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Abstract

In this paper we present TAP, a novel Tunneling ap-
proach for Anonymity in structured P2P systems. An im-
portant feature of TAP is that anonymous tunnels are fault-
tolerant to node failures. Relying on P2P routing infras-
tructure and replication mechanism, the basic idea behind
TAP is to decouple anonymous tunnels from “fixed” P2P
nodes and form anonymous tunnels from dynamic tunnel
hop nodes. The primary motivation of TAP is to strike a bal-
ance between functionality and anonymity in dynamic P2P
networks. We have implemented the tunneling mechanism
in Java on FreePastry 1.3. An analysis of its anonymity and
performance was evaluated via detailed simulations.

1. Introduction

With the rapid growth and public acceptance of the In-
ternet as a means of communication and information dis-
semination, anonymity is becoming a big concern for many
Internet applications, such as anonymous web browsing,
anonymous e-mail, and private P2P file sharing. The ul-
timate goal of anonymization is to protect a participant in
a networked application in such a manner that nobody can
determine his/her identity.

Many anonymous systems (e.g., [1, 18]) have been pro-
posed to protect the identity of the participants. They use
a small, fixed core set of mixes [3] to form an anonymous
path (or tunnel). Such systems, however, have several lim-
itations. First, if a corrupt entry mix receives traffic from a
non-core node, it can identify that node as the origin of the
traffic. Also, colluding entry and exit mixes can use timing
analysis to disclose both source and destination. Secondly,
traffic analysis attacks are difficult to counter. Cover traf-
fic has been proposed to deal with such attacks, but it hurts
performance and introduces a big bandwidth cost. Thirdly,
the drastic imbalance between the relatively small number
of mixes and the potential large number of users might pose
a capacity problem. Lastly, law enforcement could force the

operator of a mix to disclose the identities of its users; and
an authoritarian regime can block the network access to the
small number of mixes.

To overcome the aforementioned drawbacks, peer-to-
peer (P2P) based systems such as Crowds [10], Mor-
phMix [11] and Tarzan [7] have been recently introduced
to provide anonymity by having messages route through
anonymous paths involving a randomly chosen sequence of
P2P nodes. In such systems, each node is a mix and an
anonymous path can follow any possible path through the
system. Unfortunately, such P2P-based environment intro-
duces a new problem: the mixes in a P2P system can join
and leave at any time, anonymous paths therefore tend to be
less stable. A path fails if one of its mixes leaves the system.
Put another way, the dynamic nature of P2P systems renders
anonymous tunnels vulnerable to node leaves/failures. If a
node on a tunnel is down, the request/reply message is not
able to route through the tunnel to the destination/originator.
Thus, the dynamism of P2P systems poses a functionality
problem for anonymous tunnels.

In this paper we present TAP, a novel tunneling approach
for anonymity in structured P2P systems [12, 17, 9, 20]. The
basic idea is to decouple anonymous tunnels from “fixed”
nodes. Leveraging the P2P routing infrastructure and repli-
cation mechanism [12, 13], as will be shown later, TAP
can make anonymous tunnels fault-tolerant to node fail-
ures. For example, current tunneling techniques [10, 11, 7]
have a problem in maintaining long-standing remote login
sessions, if a node on a tunnel fails. However, TAP can
support long-standing remote login sessions in the face of
node failures. Another application is anonymous email sys-
tems. Current tunneling techniques may fail to route the
reply email back to the sender due to node failures along
the tunnel, while TAP can route the reply back to the sender
thanks to its robustness (as will be shown in Section 4 by
using a reply tunnel Tr).

The rest of the paper is structured as follows. Section 2
describes TAP’s system architecture and design. Section 3
details TAP’s tunneling approach. Section 4 demonstrates
how to use TAP to anonymously retrieve a file in struc-
tured P2P systems. Section 5 discusses the tunneling perfor-
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Figure 1. Tunneling mechanism. hi represents the hopId for the ith hop. Pi represents the tunnel hop
node whose nodeId is numerically closest to the hopId hi. Ki represents the associated symmetric
key for the ith hop. < hi, Ki, H(PWi) > is the tunnel hop anchor related to the ith hop.

mance enhancement. Section 6 gives TAP’s security analy-
sis. Section 7 evaluates TAP’s anonymity and performance.
Section 8 describes related work, and we finally conclude
on Section 9.

2. Architecture and Design

TAP aims to use an Internet-wide pool of nodes, num-
bered in thousands, to relay each other’s traffic to gain
anonymity. To access the outside world anonymously, a
user sets up an anonymous tunnel, which starts at his own
node, via some other nodes. We call the node that is setting
up the anonymous tunnel the initiator. The last node of the
tunnel is called the tail node. We also distinguish between
benign nodes, which are nodes that do not try to break the
anonymity of other users and malicious nodes, which may
collude with each other to compromise others’ anonymity.

The basic idea behind TAP is to decouple anonymous
tunnels from “fixed” nodes. Unlike current tunneling tech-
niques, TAP defines an anonymous tunnel by a sequence
of tunnel hops, each of which is specified by a hopId (hop
identifier) instead of a IP address. A hopId is similar to a
fileId and represents a peer node whose nodeId is numeri-
cally closest to the hopId. We call such a node a tunnel hop
node. Leveraging the P2P routing infrastructure and repli-
cation mechanism 1, a tunnel hop node for a given hopId
can be located despite the arrival and failure of nodes, un-
less all k nodes (one node is the tunnel hop node and the
other k − 1 nodes are tunnel hop node candidates for such
a hopId. k is the replication factor.) have failed simultane-
ously. Therefore, an anonymous tunnel in TAP is composed
of a set of tunnel hops, each of which is mapped into a tun-
nel hop node adaptively as nodes join and leave.

A message routes through an anonymous tunnel using
mix-style layered encryption: each hop of the tunnel re-
moves or adds a layer of encryption depending on the di-
rection of traversal of the message. We denote by {m}K

encryption of the message m with a symmetric key K. Fig-
ure 1 depicts an anonymous tunnel from the initiator I via

1Due to space constraints, we refer readers to [12, 13] for more details.

tunnel hops h1, h2, and h3. When the initiator I sends a
message m to the destination server D through the anony-
mous tunnel, it encrypts the message in a layered manner
from the last hop of the tunnel with the symmetric keys,
which results in {h2, {h3, {D, m}K3}K2}K1 . Then I sends
the encrypted message to P1, which is the tunnel hop node
for h1. When P1 receives the message, it removes one layer
of encryption using K1, determines the next hop according
to the identifier in the header, and sends it to P2, which is
the tunnel hop node for h2. This process repeats until the
tail node P3 is reached, which relays the message m to D.
As will be discussed later, the corresponding reply is sent
back to I using a different anonymous tunnel (called the
reply tunnel) which is included in message m by I .

An important feature of TAP is that anonymous tunnels
are fault-tolerant to node failures. This is because the k
replicas for the tunnel hop anchor < hi, Ki, H(PWi) > of
each tunnel hop are maintained on k different nodes whose
nodeIds are numerically closest to hi in spite of node joins
and leaves. For example, consider the case when P1 re-
ceives the message from I and is going to send the message
to P2, which has already failed. Relying on the P2P rout-
ing infrastructure and replication mechanism, P1 is able to
route the message to P ′

2, which has become the tunnel hop
node for h2 after P2 fails. P ′

2 then removes one layer of en-
cryption using the symmetric key K2 and sends the message
to P3, allowing the message to continue on the anonymous
tunnel.

Having anonymous tunnels consist of an open-ended set
of peer nodes, however, introduces a new challenge. An
adversary can easily operate several malicious nodes in the
system and try to break the anonymity of legitimate users
by getting full control of their anonymous tunnels. With the
replication of the tunnel hop information (i.e., the tunnel
hop anchor as will be shown in Section 3.1), the probability
for colluding nodes to compromise other users’ anonymity
becomes higher. However, the main motivation of TAP is to
strike a balance between functionality and anonymity, and
our goal is not to provide perfect anonymity in P2P systems.

TAP does not employ cover traffic due to the following
reasons. First, cover traffic is very expensive in terms of
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bandwidth overhead and it does not protect from internal
attackers (malicious nodes who act as mixes in our sys-
tem). Secondly, the number of potential mixes in our sys-
tem is large (numbered in thousands or more) and they are
probably spread across several countries and ISPs, render-
ing global eavesdropping very unlikely.

3. Tunneling Approach

In this section we detail TAP’s tunneling mechanism.
Without loss of generality, we take Pastry/PAST as an ex-
ample for structured P2P systems. However, we believe that
our tunneling approach can be easily adapted to other sys-
tems [17, 9, 20, 5, 8].

3.1. Tunnel Hop Anchor (THA)

A tunnel hop is “anchored” in the system through a tun-
nel hop anchor. A tunnel hop anchor is in the form of
< hopId, K, H(PW ) >, where hopId uniquely identifies
the tunnel hop and functions as a DHT (distributed hash ta-
ble) key for the THA’s storage and retrieval, K is a symmet-
ric key for encryption/decryption, and H(PW ) is the hash
of a password PW . It can be envisioned a small file stored
on the system, where hopId is the fileId, and K+H(PW )
is the file content.

A THA is stored on k nodes whose nodeIds are nu-
merically closest to its associated hopId. The k nodes are
the replica set for the THA and k is the replication factor.
The node with nodeId numerically closest to hopId in the
replica set is the tunnel hop node and the other k − 1 nodes
are the tunnel hop node candidates. If the tunnel hop node
fails, one of the candidates will take its place, thus making
an anonymous tunnel fault-tolerant to node failures.

The security of THAs is critical to anonymous tunnels in
TAP. The nodes who have the right to access a THA must
be restricted. Only its owner (the initiator who has deployed
it) and the nodes in its replica set have the right to access it.
Any node who wants to access a THA must be verified that
it is either the owner or one of the nodes in the replica set.
The identity of an owner can be verified by presenting the
corresponding PW of a THA as will be shown later, while
the identity of the nodes in the replica set can be verified
due to the verifiable constraint that these nodes’ nodeIds
must be numerically closest to the hopeId of the THA.

3.2. Generating THAs

Any node seeking anonymity has to generate and deploy
a number of THAs before using anonymous tunnels. In or-
der to avoid collision in generating THAs, we propose a
THA generating mechanism which allows a node to gener-
ate node-specific THAs without revealing the node’s iden-
tity. Note that the uniqueness of a THA is determined by

its hopId. So the hopId for a given node can be computed
from a node-specific identifier node ID (which could be,
for example, the node’s IP address, its private key or its
public key), a secret bit-string hkey, and a time t at which
the hopId is created. The purpose of the hkey and t is to
prevent other nodes from linking the hopId with a partic-
ular node by performing recomputation of the hopId upon
each node in the system, and revealing that node’s identity.
The following equation presents the generation more for-
mally: hopId←H(node ID, hkey, t), where H is a uni-
form collision-resistant hash function, e.g., SHA-1. After
generating the hopId for a THA, the node then generates a
random bit-string as the symmetric key K and another ran-
dom bit-string as the PW .

With the THA generating approach described above, we
can see that, the THAs a node generates not only avoid colli-
sion with those of other nodes, but also prevent other nodes
from linking them with the node.

3.3. Deploying THAs

Before forming a tunnel, a node seeking anonymity must
deploy a number (e.g., 3-5) of THAs into the system. More
importantly, the node must deploy them anonymously such
that nobody else can link a THA with itself. Thus, the
node needs a bootstrapping anonymous tunnel to deploy the
THAs for the first anonymous tunnel. Relying on a public
key infrastructure on a P2P system by assuming each node
has a pair of private and public keys, the node can use Onion
Routing [18] as the bootstrapping tunnel by choosing a set
of nodes 2, to deploy the THAs for its first anonymous tun-
nel. It creates an onion carrying instructions for each node
on the Onion path to store a THA on the system. For ex-
ample, a node I creates an onion for the path P0, P1, P2 is
{P1, THA0, {P2, THA1, {D, THA2}K2}K1}K0 . It then
sends the onion to P0. Each node on the path removes one
layer of encryption and stores the corresponding THA on
the system. Or a node can deploy only one THA during
each Onion Routing session.

It is worth pointing out that Onion Routing is just used to
bootstrap a node’s first anonymous tunnel. Once the node is
able to form the first tunnel using the deployed THAs, it will
use this tunnel to deploy other THAs if necessary. Without
doubt, if a node on the bootstrapping Onion path fails, the
deploying process will be aborted. We argue this is not a
problem because the deploying process is not performance
critical. A node can always try to use another Onion path
to deploy its initial THAs until the first anonymous tunnel
is able to be formed. A node can also rent a trusted node’s
anonymous tunnels to deploy its initial THAs. We leave this
approach to our future work.

2We can employ the peer selection technique used in Tarzan by consid-
ering the chosen nodes’ IP address prefixes.
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Note that malicious nodes can simply try to flood the
system with random THAs so that “real” THAs cannot be
inserted. This sort of data flooding is a form of denial of
service, as it prevents other nodes from deploying THAs
to form anonymous tunnels and gaining anonymity. The
usual way of counteracting this type of attack is to charge
the node for deploying a THA. This charge can take the
form of anonymous e-cash or a CPU-based payment system
that forces the node to solve some puzzles before deploying
a THA.

3.4. Deleting THAs

Our system provides a mechanism for a node to delete
the THAs which it previously deployed. But any node can-
not delete other nodes’ deployed THAs by using this mech-
anism. Recall that when a node deploys a THA, a PW
is generated and the H(PW ) is included in the THA. The
reason this value is stored as opposed to just the PW is
that it prevents a malicious node from learning the password
PW and deleting the THA. To delete a THA, a node has to
present the secret PW as a proof of ownership. The nodes
which store the THA will hash the received PW , compare
the hash value with the stored H(PW ), and if they match,
remove the THA from their local storage.

3.5. Forming Tunnels

When forming a tunnel, a node selects a set of THAs it
has already deployed. The chosen THAs must scatter in the
DHT identifier space as far as possible (i.e., with different
hopId’s prefixes) to minimize the probability that a single
node has the information of multiple or all tunnel hops of
the tunnel to be formed.

4. A Sample Application: Anonymous File Re-
trieval

In this section we demonstrate how to use TAP for an
initiator I to retrieve a file (with fid as its fileId) in struc-
tured P2P systems like Pastry/PAST.

In the forward path, the initiator I creates a forward
tunnel Tf , and performs a layered encryption for each
tunnel hop. More precisely, consider a forward tunnel
Tf that consists of a sequence of 3 hops (h1, h2, h3),
where hi =< hidi, Ki, H(PWi) >. Then I produces the
message M = {hid2, {hid3, {fid, KI

′, Tr}K3}K2}K1 ,
where KI

′ is a temporary public key for I and Tr

is a reply tunnel for the requested file to route back.
Tr is a different tunnel from Tf . More precisely,
it consists of a sequence of 3 hops (h1

′, h2
′, h3

′),
where hi

′ =< hidi
′, Ki

′, H(PWi
′) >. So Tr =

{hid1
′, {hid2

′, {hid3
′, {bid, fakeOnion}K3

′}K2
′}K1

′},

where fakeOnion is introduced to confuse the last hop in
Tr. bid is an identifier subject to a condition that I is the
node whose nodeId is numerically closest to it. Therefore,
it guarantees that the reply will route back to I .

To retrieve the file, the initiator I sends the message M
to the first tunnel hop node corresponding to hid1. The first
tunnel hop node retrieves the symmetric key K1 from its
local storage, removes one layer of encryption using K1,
determines the next tunnel hop node of h2 and sends the
extracted message to the next tunnel hop node. This pro-
cess continues until the message reaches the tail tunnel hop
node of h3. The tail node strips off the innermost layer of
encryption, revealing I’s request for file fid. Then it sends
the request together with the reply tunnel Tr and KI

′ to the
responder node R who stores such a file f corresponding to
fid.

Upon receiving the message, the responder node R re-
trieves the file f from its local storage, encrypts the file
with a symmetric key Kf ({f}Kf

), encrypts Kf with KI
′

({Kf}KI
′ ), and sends the {f}Kf

, {Kf}KI
′ and the reply

tunnel Tr with hid1 removed to the tunnel hop node of h1
′.

On the reply path, each successive tunnel hop node removes
one layer of encryption from the reply tunnel Tr, revealing
the next tunnel hop, and sends {f}Kf

, {Kf}KI
′ and the

stripped reply tunnel to the next tunnel hop node. This pro-
cess repeats until the reply message reaches I , which de-
crypts Kf using the corresponding temporary private key
KI

−1, and then decrypts the file f . Note that each tun-
nel hop performs only a single symmetric key operation per
message that is processed.

It is also worth pointing out that a request tunnel is differ-
ent from a reply tunnel in our design. This makes it harder
for an adversary to correlate a request with a reply.

5. Tunnel Performance Enhancement

Note that in a P2P system (e.g., Pastry/PAST) consisting
of N nodes, it can route to the numerically closest node for
a given fileId in �log2bN� hops (b is a system parameter,
with a typical value of 4). As a result, the anonymous tunnel
of l hops might involve l∗�log2bN� hops, introducing a big
performance overhead.

In this section we propose a performance enhancement
scheme for the basic tunneling mechanism. More pre-
cisely, consider a tunnel T = (h1, h2, h3), where hi =<
hidi, Ki, H(PWi) >. For each tunnel hop hi, the ini-
tiator gets the IP address ipi of the corresponding tunnel
hop node 3. Then it creates an encrypted message in the
form of {hid2, ip2, {hid3, ip3, {D, M}K3}K2}K1 , by em-
bedding the IP address of each tunnel hop node.

3The initiator can maintain a cache of the mappings between a tunnel
hop hopId and the IP address of its tunnel hop node, and it can periodically
refresh the cache.
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The initiator first attempts to send the message directly
to the node with the IP address ip1. If this node does not
exist or it is not the tunnel hop node of h1 any more, it
routes to the tunnel hop node of h1 by resorting to the P2P
routing infrastructure. Each successive tunnel hop node on
the tunnel removes a layer of encryption, revealing the next
hop with a IP address and hopId. It first tries the IP ad-
dress, if it fails, then routes the message to the tunnel hop
node corresponding to the hopId. This process repeats un-
til the message reaches the tail node, which in turn routes
the message M to the destination node D. Obviously, the
tunneling approach with the IP address embedded as a hint
at each hop provides a shortcut to the next tunnel hop along
the path, resulting in great performance improvement (as
will be shown in Section 7).

6. Security Analysis

In this section we analyze how our tunneling approach
can defend against attacks from the various parties in the
P2P system. In particular, we focus the analysis on initiator
anonymity.

A global eavesdropper: As discussed earlier, TAP does
not employ cover traffic due to its expensive bandwidth
overhead. So if a global eavesdropper can observe every
single node in the system, it should be able to break the
anonymity of all participants by means of timing analysis
at the node along anonymous tunnels or end-to-end timing
analysis at the first and tail nodes. However, we argue that
such an attacker is not realistic in the P2P environment with
thousands of nodes distributed in the Internet. First, in our
design each node is a mix and the number of mixes is very
large and they are spread across several countries and ISPs,
therefore a global attacker is very unlikely in such a P2P
environment. Secondly, the dynamism of P2P systems due
to node joins and leaves makes it virtually impossible for
anyone to get knowledge of the whole network at any time.

A local eavesdropper: An adversary can monitor all lo-
cal traffic to and from an initiator. Although the eavesdrop-
per will reveal the initiator’s traffic patterns (both sent and
received), it cannot figure out the initiator’s destination or
message content without the cooperation from other nodes.

The responder: The probability that the responder cor-
rectly guesses the initiator’s identity is 1

N−1 (N is the num-
ber of nodes in system), since all other nodes have the same
likelihood of being the initiator.

A malicious node: The mix homogeneity (each node is
a potential mix) of our design prevents an adversary from
deterministically concluding the identity of an initiator: all
nodes both originate and forward traffic. Thus, a malicious
node along the tunnel cannot know for sure whether it is the
first hop in the tunnel. It can only guess that its immediate
predecessor is the initiator with some confidence.

Colluding malicious nodes: We consider the case that
an adversary operates a portion of nodes which collude
with each other to compromise the anonymity of legiti-
mate users. It can read messages addressed to nodes un-
der its control; it can analyze the contents of these mes-
sages. The adversary can use timing analysis to determine
whether messages seen at different hops belong to the same
tunnel. In TAP, each THA is replicated on a replica set of
k nodes. If one of these k nodes is malicious, it can dis-
close the THA to other colluding nodes. As such, malicious
nodes can pool their THAs to break the anonymity of other
users. With some probability, the adversary can (1) have
the THAs for all the hops following the initiator along a
tunnel, or (2) control at least the first tunnel hop node and
the tail tunnel hop node of a tunnel (the adversary can use
timing analysis attack to compromise the tunnel). Thus, if
a message belonging to these two cases reaches a malicious
node, the adversary can have a chance to compromise the
anonymity. But, it is worth pointing out that the adversary
attack on the second case is very limited. This is because,
first and most importantly, the adversary does not know if
the first hop is really the first hop, which implies he can-
not determine who the initiator is. Secondly, the network
connection heterogeneity of P2P networks complicates the
task of timing analysis attacks. As a result, in Section 7 we
mainly focus on the first case.

Note that the primary motivation of TAP is to strike a bal-
ance between functionality and anonymity in very dynamic
P2P networks. The adversary may occasionally break the
anonymity of a user by using the THAs he has accumu-
lated, but a user can form another tunnel anyway to protect
its future anonymity once its current tunnel is found to be
compromised.

7. Experimental Results

We have implemented TAP in Java on FreePastry 1.3 [2].
FreePastry 1.3 is a modular, open source implementation
of the Pastry P2P routing and location substrate. It also
includes an implementation of the PAST storage system
and the replication manager, which provides application-
independent management of replicas by replicating data on
the set of k nodes closest to a given key. To be able to per-
form experiments with large networks of nodes, we imple-
mented TAP on a network emulation environment, through
which the instances of the node software communicate. In
all experiments reported in this paper, the peer nodes were
configured to run in a single Java VM.

7.1. Simultaneous Node Failures/Leaves

In this experiment, we evaluate the ability of TAP to
function after a fraction of nodes fail/leave simultaneously.
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Figure 2. The fraction of tunnels that fail as a
function of the fraction of nodes that fail.

We consider a 104 node network that forms 5, 000 tunnels,
and randomly choose a fraction p of nodes that fail/leave.
After node failures/leaves, we measure the fraction of tun-
nels that could not function. Note that we define the number
of tunnel hops per tunnel as the tunnel length. In this exper-
iment, the tunnel length is 5.

Figure 2 plots the mean tunnel failure rate as a function
of p for the current tunneling, TAP with the replicator factor
k = 3, and TAP with k = 5, respectively. Note that in TAP,
there is no significant tunnel failure. A higher replication
factor k makes tunnels more fault-tolerant to node failures.
However, in the current tunneling approach, the tunnel fail-
ure rate increases dramatically as the node failure fraction
increases.

7.2. Colluding Malicious Nodes

We now evaluate the anonymity of TAP against collud-
ing malicious nodes in the system. We again consider a 104

node network, where some of them are malicious and in the
same colluding set. We assume the system has 5, 000 tun-
nels and randomly choose a fraction p of nodes that are ma-
licious. The tunnel length is 5 by default, unless otherwise
specified.

We first measure the fraction of tunnels that can be cor-
rupted by malicious nodes. Figure 3 plots the mean cor-
rupted tunnel rate as a function of p. As p increases, the
corrupted tunnel rate increases. However, there is no signif-
icant tunnels corrupted even if p is large enough (e.g., 0.3).

In the following experiments, the value of p is fixed to
be 0.1. We then evaluate the impact of the replication factor
and the tunnel length on anonymity. Figure 4 (a) shows
the fraction of tunnels that are corrupted as a function of
the replication factor. As the replication factor increases,
the fraction of tunnels that are corrupted increases. This is
because a bigger replication factor allows malicious nodes
to be able to learn more THAs, increasing the probability of
compromising other users’ anonymity. Figure 4 (b) shows
the fraction of tunnels that are corrupted as a function of
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Figure 3. The fraction of tunnels that are cor-
rupted as a function of the fraction of nodes
that are malicious. The replication factor k is
3.

the tunnel length. Note that the fraction decreases with the
increasing tunnel length, and the tunnel length of 5 catches
the knee of the curve.
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Figure 4. The fraction of tunnels that are cor-
rupted as a function of the replication factor
(a) and the tunnel length (b).

So far our experiments have not considered the dy-
namism of P2P systems that nodes enter and leave the sys-
tem at will. In the presence of node leaves, malicious
nodes instead can try to stay in system as long as possi-
ble so that they can accumulate more THAs to break oth-
ers’ anonymity. For example, if a benign node leaves, its
responsible THAs are taken by another node, which might
happen to be a malicious node. Moreover, the replication
mechanism of P2P systems might happen to make mali-
cious nodes to become the members of some THAs’ replica
sets as nodes leave. As such, malicious nodes can take ad-
vantage of the leaves of other nodes to learn more THAs.
We assume there are 5, 000 tunnels in the beginning of the
system. During each time unit, we simulate that a number
of 100 benign nodes leaves and then another set of 100 be-
nign nodes joins the system. So the fraction of malicious
nodes p is kept on 0.1 after each time unit. Then we mea-
sure the fraction of tunnels that are corrupted after each time
unit. Figure 5 plots the mean corrupted tunnel rate. “un-
refreshed” means that the original 5, 000 tunnels are used
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throughout the experiment, while “refreshed” means that a
new set of 5, 000 tunnels are created to replace the old tun-
nels after each time unit. Note that the corrupted rate of “un-
refreshed” increases steadily as time goes, while that of “re-
freshed” keeps almost constant. We conclude that in such
dynamic P2P systems, users should refresh their tunnels pe-
riodically to reduce the risk of having their anonymity com-
promised.
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Figure 5. The fraction of tunnels that are cor-
rupted. The replication factor k is 5.

7.3. Performance

In this section we evaluate the performance of TAP in
terms of transfer latency between peer nodes. Our per-
formance analysis focuses on the overhead introduced by
TAP. We simulated the size of a P2P network from 100 to
10, 000 nodes. Each link in the network had a random la-
tency from 10 ms to 2300 ms, randomly selected in a fash-
ion that approximates an Internet network [14]. All links
had a simulated bandwidth of 1.5 Mb/s. A randomly cho-
sen initiator transferred a 2Mb file with a random fileId to
a node whose nodeId is numerically closest to the fileId
in the following three ways: (1) overt transfer relying on the
P2P routing infrastructure (“overt”), (2) anonymous trans-
fer using TAP’s basic tunneling mechanism (“TAP basic”),
and (3) anonymous transfer using TAP’s performance op-
timized tunneling mechanism (“TAP opt”) (as discussed in
Section 5). We ran 30 simulations for each network size,
and each of the simulations involved 100, 000 file transfers.

Figure 6 shows the transfer latency. Note that TAP’s
basic tunneling mechanism introduces a significant latency
penalty in the file transfer. A longer tunnel introduces
bigger performance overhead, thought it provides better
anonymity. However, TAP’s performance optimized tunnel-
ing mechanism can dramatically reduce the latency penalty,
thus greatly improving the tunneling performance. It is also
worth pointing out that the overhead introduced by symmet-
ric encryption/decryption in tunneling is negligible in this
experiment.
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8. Related Work

In this section we present the research work related to
anonymity and P2P systems.

Many systems such as Anonymous Remailer [1] and
Onion Routing [18] achieve anonymity by having anony-
mous paths route through a small, fixed core set of
mixes [3]. Recently, anonymous systems where every
node is a mix have been proposed, such as Crowds [10],
Hordes [16], Tarzan [7], MorphMix [11], and P 5 [15].
Recent work [19, 14] aims at mutual anonymity between
an initiator and a responder. However, all these systems
have not addressed the functionality problem of anonymous
paths.

Structured P2P systems [12, 17, 9, 20], provide a P2P
routing and lookup infrastructure. And P2P storage and file
systems (e.g., [13]) layer their storage on top of such struc-
tured P2P systems. Currently, we implement TAP in Pas-
try/PAST, but our tunneling approach can be easily adapted
to other systems [17, 9, 20, 5, 8]. There are two anony-
mous storage systems that deserve mentioning. Freenet [4]
uses probabilistic routing to achieve anonymity, and Free-
Haven [6] uses both cryptography and routing to provide
anonymity.

9. Conclusions and Future Work

Via detailed simulations, we have arrived the following
conclusions: (1) Leveraging the P2P routing infrastructure
and replication mechanism, TAP is fault-tolerant to node
failures. (2) By carefully choosing the replication factor and
tunnel length, TAP can strike a balance between functional-
ity and anonymity. (3) TAP’s performance optimized tunnel
mechanism can greatly improve tunneling performance. (4)
Users seeking anonymity should reform their tunnels peri-
odically against colluding malicious nodes in dynamic P2P
networks to reduce the risk of having their anonymity com-
promised.
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The ability of TAP in making anonymous tunnels fault-
tolerant to node failures is to rely on the P2P routing infras-
tructure and replication mechanism. A big concern is how a
message can be securely routed to a tunnel hop node given
a hopId in P2P overlays where a fraction of nodes are ma-
licious to pose a threat. Due to space constraints, we refer
readers to our extended report [21] for the details of secure
routing.

TAP currently has its own limitations. First, unlike Mor-
phMix [11] and Tarzan [7], TAP lacks the ability to control
future hops along a tunnel. It trades this ability for func-
tionality. Secondly, TAP does not have a mechanism to
detect corrupted/malicious tunnels. It requires users to re-
form their tunnels periodically against colluding malicious
nodes. In our next steps, we hope to address these issues.
Nevertheless, we believe that TAP is a first step towards un-
derstanding the construction of anonymous tunneling from
P2P nodes in dynamic systems, and it provides a balance
point between functionality and anonymity.
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