
SNARE: A Strong Security Scheme for Network-Attached Storage

Yingwu Zhu
Department of ECECS

University of Cincinnati
Cincinnati, OH 45221, USA

zhuy@ececs.uc.edu

Yiming Hu
Department of ECECS

University of Cincinnati
Cincinnati, OH 45221, USA

yhu@ececs.uc.edu

Abstract

This paper presents a strong security scheme for
network-attached storage (NAS) that is based on capability
and uses a key distribution scheme to keep network-attached
storage from performing key management. Our system uses
strong cryptography to protect data from spoofing, tamper-
ing, eavesdropping and replay attacks, and it also guaran-
tees that the data stored on the storage is copy-resistant.
In spite of this level of security, our system does not im-
pose much performance penalty. Our experimental results
shows that, using a relatively inexpensive CPU in the stor-
age device, there are little performance penalty for random
disk accesses and about 9-25% performance degradation
for large sequential disk accesses (≥ 4 KB).

1. Introduction

Traditionally, disk drives have been bound to server ma-
chines that are supposed to be responsible for most aspects
of data integrity and security. However, the demand for
greater scalability has forced storage to adopt a decentral-
ized architecture. Therefore, the network-attached storage
has begun to replace traditional centralized storage systems
[1, 11, 12]. In such systems, disks are attached directly to a
network and achieve their scalability by eliminating single-
server bottleneck.

By attaching storage directly to the network, the storage
is now a first-class network citizen and exposes disk drives
to direct attack from adversaries. Thus, the storage has to
rely upon its own security rather than using the server’s pro-
tection to defend against potential attacks.

Many secure storage systems have been proposed to
achieve different levels of security. The Secure File System
(SFS) [17] provides mutual authentication of servers and
users using self-certifying pathnames, and NASD [11, 12]
uses encryption to provide network security and authentica-
tion. However, both systems store data in clear, providing

no protection of data privacy. The Cryptographic File Sys-
tem (CFS) [3, 4] encrypts directories and files on disks, but
lacks features for sharing encrypted files among users. Even
though TCFS [5] and SUNDR [18] provide encryption and
authentication, they both suffer from a relatively high per-
formance penalty. SNAD [19] uses a decentralized security
architecture to provide data privacy and integrity, by push-
ing key objects and certificate objects into the storage.

Since network-attached storage devices are very cost-
sensitive, they are resource poor relative to modern work-
stations and servers in terms of DRAM, computational ca-
pacity, and etc [12]. The limited resource and contention
from multiple sources for memory in network-attached stor-
age therefore motivate a design that limits the amount of
memory consumed for security purpose. In this paper,
we present SNARE, a strong security scheme for network-
attached storage which is based on capability, a well-
established concept for regulating access to resources [6].
In particular, our main contributions are:

• A key distribution scheme is employed to keep
network-attached storage from having to perform key
management.

• Our system supports user authentication and re-
lies upon strong cryptography to protect data pri-
vacy and integrity. Using HMAC [14] instead of
more performance-intensive authentication methods
such as public-key encryption and performing encryp-
tion/decryption at the client minimize the effort re-
quired by the network-attached storage device’s CPU.

• Our system guarantees that the data stored on the stor-
age is copy-resistant [16]. That is, the data stored on
a network-attached storage device could not be sim-
ply copied to another network-attached storage device
with a different secret key.

• Using stored data checksums (which are precomputed
at the client), the storage can transmit secure data

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

faster than the client is able to verify the data, thus
shifting the bottleneck from the storage to the receiv-
ing client for good scalability.

• We show that, despite this level of security, using a
relatively inexpensive CPU in a network-attached stor-
age, there are little performance penalty for random
disk accesses and about 9-25% peformance degrada-
tion for large sequential disk accesses (≥ 4 KB).

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 describes the system
specification. Section 4 details the cryptographic protocols.
Section 5 evaluates the performance of our security system.
Finally we conclude in Section 6.

2. Related Work

Much of recent storage security work has focused on
authentication, data integrity, and data privacy. Many sys-
tems have been designed to tackle the security issues from
different angles. Most of these systems however have se-
curity shortcomings, suffering either from weak security,
poor performance, or both. Our system instead aims to pro-
vide strong security while preserving good performance on
network-attached storage.

Many file systems provide access control policies to de-
termine who can access data. NFS is one of the oldest and
most widely used network file system. It offered little se-
curity until recently. The recent NFSv4 specification [23]
proposes at least three security mechanisms: one using Ker-
beros [25] and two using a public key infrastructure. All
these essentially set up a secure communication channel and
enable mutual authentication. It also greatly expands the
use of ACLs for access control, very similar to AFS ACLs.

Systems like AFS [13, 24] and NASD [12, 11] use Ker-
beros to provide security by requiring users to obtain “tick-
ets” (or “tokens”) from a third party. The tickets are then
presented to the AFS file server or NASD disk as proof
of identity and access rights. These two systems, however,
store data in clear on disks. Thus, data privacy can not be
guaranteed. Furthermore, if the system wants to prevent the
leaking of data in transit (by snooping on the network), it
has to perform data encryption before transmitting the data,
resulting in much performance penalty. Our system instead
stores data in encrypted form on disks while performing en-
cryption at the client.

SCARED [20] provides a mechanism for authentication
and protects data integrity, but does not implement end-to-
end data encryption, leaving that for the underlying file sys-
tem.

SNAD [19, 7] encrypts all data at the client and gives
the storage sufficient information (including key objects and
certificate objects) to authenticate the writer and the reader

sufficient information to verify the end-to-end integrity of
the data. SNAD aims to provide a decentralized security
system for network-attached storage by pushing key ob-
jects and certificate objects into the storage. However it
still suffers from several problems. First, the permission
of the operation specified in each request to the storage
must be checked by referring to the key object and certifi-
cate object. Considering the network-attached storage de-
vice having relatively small amount of DRAM (say, about
8 to 16 MB), this operation will compete for memory with
the data cache and metadata cache, thus probably incurring
additional expensive disk I/Os. The limited resource and
contention from multiple sources for memory in network-
attached storage therefore motivate a design that limits the
amount of memory consumed for security function. Sec-
ond, it uses public-key authentication for writing key ob-
jects. This operation is very expensive and imposes high
performance penalty. SNARE instead avoids using public-
key encryption on the storage. Furthermore, as the number
of network-attached storage devices increases, security eas-
ily becomes a management and usability nightmare. Worse
yet, the wrong key management policy harms security or
severely inconveniences people [17]. So it is desirable to
pull the key management out of the storage and minimize
the corresponding overhead.

The SFS [17] addresses the problem of mutually authen-
ticating the servers and users and separates key manage-
ment from the file system security. Furthermore, SFS re-
quires that users trust the storage server to store and return
file data correctly. SFS-RO [9], however, does not impose
such a requirement. SFS-RO is designed to support storage
and retrieval of encrypted read-only data. The SUNDR file
system [18] securely stores data on untrusted servers, which
are managed by people who have no permission to read or
write data in the file system. However, its use of digital
signature will incur a relatively high performance penalty.

Many file systems are also designed to protecting data
on disks. The CFS [3, 4] encrypts directories and files
stored on disks using a secret key. CFS is designed as a
secure local file system, therefore lacking features for shar-
ing encrypted files among users. Furthermore, it does not
protect against attacks where the bits on disks are compro-
mised. CryptFS [29] extends CFS to be more efficient by
building it as a stackable file system rather than a user level
server. However, like CFS, CryptoFS still has similar shar-
ing and authentication issues. Cepheus [8] adds file shar-
ing to a CFS-like file system using mechanism similar to
UNIX groups, while providing confidentiality and integrity
of data.

TCFS [5] uses a lockbox to store a single key and en-
crypts only file data and file names; directory structures and
other metadata are left un-encrypted. Furthermore, TCFS is
relatively slow, reducing file system performance by more

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

than 50%.
Survivable storage is also proposed to guard against de-

stroy attacks in collusion with storage servers. There are
generally two mechanisms to prevent destroy attacks. One
mechanism is to recover from the total loss of a storage
server by keeping multiple copies of the data [28, 15]. An-
other mechanism is to protect data from unauthorized modi-
fication by using versioning on the storage servers, allowing
data to be reverted to a state before intrusion [26]. However,
our focus is not on the survivable storage.

Riedel et al. propose a framework for evaluating stor-
age system security [21]. They show that encrypt-on-disk
systems offer both increased security and improved perfor-
mance over encrypt-on-wire. They provide us with a guid-
ance to develop our security scheme for network-attached
storage.

3. System Specification

This section specifies the infrastructure SNARE re-
quires, keys it uses, the secure storage model it presents to
file systems, and basic operation it provides.

3.1. Required Infrastructure

Authorization Server

4)Response

User

1) Authorization Request

2) Capability

3) Request + KeyData + HMAC

share

share

Disk Key

Client NAS

Figure 1. Interaction in SNARE

Below is the infrastructure required by SNARE, as de-
picted by Figure 1.

• User, which includes owners, readers, writers, and so
on.

• Client: a multi-user workstation. A client daemon and
one or more user agents run on this machine. The
client daemon communicates with user agents, the au-
thorization server and the network-attached storage.
The user agent acts on behalf of the user and performs
encryption/decryption at the request of the client dae-
mon. Each user has a user agent and the user agent can
access its user’s private key.

• Authorization server, which administers the name
space and access control policy of the file system. It
makes the access control decisions according to the
policies of the high-level file system. The authoriza-
tion server could be composed of a cluster of servers
to avoid single point of failure and bottleneck.

• Network-attached storage (NAS), which enforces the
access control policy previously determined by the au-
thorization server. It stores and retrieves files for client
daemons.

3.2. Keys

Each user in SNARE has a pair of private and public
keys, which will be used for user authentication. The autho-
rization server has a pair of private and public keys. Note
that SNARE uses a key distribution scheme to keep the NAS
from performing key management in order to minimize cor-
responding overhead. So each NAS itself only contains a
unique key: the disk key Kd. In addition, the disk key is
shared by the authorization server.

Every file in SNARE is divided into several blocks, and
each block is encrypted with a symmetric key, called a file-
data key (i.e., per-file basis). The lockbox (as will be dis-
cussed in section 3.3.1), which refers to a key encrypted
with another key, holds the file-data key for the file and is
read and written by a file-lockbox key. File-lockbox keys
are symmetric keys and are given to valid readers and writ-
ers by the authorization server. The potential benefit of us-
ing the lockbox is that it allows the authorization server to
do key aggregation, thereby reducing the number of keys
the authorization server needs to manage, distribute and re-
ceive. For example, in the context of the sharing seman-
tics of UNIX file systems, if a set of files are owned by the
same owner, the same group, and have the same permis-
sion bits, then they are authorized for access by the same
sets of users. So the authorization server could use only a
single file-lockbox key for these files. Note that these files
each has its own file-data key. But these file-data keys do
not need the authorization server to keep track of. They are
transparent to both the authorization server and the NAS.
As a result, using lockbox allows the authorization server to
group files into logical groups so that file-lockbox keys are
shared among files in each logical group without compro-
mising security (due to the fact that each file has a unique
file-data key), thereby reducing the number of keys the au-
thorization server need to keep track of.

A cryptographic capability in SNARE contains two
parts, namely a secret key hku and a secret key data
KeyData. The secret key hku is derived by hashing the
KeyData with a Kd (where the Kd is the disk key for
a particular NAS). The KeyData may include user’s ac-
cess rights on one or more file objects. When a user ac-

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

cesses a file object on NAS for the first time, the user has
to obtain a capability for this file object from the autho-
rization server (as shown in Figure 1). The authorization
server performs the access control policy of the file system,
generates a capability by using a corresponding disk key
Kd, and sends the capability back to the client. It is worth
pointing out that the file-lockbox key for the file is also sent
back to the client along with the capability. For each sub-
sequent data request on this file object, the client sends the
request together with the capability to the NAS bypassing
the authorization server. The NAS then enforces the autho-
rization server’s exact access control decision (specified in
KeyData) before sending a response.

In the context of secure storage, key revocation is ex-
tended so that a user’s access rights to a particular piece of
data can be revoked. Four ways of revoking keys 1 are pro-
vided: keys have a lifetime (controlled by KeyData, which
can include an expiration time), valid keys are controlled
by an access control version number AV on file objects, a
blacklist of invalidated keys are maintained at the NAS, and
all keys for a specific NAS can be revoked by changed its
disk key Kd.

3.3. Secure Storage Model

3.3.1. Data Structure

Network-attached storage systems provide a richer, typed,
variable-size (file object), hierarchical interface [11, 10].
Therefore, using an object interface rather than a fixed-
block moves data layout management to the storage, gives
the storage directly knowledge of the relationships be-
tween disk blocks, and minimizes security overhead. Since
SNARE employs a key distribution scheme to keep NAS
from having to perform key management, there is only one
main data structure on the storage: file object.

Figure 2 shows the data structure of the file object on the
NAS. A file object is composed of one or more encrypted
data blocks along with per-file metadata. The data block
is encrypted at the client with a file-data key using a sym-
metric encryption algorithm RC5 [2, 22]. A data block is
the minimum unit of data that can be read or written in sys-
tem. Note that the file-data key is a key used for encryp-
tion/decryption of data blocks, and is generated by the user
(i.e., the file owner) upon the creation of the file. Rather
than storing it in the clear, the NAS stores it encrypted with
a file-lockbox key. Hence, the lockbox holds the file-data
key encrypted with the file-lockbox key. It is worth point-
ing out that the lockbox is generated at the client and sent to
the NAS, which is ignorant of both the file-data key and the
file-lockbox key.

1We here mainly refer to the revoking of capabilities. The revoking
of both file-lockbox keys and file-data keys can be performed lazily for
performance consideration, e.g., at the time of file updates.

Object Inode

... ...

HMAC

object ID AV lockbox

length, create time,
modify time, etc.

block checksum pointer

0x1234...

0xABCD...

indirect pointer

ecrypted

ecrypted

data block

data block

Figure 2. File object

HMAC is a keyed message authentication code, gener-
ated by hashing the file object inode information (except
the HMAC field itself) with the disk key Kd. Object ID
is a unique identifier for the file object on this storage de-
vice. AV is an access control version number, and it allows
the authorization server to invalidate outstanding capabili-
ties (being held by users) on an object when the access con-
trol policy for that object changes. Another copy of AV is
also maintained at the authorization server.

Block checksum is computed at the client by SHA-1,
stored together with their corresponding direct pointers in
the inode. This will always make the checksums available
without additional I/O operation as long as the inode is in
memory, allowing the storage to overlap the computation
of the response’s HMAC and retrieval of the data block for
read requests. Pointer is stored in encrypted form, calcu-
lated by XOR encryption with a HMAC key (generated by
hashing object ID using the disk key Kd). In addition, the
inode does not maintain an access time, thereby avoiding
updating the HMAC upon every request on this object.

3.3.2. Data Security

Data security in SNARE is defined by four attributes: user
authentication, data privacy, data integrity and copy resis-
tance.

User authentication is used to restrict who may or may
not have access to network-attached storage. In SNARE, a
user first has to be authenticated by the authorization server.
Then, after obtaining a capability from the authorization
server, the user presents the capability along with the re-
quest to the storage, allowing the storage to authenticate his
access rights (specified in the KeyData).

Data privacy is needed whenever the data in transit or
on storage must be protected from unauthorized disclosure.
SNARE performs encryption and decryption at the client.
Data are stored on storage in encrypted form, so it is pro-
tected from leaking by the storage (who does not know the

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

secret key since the file-data key is sealed in a lockbox) and
there is no need to encrypt data again when it is sent over
the network.

Data integrity is the means of ensuring that data modi-
fied on storage or in transit by a malicious intruder must be
detected. SNARE ensures data and metadata integrity by
verifying both block checksums and HMAC. Whenever an
inode is read into memory, the HMAC will be verified to
ensure the integrity of the inode information. Further verifi-
cation of block checksums will ensure the integrity of data
blocks, which is normally performed at the client during a
read operation. Hence, any tampering on either the block
checksum or the data block can be detected by users later.
Note that a NAS in SNARE may attempt to mispresent data.
For example, suppose a file has two data blocks b1 and b2.
If a user requests b1 and the NAS instead sends b2 (together
with b2’s checksum) back, then the user cannot notice it.
This is because SNARE uses a single file-data key for all
data blocks of the file. Alternatively, SNARE could use the
same file-data key and include an initialization vector (e.g.,
block numbers) for each data block of the file to deal with
such a malicious behavior. SNARE also prevents the replay
attack.

Copy resistance is the means of guaranteeing that the
data stored on a network-attached storage device could
not be simply copied to another one with a different disk
key. As described earlier, data block pointers are XOR-
encrypted by a HMAC key, which is produced by hashing
the object ID using the disk key Kd. So if an attacker can
physically access a NAS disk 2 and copy the data from the
NAS disk into another NAS with a different disk key, there
is a difficulty to crack the data block pointer, thereby result-
ing in denial of data accesses.

3.3.3. File Sharing

The ability to share files among users is essential in a net-
work file system. File sharing in SNARE is on per-file basis
and depends on the concept of a lockbox. As discussed in
Section 3.3.1, the lockbox in a file object’s inode holds the
file-data key and is read and written by a file-lockbox key.
When an authorized user accesses a file on NAS (e.g., open
a file for read), the lockbox is sent to the user. Since the user
holds the corresponding file-lockbox key (which is sent by
the authorization server along with the capability), he/she
can read the file-data key, and then decrypts data blocks for
subsequent reads or writes.

3.4. Basic Operation

In this section, we mainly discuss two basic operations
provided by SNARE, namely data block write and data

2We assume that its Kd is not disclosed.

block read.

3.4.1. Block Write

Client NAS

Request

HMAC

Object ID

Block ID

Block Checksum

Timestamp

Data

KeyData

3. Compute a HMAC

4. Send the request to the NAS

1. Verify HMAC

2. Verify timestamp

3. Verify write permissions

4. Modify the file object’s

inode information

5. Write the data block

1. Compute a block checksum

for a data block

2. Encrypt the data block

Figure 3. Writing a data block

As shown in Figure 3, to write a data block, the client
calculates a block checksum over the data block, encrypts
the data block, and computes a HMAC over ObjectID,
BlockID, BlockChecksum, Timestamp, and Data us-
ing a secret key hku. The client then sends the request to
the storage.

Upon receiving the request, the storage either recalcu-
lates the hku using KeyData and Kd or requests it from
its cache, verifies the HMAC, checks the freshness of the
request, and verifies the write permissions in KeyData.
If everything succeeds, the storage stores the precomputed
block checksum in the file object’s inode, and writes the
data block to the disk.

3.4.2. Block Read

ClientObject ID

Block ID

Block Checksum

Timestamp

Data

2. Verify HMAC

NAS

Response

HMAC

1. Receive read request for a particular

block and verify the request

2. Compute a HMAC

3. Send the response

1. Verify timestamp

3. Decrypt the data block

4. Verify block checksum

Figure 4. Reading a data block

For the read operation, SNARE takes advantage of the
stored block checksum, which is precomputed at the client

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

during a previous write operation. As shown in Figure 4,
the storage computes a HMAC over ObjectID, BlockID,
BlockChecksum and Timestamp using the secrete key
hku without including the data block. The amount of cryp-
tographic work performed by the storage is therefore inde-
pendent of the size of the data block transferred. Further-
more, the computation of the HMAC can be overlapped
with the retrieval of the data block from the disk to mini-
mize latency.

Upon receiving the response, the client verifies the re-
sponse. The integrity of the data block is implicitly pro-
tected because of these two reasons: (1) the integrity of its
block checksum can be verified by recalculating the HMAC,
and (2) the client then recomputes a block checksum over
the data block (which is decrypted by the file-data key) to
finally ensure the integrity of the data block.

Compared to the storage, the client has to perform ad-
ditional SHA-1 and decryption over variable length data
blocks. The storage therefore can transmit secure data faster
than the client is able to verify and decrypt the data, shifting
the bottleneck from the storage to the receiving client. All
the saved cryptographic work on the storage is achieved by
the precomputed block checksum.

4. Cryptographic Protocols

In this section, we first present the protocols for user
authentication. Then we describe a key distribution pro-
tocol by which users obtain their capabilities. Finally, we
describe the request and response protocols by which the
client communicates with the NAS. It is worth pointing out
that all information in the protocols for both user authentica-
tion and key distribution are exchanged via a secure channel
established between the client and the authorization server
with session keys [17, 27].

Some notation is used in this section. Quoted values
represent constants. K−1 represents the private key cor-
responding to the public key K. Subscript K represents a
message encrypted with the key K, while subscript K−1

signifies a message signed by K−1. MACk(M) represents
a HMAC by hashing message M using the secret key k.

4.1. User Authentication

When a user wishes to access the file system, he has to be
authenticated by the authorization server first. In SNARE,
the client daemon keeps a counter for each session and as-
signs a unique sequence number for each user authentica-
tion request.

In order to identify sessions uniquely, we define a
SessionID structure here:

SessionID = SHA-1(“SessionInfo”,KCS ,KSC)

5) UserID, SeqNo, SessionID

4) AuthMsg, SeqNo

Client

Server

2) AuthMsg

3)
 A

ut
hM

sg
, S

eq
N

o

6)
 U

se
rID

, S
eq

N
o

1) SessionID, SeqNo

UserAgent

AuthAgent

Figure 5. The user authentication protocol

Where KCS , KSC are session keys for the secure chan-
nel established between the client and the authorization
server. They encrypt and guarantee the integrity of all com-
munication in the session.

As shown in Figure 5, a user authentication request starts
with passing a SessionID structure and sequence number
SeqNo to the user agent by the client. The user agent
returns an AuthMsg by concatenating SessionID with
SeqNO, signing the result (using the user’s private key
KU

−1), and appending the user’s public key KU :

SignedAuthReq = {“SignedAuthReq”,

SessionID, SeqNo}
AuthMsg = KU , {SignedAuthReq}KU

−1

The client daemon appends another copy of the SeqNo
to the AuthMsg and sends the request to the authoriza-
tion server, which then forwards the request to its authagent.
The authagent verifies the signature on the request using the
user’s public key KU , and checks that the signed sequence
number matches the one chosen by the client daemon. If the
request is valid, the authagent maps the KU to the UserID
by consulting one or more databases mapping public keys
to user IDs, and returns the UserID to the server together
with the SessionID and SeqNo. The server checks that
the SessionID matches the session and that the SeqNo
has not appeared before in the same session. If everything
succeeds, the server returns the UserID and SeqNo to the
client. After authentication, the client will tag all subse-
quent file system requests from the user to the authorization
server with this UserID.

Since the entire user authentication protocol happens
over a secure channel, it assures the authorization server that
all authentication requests received must have been freshly
generated by the client. The sequence number SeqNo used
here is not for security purpose. It allows the client to cor-
relate the UserID with the right user, because the client is

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

a multi-user machine.

4.2. Key Distribution

This key distribution protocol is used to keep the
network-attached storage from having to perform key man-
agement, and allows a user to obtain a cryptographic capa-
bility from the authorization server when he accesses a file
object for the first time. All subsequent accesses on this file
object can reuse the capability unless it is invalidated.

In order to obtain a capability for a user, the client dae-
mon constructs an authorization request AuthReq, which
is sent to the authorization server:

AuthReq = {“UserAuthReq”, UserID

ObjectID, SessionID, SeqNo}
Upon receiving the request, the authorization server first

verifies the request. If the request is valid, the server
generates a capability key data KeyData, which includes
UserID, ObjectID, Perms (access rights for read, write,
etc.), nounce (a number generated in a such way that the
same number is not generated twice), ExpT ime (expira-
tion time of the secret key based on the KeyData), and
an access control version number AV . A user’s secret key
hku is generated by hashing KeyData with a correspond-
ing disk key Kd.

Finally, the authorization server sends the AuthReply to
the client:

KeyData = {“KeyData”, UserID,ObjectID,

Perms, nonce,ExpT ime,AV }
hku = MACKd

(KeyData)
AuthReply = {“UserAuthReply”,KeyData,

hku, SeqNo, klockbox}
Note that the file-lockbox key klockbox is included in the

AuthReply. The sequence number SeqNo used here is not
for security purpose, and it allows the client to correlate the
AuthReply with the AuthReq.

4.3. Request

The client requests are of the form:

M = {RequestArgs,RequestData, SeqNo, Fs},
KeyData,MAChku

(M)

The RequestArgs field contains all the arguments be-
ing to specify a request (including operation type, etc.) ex-
cept for data payload used for write operations (stored in

RequestData). The SeqNo denotes the sequence number,
allowing the client to uniquely identify the request. The
Fs denotes the NAS’s timer, which is used to guarantee
the freshness of the request. The KeyData is associated
with hku, and allows the NAS to regenerate the secret key
hku using the disk key Kd. The integrity of KeyData is
implicitly protected because the modification of KeyData
will result in an incorrect HMAC being generated when the
request is verified by the NAS. The KeyData also allows
the NAS to check the user’s access rights on a file object by
consulting the Perms. Moreover, the NAS can limits hku’s
lifetime by referring to the ExpT ime in the KeyData.

In particular, when the request is a write operation —
writing a data block to the NAS, the client calculates a block
checksum over the data block, encrypts the data block, and
puts the checksum into RequestArgs. Then the client com-
putes a HMAC using MAChku

(M) and sends the request
to the NAS.

4.4. Response

The responses from the NAS to the client are of the form:

M = {ResponseArgs,ResposeData, SeqNo,

Fs},MAChku
(M)

The ResponseArgs field contains all the arguments be-
ing to specify a response (including the status of the cor-
responding operation, etc.) except for data payload used
for read operations (stored in ResponseData). The pres-
ence of SeqNo allows the client to properly correlate the
response with its corresponding request. The Fs is included
to compensate for clock drifts (as will discussed later). The
KeyData is not included in the response since the client
already possesses the user’s secret key hku.

In particular, when the response is for a read operation
— retrieving a data block from the storage, it has the form:

M = {ResposeArgs, SeqNo, Fs},
ResponseData,MAChku

(M)

Where, the data block is stored in the ResponseData,
and the the data block checksum is contained in the
ResponseArgs field.

4.5. Freshness

Although the replay attack is not as powerful as the tam-
pering attack, it can still cause serious damage to the in-
tegrity of a file system. Therefore, the storage device must
be able to prevent the replay attack.

To ensure the freshness of messages, there are generally
two alternatives to use: sequence numbers or timers. Se-
quence numbers require the NAS to maintain at least the

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

next sequence number and perhaps a list of other expected
sequence numbers for each client. It will compete for mem-
ory with data caches and metadata caches. Since the NAS is
relatively resource poor, it is not a good idea to use sequence
numbers. Therefore, our system uses timers to let the NAS
ensure the freshness of messages without keeping freshness
information about all clients. As mentioned in section 4.3,
storage devices require clients to include timer Fs in each
request to ensure the freshness of the request.

The client synchronizes its timer with the NAS by keep-
ing the difference between its timer and the NAS’s timer.
When the client sends a request to the NAS, it computes
Fs using its timer and the difference, and then puts the Fs

into the request. To compensate for clock drift, as men-
tioned in section 4.4, the NAS includes its current timer in
all response, thus allowing the clients to resynchronize their
timers each time the clients receive a response.

5. Performance Measurements

5.1. Experimental Testbed

At the time of this writing, we have built a prototype im-
plementation of the cryptographic protocols. In addition,
we constructed prototype network-attached storage devices
and clients, and ran our experiments to see how much per-
formance penalty the cryptographic overhead will impose
on the storage. In this kind of experiments, the authoriza-
tion server is currently not involved.

In our experiments, we used a DEC 333 MHZ Alpha
with a Seagate Cheetah 10K RPM UltraSCSI disk drive as
our network-attached storage device. The client ran on a
DEC 500 MHZ Alpha. The storage and the client are con-
nected to each other by 100 Mbits/s Ethernet using a switch.
Our workload consists of reads and writes to logical blocks
on the disk with random and sequential access patterns.

5.2. Cryptographic Overhead

Cryptography’s computational requirements can have
serious performance implications. In order to explore the
overhead incurred by the cryptographic algorithms to the
storage device used in our system, we tested the raw speed
of SHA-1, RC5 encryption/decryption and RSA algorithm
[22]. SHA-1 was tested for the cryptographic hash algo-
rithm, RC5 was tested for the secret-key cryptographic al-
gorithm, and RSA was tested for the public-key crypto-
graphic algorithm.

As Figure 6 shows, the most expensive operation is RSA
signature generation. Since we use a modulus of 512 bits
with 32,767 as the public exponent in our RSA algorithm,
this allows verification to be much faster than signature gen-
eration. SHA-1 is the fastest algorithm, while RC5 en-

0

5

10

15

20

25

30

SHA-1 RC5
Encrypt

RC5
Decrypt

Sign Verify

Cryptographic operations

Ti
m

e
(m

s)

Figure 6. Performance of cryptographic algo-
rithms on DEC 333 MHZ Alpha. Block size
is 32 KB, while signature and verification are
done on 128 bit inputs.

Read Write
operations Client NAS Client NAS

Hash
√ √ √ √

En/decrypt
√ √

Sign
Verify

Table 1. Cryptographic operations for each
read and write request.

cryption takes less time than RC5 decryption. The amount
of time required to compute a RSA signature justifies
the avoidance of using public-key encryption on network-
attached storage. Table 1 describes the cryptographic oper-
ations performed at the client and network-attached storage
for each read and write request.

5.3. Prototype Performance

To illustrate the impact of security on performance, we
first tested the system without any security, showing how
fast the system could be with random and sequential ac-
cess patterns. This is our baseline system. Then we tested
the system with security enabled. Figure 7 shows the
network-attached storage prototype’s performance of reads
and writes with/without security.

Figure 7 shows that, the performance of sequential ac-
cesses is much better than that of random accesses. In addi-
tion, with the block size varying from 1 KB to 32 KB, both
random reads and random writes suffer little performance
penalty for security. This suggests that random disk I/O op-

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

erations mean larger disk access time, therefore amortizing
the performance penalty imposed by cryptography.

As mentioned in section 3.4.2, the storage exploits data
block checksums to achieve good read performance. With
precomputed checksums, the amount of cryptographic work
performed on the storage is independent of the size of the
data block transferred. Therefore, we have a fixed crypto-
graphic overhead that is amortized over the size of the data
block. As Figure 7 shows, with block sizes increasing up
to 32 KB, the performance penalty of security decreases
noticeably. For 2 KB sequential reads, the fixed penalty
reduces performance by 32%, while for 32 KB sequential
reads, the performance is reduced by only 9%. Large se-
quential reads (≥ 4 KB) with security reduce performance
by 9-25%.

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32

B
a
n
d
w
i
d
t
h
(
M
B
/
s
)

Block size (KB)

(a) Reads

Seq - base
Seq - secure
Rand - base

Rand - secure

0
1
2
3
4
5
6
7
8
9
10

1 2 4 8 16 32

B
a
n
d
w
i
d
t
h
(
M
B
/
s
)

Block size (KB)

(b) Writes

Seq - base
Seq - secure
Rand - base

Rand - secure

Figure 7. Performance of network-attached
storage with/without security.

However, when the storage performs sequential writes,
the amount of cryptographic work is dependent on the size
of the data block transferred. Figure 7 shows that, large se-
quential writes (≥ 4 KB) with security reduce performance
by 14-23%.

6. Conclusions

Computer security is of growing importance in today’s
increasingly networked environment. In order to efficiently
provide strong security on network-attached storage, we
have to consider many aspects of the problem in order to
decide how best to provide security while imposing small
performance penalty.

This paper presents a strong security scheme for
network-attached storage that is based on capability and
uses a key distribution scheme to keep network-attached
storage from performing key management. This system
provides data privacy and integrity from the moment it
leaves the client computer. In addition, it also guarantees
that the data stored on the storage is copy-resistant.

Several methods are employed to boost the performance
and scalability of network-attached storage devices. Using
HMAC instead of more performance-intensive authentica-
tion methods such as public-key encryption and performing
encryption/decryption at the client minimize the effort re-
quired by the network-attached storage device’s CPU. Fur-
thermore, with stored data block checksums (which are pre-
computed at the client), the storage can transmit secure data
faster than the client is able to verify the data, thus shifting
the bottleneck from the storage to the receiving client for
good scalability.

In spite of this level of security, our experiments shows
that, using a relatively inexpensive CPU in the storage de-
vice, there are little performance penalty for random disk
accesses and about 9-25% performance degradation for
large sequential disk accesses (≥ 4 KB). Given the hostile
environment in an untrusted, networked world, network-
attached storage systems are able to provide strong security
while preserving good performance.

7. Acknowledgments

We would like to thank the anonymous reviewers for
their helpful comments on drafts of this paper. We also
thank Ning Shao for his help on our experimental setup.

References

[1] T. E. Anderson, M. Dahlin, J. M. Neefe, D. A. Patterson,
D. S. Roselli, and R. Wang. Serverless network file systems.
ACM Transactions on Computer Systems, 14(1):41–79, Feb.
1996.

[2] R. W. Baldwin and R. L. Rivest. The rc5, rc5-cbc, rc5-cbc-
pad, and rc5-cts algorithms. Request for Comment (RFC)
2040, Oct. 1996.

[3] M. Blaze. A cryptographic file system for unix. In Proceed-
ings of the first ACM Conference on Computer and Commu-
nication Security, pages 9–15, Fairfax, VA, Nov. 1993.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

[4] M. Blaze. Key management in an encrypting file system. In
Proceedings of the USENIX Summer 1994 Technical Con-
ference, pages 27–35, Boston, MA, June 1994.

[5] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano. The
design and implementation of a transparent cryptographic
file system for unix. In Proceedings of the Freenix Track:
2001 USENIX Annual Technical Conference, pages 199–
212, Boston, MA, June 2001.

[6] J. B. Dennis and E. C. V. Horn. Programming semantics
for multiprogrammed computations. CACM, 9(3):143–155,
Mar. 1966.

[7] W. E. Freeman and E. L. Miller. Design for a decentralized
security system for network-attached storage. In Proceed-
ings of the 17th IEEE Symposium on Mass Storage Systems
and Technologies, pages 361–373, College Park, MD, Mar.
2000.

[8] K. Fu. Group sharing and random access in cryptographic
storage file systems. Master’s thesis, Massachusetts Institute
of Technology, June 1999.

[9] K. Fu, M. F. Kaashoek, and D. Mazires. Fast and secure
distributed read-only file system. In Proceedings of the 4th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 181–196, San Diego, CA, Oct.
2000.

[10] G. A. Gibson and R. V. Meter. Network attached storage
architecture. Communications of the ACM, 43(11):37–45,
Oct. 2000.

[11] G. A. Gibson, D. F. Nagle, J. B. K. Amiri, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze-
lenka. A cost-effective, high-bandwidth storage architec-
ture. In Proceedings of the 8th Conference on Architec-
tural Support for Programming Languages and Operating
Systems, San Jose, CA, Oct. 1998.

[12] H. Gobioff. Security for a High Performance Commodity
Storage Subsystem. PhD thesis, Carnegie Mellon University,
July 1999.

[13] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81, Feb. 1988.

[14] H. Krawczyk, M. Bellare, and R. Canetti. Keyed-hashing for
message authentication. Request for Comment (RFC) 2104,
Internet Engineering Task Force (IETF), Feb. 1997.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. In Proceedings of
the Ninth international Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 190–201, Cambridge, MA, Nov. 2000.

[16] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. C. Mitchell, and M. Horowitz. Architectural support
for copy and tamper resistant software. In Proceedings of
the Ninth international Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 168–177, Cambridge, MA, 2000.

[17] D. Mazires, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In

Proceedings of the 17th ACM Symposium on Operating Sys-
tems Principles, pages 124–139, Dec. 1999.

[18] D. Mazires and D. Shasha. Don’t trust your file server. In
Proceedings of the 8th Workshop on Hot Topics in Oper-
ating Systems (HotOS VIII), pages 99–104, Schloss Elmau,
Germany, May 2001.

[19] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C. Reed.
strong secutity for network-attached storage. In Proceedings
of the 1st ACM Conference on File and Storage Technolo-
gies(FAST), pages 1–13, Monterey, CA, Jan. 2002.

[20] B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E.
Long. Authenticating network-attached storage. IEEE Mi-
cro, 20(1):49–57, Jan. 2000.

[21] E. Riedel, M. Kallahalla, and R. Swaminathan. A frame-
work for evaluating storage sysytem security. In Proceed-
ings of the 1st ACM Conference on File and Storage Tech-
nologies(FAST), pages 15–30, Monterey, CA, Jan. 2002.

[22] B. Schneier. Applied Cryptography. John Wiley & Sons,
1996.

[23] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. Nfs version 4 pro-
tocol. Request for Comment (RFC) 3010, Dec. 2001.

[24] M. Spasojevic and M. Satyanarayanan. An empirical study
of a wide-area distributed file system. ACM Transactions on
Computer Systems, 14(2):200–222, May 1996.

[25] J. G. Steiner, B. C. Neuman, and J. Schiller. Kerberos: An
authentication service for open network systems. In Pro-
ceedings of the Winter 1988 USENIX Technical Conference,
pages 191–201, Dallas, TX, Feb. 1988.

[26] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A.
Soules, and G. R. Ganger. Self-securing storage: Protect-
ing data in compromised systems. In Proceedings of the 4th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 165–180, San Diego, CA, Oct.
2000.

[27] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos operating system. ACM Transac-
tions on Computer Systems, 12(1):3–32, 1994.

[28] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kiliccote, and
P. Khosla. Survivable information storage systems. IEEE
Computer, 33(8):61–68, Aug. 2000.

[29] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A stack-
able vnode level encryption file system. Technical Report
CUCS-021-98, Computer Science Department, Columbia
University, 1998.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

