is only several bytes.

5.2.2 Aligning Two Skews: Load and Capacity

In all experimental results we present in the rest of this
paper, the Chord overlay consists of 4,096 nodes each with
five virtual servers in the beginning and the degree of the
k-ary tree is 2 (we observed similar results on the degree of
8). The pairing threshold at rendezvous points during the
VSA process is 50 by default.

In this section, we present the results of load balancing in
aligning those two skews in load distribution and node
capacity. Due to space constraints, some results are omitted
here. Fig. 7 shows the scatterplot of loads for the Gaussian
distribution with Gnutella-like capacity profile and Fig. 8
shows the scatterplot of loads for the Pareto distribution
with Zipf-like capacity profile. Note that our load balancing
approach is able to align the two skews in load distribution
and node capacity inherent in P2P systems—that is, have
nodes carry loads proportional to their capacities by
reassigning virtual servers among nodes.

5.2.3 Proximity-Aware Load Balancing

So far, we have evaluated one goal of our load balancing
approach—that is, make heavy nodes to become light by
transferring excess virtual servers to light nodes meanwhile
having higher capacity nodes carry more loads. A question
remaining is what is the benefit of the proximity-aware load
balancing approach? Intuitively, that more loads are moved
within shorter distances indicates less load movement cost
(e.g., in terms of bandwidth usage) and faster convergence
on load balance.

Fig. 9 shows cumulative distribution of moved load for
“tsbk-large.” The x-axis denotes the distance of virtual server
transferring in terms of hops, while the y-axis represents the

358

100000 T T T
10000
- 1000
g i i i
= 100 l ! g ****
°
<) + *
= 10 b
1 b
0' 1 1 1 1
1 10 100 1000 10000
Node Capacity

(@)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16,

NO. 4, APRIL 2005

100000 T T T
10000 +
A
- 1000 F
s L
- i
© 100 2
3
3
z 10k
187
0.1 1 1 1
1 10 100 1000 10000
Node Capacity

(b)

Fig. 7. Results for the Gaussian distribution, according to the Gnutella-like capacity profile. (a) Before load balancing and (b) after load balancing.

100000 T T T

10000

T

1000

100

Node Load

10 F

1F

0.1 1 1 1
100 1000

Node Capacity

(@)

10000

100000 ' ' ' %

%

T

+

+
+++++ *

10000

1000 F
100 ¢
10 %

I
¥
1F +

Node Load

0-1 1 1 1
100 1000

Node Capacity

(b)

10000

Fig. 8. Results for the Pareto distribution, according to the Zipf-like capacity profile. (a) Before load balancing and (b) after load balancing.

100 -
;\? 0 4 proximity-aware
= 2 proximity-ignorant”--------
® 80 A
o
= 70 A
el
2 60
(e}
= 50 -
B -
o 40
g 30]
S 204
<]
S 10 4

0 5 10 15 20

Physical Distance by Hops

(@)

100
90 A
80 4
70 4
60 -
50 4
40 A
30 4
20 A
10 A

proximity-aware
proximity-ignorant

Percentage of Moved Load (%)

0 5 10 15 20
Physical Distance by Hops

(b)

Fig. 9. Cumulative distribution of moved load for “ts5k-large.” (a) Gaussian distribution and Gnutella-like capacity profile. (b) Pareto distribution and

Zipf-like capacity profile.

percentage of total moved load. From Fig. 9a, we can see that
the proximity-aware load balancing scheme transfers about
67 percent of total moved load within 2 hops and about
86 percent within 10 hops, while the proximity-ignorant load
balancing scheme transfers only about 13 percent of total
moved load within 10 hops. Fig. 9b shows that the proximity-
aware load balancing scheme transfers about 36 percent of
total moved load within 2 hops and about 57 percent within
10 hops, while the proximity-ignorant load balancing scheme
transfers only about 17 percent of total moved load within
10 hops. Such a big difference implies that the proximity-
aware load balancing scheme can effectively assign and
transfer loads between physically close nodes—thatis, a very

large faction of loads are reassigned and transferred within
the same stub domains, thereby reducing the load balancing
cost (e.g., bandwidth consumption) and enabling fast and
efficient load balancing.

Fig. 10 shows cumulative distribution of moved load for
“tsbk-small.” Note that, in this case, Chord nodes are
randomly chosen from the nodes scattered in the entire
Internet. The proximity-aware load balancing scheme still
performs much better than the proximity-ignorant load
balancing scheme. This is because the proximity-aware load
balancing scheme can effectively guide heavy nodes to
transfer loads to physically nearby light nodes by using the
proximity information, in spite of the fact that most of the

ZHU AND HU: EFFICIENT, PROXIMITY-AWARE LOAD BALANCING FOR DHT-BASED P2P SYSTEMS 359

100 — —
90 proximity-aware
] proximity-ignorant --------
80 /

70
60 A
50 A
40 A
30 A
20 A
10 A

Percentage of Moved Load (%)

0 5 10 15 20
Physical Distance by Hops

(@)

100 __
Q0 proximity-aware ',

] proximity-ignorant --------
80 /

70 A
60 -
50 4
40 4
30 4
20 4
10 4

Percentage of Moved Load (%)

Physical Distance by Hops

(b)

Fig. 10. Cumulative distribution of moved load for “ts5k-small.” (a) Gaussian distribution and Gnutella-like capacity profile. (b) Pareto distribution and

Zipf-like capacity profile.

nodes are scattered in the entire Internet. In other words, the
proximity-aware approach is “greedy” in the sense that it
tries, at each step, to reduce the load movement cost by
making virtual server assignments among physically close
nodes.

We further quantify the benefit of the proximity-aware
load balancing scheme over the proximity-ignorant scheme
in terms of bandwidth. The load has a movement cost, which
we are charged each time we transfer the load between
nodes. Let LM (d) denote the loads moved at the distance of
d hops. Then, the load movement cost incurred by a load
balancing algorithm can be C = ", ; LM(d) - d.

Let Couare and Cigoran: be the load movement cost of the
proximity-aware load balancing and the proximity-ignorant
load balancing, respectively. Then, the benefit B achieved by
the proximity-aware load balancing over the proximity-

ignorant load balancing can be B = %

Our experimental results show the benefit B for “ts5k-
large” is 37-65 percent (for all combinations of load
distributions and node capacity profiles) and that for
“ts5k-small” is 11-20 percent (for all combinations of load
distributions and node capacity profiles). Note that the
bandwidth savings by the proximity-aware load balancing
are very significant in “ts5k-large.” This is because, in “ts5k-
large,” heavy nodes probably can find light nodes within
the same stub domains to move loads, thereby reducing the
bandwidth consumption across different stub domains.
Even in “tsbk-small,” the bandwidth savings are nontrivial.
Aside from bandwidth savings, another implication (that
more loads are moved within shorter distances) is faster
completion of load balancing throughout the system since
less loads need to be transferred across high-latency wide-
area links.

5.2.4 Impact of the Pairing Threshold

Recall that, during the VSA process, a KT node (except the
KT root node) serves as a rendezvous point only if the
number of the VSA information reaches a given pairing
threshold 6. A rendezvous point then uses the best-fit
heuristic approach to assign virtual servers. To explore the
impact of the pairing threshold # on load balancing, we

define the quality of load balancing Q:%x 100%,

where L, denotes the loads actually reassigned and
moved by a load balancing approach and L;g., represents
the loads needing to be reassigned and moved to achieve
the perfect load balance (i.e., no node is overloaded).

For “tsSk-large,” when 6 was chosen to be 20, 30, and 50
(for all combinations of load distributions and node
capacity profiles), the @ for the proximity-ignorant load
balancing was 98.6+ percent, 99.2+ percent, and 100 percent,
respectively. However, the @) for the proximity-aware load
balancing was 100 percent for all these thresholds, immune
to the changing of the threshold value. We also noted that
the benefit B brought by the proximity-aware load
balancing was unaffected by all these thresholds. This is
mainly due to the synergy between the proximity-aware
load balancing and “tsSk-large.” For “tsSk-large,” the VSA
information of nodes in a stub domain is probably mapped
into the same virtual server and, therefore, clustered
together in the same K7 leaf node. Due to the number of
nodes in each stub domain (60 on average), the KT leaf
node probably has sufficient VSA information® to serve as a
rendezvous point anyway, given all these thresholds (note
that a very large portion of loads were assigned here, about
36-67 percent within 2 hops as shown in Section 5.2.3).
However, as 6 becomes big, the benefit B of the proximity-
aware load balancing decreases. For example, when 6 was
200, the benefit B was reduced to 16-35 percent for all
combinations of load distributions and node capacity
profiles. When 6 is infinite (only the KT root node serves
as a rendezvous point), there is no benefit at all. In this case,
the proximity-aware load balancing is completely degraded
to the proximity-ignorant load balancing.

For “tsSk-small,” like the proximity-ignorant load balan-
cing, the proximity-aware load balancing was affected by
small thresholds in terms of (). This is attributed to the fact
that, in “tsbk-small,” nodes are scattered in the entire
Internet. That a K7' node is able to become a rendezvous
point is therefore closely associated with the value of the
pairing threshold. A relatively bigger threshold makes the
best-fit strategy perform better (in terms of @) from the

5. We found the number of VSA information in such KT leaf nodes was
50 or more upon various combinations of load distributions and node
capacity profiles.

360 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

0.8 T T T T T T T

T
1

0.7
0.6

05
04
0.3 |

Message Overhead

0.2
0.1 r

0 1 1 1 1 1 1 L
0 8 16 32 64 128 256 512 1024 2048

Number of Churned Nodes

Fig. 11. Message overhead incurred by node churn.

system-wide perspective. However, the benefit B decreases
as 0 becomes big.

In summary, the proximity-aware load balancing is
somehow insensitive to small thresholds in “ts5k-large”-
like topologies, but the proximity-ignorant load balancing is
relatively sensitive to small thresholds in both “ts5k-large”-
like and “tsSk-small”-like topologies. Further, a big § would
reduce the benefit the proximity-aware load balancing
strives for. Therefore, the pairing threshold provides a
trade off for the proximity-aware load balancing. A too
small pairing threshold may compromise the quality of load
balancing, while a too big pairing threshold may hurt the
benefit. An appropriate pairing threshold not only guaran-
tees the quality of load balancing, but also maximizes the
benefit. We leave the issue of how to choose an appropriate
paring threshold upon various network topologies to our
future work.

5.2.5 Impact of Node Churn

Previous experiments evaluated the load balancing scheme
without considering node churn, i.e., node joins and leaves
the system. Now, we quantify the message overhead
incurred by node churn. The overhead metric is defined
as overhead = %, where M, is the number of messages
during the VSA process without node churn and 34, is the
number of messages during the VSA process when nodes
continuously join and leave the system. It should be worth
pointing out that the underlying DHT overlay maintenance
messages incurred by node churn are not included in My
because these messages are the overhead inherent in a DHT.
Throughout the experiment, we kept the number of nodes
in the system to be 4,096.

Fig. 11 plots this metric as a function of the number of
nodes which join and leave the system during the VSA
process. When the number of churned nodes is low, the
overhead is low. When the number of churned nodes reaches
1,024 (25 percent of nodes), the overhead is about 58 percent.
This overhead is mainly caused by the restructuring of the
k-ary tree due to node joins and departures. Also, we believe
some future optimization methods could be applied to
further reduce the overhead, e.g., by piggybacking the
restructuring messages into the DHT overlay maintenance
messages.

6 CONCLUSIONS

In this paper, we present an efficient, proximity-aware load
balancing scheme to tackle the issue of load balancing in
DHT-based P2P systems. The first goal of our load
balancing scheme is to align those two skews in load
distribution and node capacity inherent in P2P systems to
ensure fair load distribution among nodes—that is, have
nodes carry loads proportional to their capacities. The
second goal is to use the proximity information to guide
load reassignment and transferring, thereby minimizing the
cost of load balancing and making load balancing fast and
efficient. We conducted a detailed simulation study using a
Chord simulator, two representative load distributions, two
node capacity profiles, and two representative Internet
topologies. The results show that our proximity-aware load
balancing scheme can not only ensure fair load distribution,
but also minimize the load movement cost. We show the
proximity-aware load balancing is very efficient, e.g., by 11-
65 percent bandwidth savings.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation under Career Award CCR-9984852 and ACI-
0232647, and the Ohio Board of Regents. The authors thank
the anonymous reviewers for their valuable feedback. They
are also grateful to Hung-Chang Hsiao for helpful com-
ments on this paper. An early version of this work [1] was
presented in the Proceedings of IPDPS '04.

REFERENCES

[11 Y. Zhu and Y. Hu, “Towards Efficient Load Balancing in
Structured P2P Systems,” Proc. 18th Int’l Parallel and Distributed
Processing Symp. (IPDPS), Apr. 2004.

[2] I Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM, pp. 149-160, Aug. 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. 18th IFIP/ACM Int’'l Conf. Distributed System
Platforms (Middleware), pp. 329-350, Nov. 2001.

[4] B.Y. Zhao,].D. Kubiatowicz, and A.D. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerance Wide-Area Location and Rout-
ing,” Technical Report UCB/CSD-01-1141, Computer Science
Division, Univ. of California, Berkeley, Apr. 2001.

[5] S.Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” Proc. ACM SIGCOMM,
pp. 161-172, Aug. 2001.

[6] S. Saroiu, P.K. Gummadi, and S.D. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems,” Proc. Multimedia
Computing and Networking (MMCN), Jan. 2002.

[71 F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-Area Cooperative Storage with CFS,” Proc. 18th ACM
Symp. Operating Systems Principles (SOSP), pp. 202-215, Oct. 2001.

[8] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” Proc. Second Int’l
Workshop Peer-to-Peer Systems (IPTPS), pp. 68-79, Feb. 2003.

[9] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I
Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Proc. IEEE INFOCOM, Mar. 2004.

[10] J.W. Byers,]J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,” Proc. Second Int’l Workshop
Peer-to-Peer Systems (IPTPS), pp. 80-87, Feb. 2003.

[11] D.R. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Proc. Third Int’l Workshop
Peer-to-Peer Systems (IPTPS), Feb. 2004.

ZHU AND HU: EFFICIENT, PROXIMITY-AWARE LOAD BALANCING FOR DHT-BASED P2P SYSTEMS

[12]

[13]

(14]

[15]

[10]

(17

(18]

Z. Zhang, S. Shi, and]. Zhu, “SOMO: Self-Organized Metadata
Overlay for Resource Management in P2P DHT,” Proc. Second Int’l
Workshop Peer-to-Peer Systems (IPTPS), pp. 170-182, Feb. 2003.

S. Ratnasamy, M. Handley, R M. Karp, and S. Shenker, “Topolo-
gically-Aware Overlay Construction and Server Selection,” Proc.
IEEE INFOCOM, vol. 3, pp. 1190-1199, June 2002.

Z. Xu, C. Tang, and Z. Zhang, “Building Topology-Aware
Overlays Using Global Soft-State,” Proc. 23rd Int’l Conf. Distributed
Computing Systems (ICDCS), pp. 500-508, May 2003.

Z. Xu, M. Mahalingam, and M. Karlsson, “Turning Heterogeneity
into an Advantage in Overlay Routing,” Proc. IEEE INFOCOM,
vol. 2, pp. 1499-1509, Apr. 2003.

T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier, “Space
Filling Curves and Their Use in Geometric Data Structure,”
Theoretical Computer Science, vol. 181, pp. 3-15, July 1997.

Q. Lv, S. Ratnasamy, and S. Shenker, “Can Heterogeneity Make
Gnutella Scalable?” Proc. First Int’'l Workshop Peer-to-Peer Systems
(IPTPS), pp. 94-103, Mar. 2002.

E.W. Zegura, K.L. Calvert, and S. Bhattacharjee, “How to Model
an Internetwork,” Proc. IEEE INFOCOM, vol. 2, pp. 594-602, Mar.
1996.

Heis a recip/ient ofaU

361

Yingwu Zhu received the BS and MS degrees
in computer science from Huazhong University
of Science & Technology, at Wuhan, China, in
1994 and 1997, respectively. He is currently
pursuing the PhD degree in computer science at
the University of Cincinnati. His research inter-
ests include operating systems, storage sys-
tems, peer-to-peer computing, distributed
systems, and sensor networks. He is a student
member of the IEEE.

Yiming Hu received the PhD degree in electrical
engineering from the University of Rhode Island
in 1998. He received the BE degree in computer
engineering from the Huazhong University of
Science and Technology, China. He is an
associate professor of computer science and
engineering at the University of Cincinnati. His
research interests include computer architec-
ture, storage systems, peer-to-peer systems,
operating systems, and performance evaluation.
S National Science Foundation CAREER Award.

He is a senior member of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

