
Making Search Efficient on Gnutella-like P2P Systems

Yingwu Zhu
Department of ECECS

University of Cincinnati
zhuy@ececs.uc.edu

Xiaoyu Yang
Department of ECECS

University of Cincinnati
yangxu@ececs.uc.edu

Yiming Hu
Department of ECECS

University of Cincinnati
yhu@ececs.uc.edu

Abstract

Leveraging the state-of-the-art information retrieval (IR)
algorithms like VSM and relevance ranking algorithm, we
present GES, an efficient IR system built on top of Gnutella-
like P2P networks. The key idea is that GES employs
a distributed, content-based, and capacity-aware topology
adaptation algorithm to organize nodes (each of which is
represented by a node vector) into semantic groups. The
intuition behind this design is that semantically associated
nodes within a semantic group tend to be relevant to the
same queries. Given a query, GES uses a capacity-aware
search protocol based on semantic groups and selective
one-hop node vector replication, to direct the query to the
most relevant nodes which are responsible for the query,
thereby achieving high recall with probing only a small fac-
tion of nodes. Moreover, GES adopts automatic query ex-
pansion techniques to improve quality of search results, and
it is the first work to show that node vector size plays a very
important role in system performance. The experimental re-
sults show that GES is very efficient, and even outperforms
the centralized node clustering system like SETS.

1. Introduction

In the past years structured P2P systems [20, 16, 14, 23]
have attracted tremendous attention from both the user and
research communities. Such systems are adept at exact-
match lookups: given a key, the system can locate the corre-
sponding document within O(log N) hops (N is the number
of nodes in the system). However, extending exact-match
lookups to support complex queries (e.g., keyword search,
semantic/content search) on structured P2P systems is non-
trivial. A number of search techniques [9, 15, 22, 24] have
been proposed on such systems. The main problem facing
these search techniques is high maintenance cost in both
overlay structure and document indices due to node churn
in P2P networks. For example, the churn rate of coming
and going nodes in a deployed P2P network (e.g., Gnutella)

of 100, 000 nodes is expected to be over 1, 600 nodes per
minute [5]. Node churn complicates the task of search on
structured P2P networks. First, each node failure requires
O(log N) repair operations to maintain the strictly struc-
tured overlay topology, e.g., to reconfigure the routing ta-
bles and thus preserve the efficiency and correctness of rout-
ing after each failure. Second, the lost documents and doc-
ument indices have to be discovered and replicated to other
nodes after failures to allow the aforementioned P2P search
techniques to perform efficiently and effectively.

However, node churn causes little problem for Gnutella-
like P2P systems because such systems employ an unstruc-
tured overlay. The unstructured overlay organizes nodes
into a random graph and uses flooding or random walk [11]
on the graph to retrieve relevant documents for a query.
Each visited node evaluates the query locally on its own
contents. Arbitrarily complex queries therefore can be eas-
ily supported on such unstructured systems, but the draw-
back is inefficiency — either a large portion of nodes have
to be probed or some relevant documents have to be missed.

To improve search efficiency, a number of search tech-
niques [11, 6, 7, 19, 2] have been proposed on Gnutella-
like P2P systems. However, with very few exceptions [2],
most of them ignore the state-of-the-art IR algorithms such
as VSM (vector space model) and relevance ranking algo-
rithms, and therefore may not be able to provide guarantee
on recall. Worse yet, a query containing popular terms may
return a superfluous number of documents beyond a user’s
capability to deal with.

In this paper we focus our study on a scenario where doc-
uments are organized into nodes according to the humans
who created them, though the techniques we present here
may be applicable to other scenarios such as interest-based
locality [19] (i.e., organize nodes into semantic groups ac-
cording to their interests). It is worth pointing out that we
do not assume the documents on a node are restricted to
only one single topic/area and they could be diverse instead
(as will be shown in Section 5.3). The goal of our work
is to improve the quality of search (e.g., high recall) while
minimizing the associated cost (e.g., the number of nodes

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

involved for a query). To achieve this goal, we introduce
the concept of semantic group: nodes are organized into
groups according to their node vectors. A semantic link
connects two nodes if their node vectors are deemed to be
relevant. Our design philosophy differs from existing work
like SETS [2] in that we seek to improve search efficiency
while retaining the simple, robust, and fully decentralized
nature of Gnutella. Our design rationale is based on the in-
tuition that semantically associated nodes within a seman-
tic group tend to be relevant to the same queries. Given
a query, we first locate the most relevant semantic groups
for the query and then flood the query within the semantic
groups for answers. In particular, we make the following
contributions:

• Leveraging the IR algorithms, we propose a dis-
tributed, dynamic, and capacity-aware topology adap-
tation algorithm to organize nodes into semantic
groups. Based on semantic groups and selective one-
hop node vector replication, an efficient search proto-
col directs queries to the most relevant nodes which
are responsible for the queries, thereby achieving high
recall at very low cost.

• Our findings through detailed experiments suggest that
an appropriate node vector size is a very good design
choice in both search efficiency and effectiveness.

• We introduce automatic query expansion [12] into our
system to improve the quality of search results in both
recall and precision.

• Our results show that GES’s capacity-aware mecha-
nism can exploit node heterogeneity to further improve
search efficiency.

The combination of the above techniques makes GES
very efficient, and our experimental results have shown it
even outperforms the centralized node clustering system
like SETS [2].

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of related work. Section 3 provides
necessary background. In Section 4, we describe the design
of GES. In Section 5, we present our evaluation metrics,
data, and simulation methodology. We provide our exper-
imental results in Section 6. We finally conclude in Sec-
tion 7.

2. Related Work

A number of P2P keyword search systems [15, 9, 21]
have been built on top of structured P2P systems [20, 16,
14, 23]. All of them are based on global indexing where
each node is responsible for the inverted list of some terms.
Recently, some content-based P2P search systems [22, 24],

leveraging the state-of-the-art IR algorithms, have been pro-
posed on top of structured P2P systems. However, the main
drawback of all these search systems is huge (overlay and
document indexes) maintenance cost caused by node churn.

Centralized P2P systems such as Napster suffer from a
single point of failure and performance bottleneck at the in-
dexing servers. On the other hand, decentralized P2P sys-
tems like Gnutella, rely on flooding to answer queries, con-
suming huge amounts of bandwidth and CPU cycles and
posing a scalability issue.

Improvements to Gnutella’s flooding mechanism have
been studied along three dimensions: random walks, guided
search, and similar content group-based search. Lv et
al. [11] proposed random walks in place of flooding to im-
prove scalability. Crespo et al. [7] introduced the notion of
“routing indices” to guide a query towards nodes which are
more likely to have the requested documents. This search
technique is similar to GES’s biased walks which rely on
replicated node vectors to direct a query towards most rele-
vant nodes for answers. Systems such as [6, 19, 2, 13] or-
ganize nodes into either similar content groups or interest-
shared groups to improve search efficiency on Gnutella-like
P2P systems. However, with very few exceptions [2], most
of them ignore the state-of-the-art IR algorithms such as
VSM and advanced relevance ranking algorithms, and thus
may not be able to provide guarantee on recall.

GES bears more similarity with SETS [2]. However, sev-
eral important features distinguish GES from SETS. First,
GES uses a distributed topology adaptation algorithm to or-
ganize nodes into semantic groups while in SETS a sin-
gle designated node is responsible for clustering nodes into
topic segments. Such a centralized structure may suffer
from a single point of failure and performance bottleneck.
Second, GES’s topology adaptation and search protocol are
capacity-aware, and it could exploit node capacity hetero-
geneity to significantly improve performance. Thirdly, GES
is the first to explore the impact of node vector sizes on sys-
tem performance, and show that an appropriate node vector
size is very important in system design. Finally, GES is the
first system to adopt automatic query expansion techniques
into Gnutella-like P2P systems to improve the quality of
search results.

GES’s topology adaptation partly draws inspiration from
Gia’s [5]. However, GES’s topology adaptation differs from
Gia’s in that it is mainly used to organize relevant nodes into
same semantic groups to improve search efficiency while
Gia uses topology adaptation to improve system scalabil-
ity. Recent work [10] proposes a hybrid search technique
on Gnutella-like systems in which structured P2P search
techniques are used to index and locate rare documents and
flooding techniques are used to locate highly replicated doc-
uments.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

3. Background: Vector Space Model (VSM)

In VSM [3] each document/query is represented by a
vector of terms. The terms are stemmed words 1 which oc-
cur within the document/query. In addition, stop words 2

and highly frequent words are removed from the term vec-
tor. Each term in the vector is assigned a weight. Terms
with a relatively heavy weight are generally deemed to be
central to a document. To evaluate whether a document is
relevant to a query, VSM measures the relevance between
the query vector and the document vector. Typically, for a
document D and a query Q (suppose the term vectors of D
and Q have been already normalized) the relevance score is
computed as:

REL(D,Q) =
∑

t∈D,Q

dt · qt (1)

Where t is a term appearing in both D and Q, q t is term
t’s weight in query Q, and dt is term t’s weight in document
D. Documents with high relevance score are identified as
search results for a query.

A number of term weighting schemes have been pro-
posed for VSM, among which tf-idf is a scheme in which
the weight of a term is assigned a high numeric value if the
term is frequent in a document but infrequent in other docu-
ments. The main drawback of tf-idf is that it requires some
global information (i.e., the document frequency df , which
represents the number of documents where a term occurs)
to compute a term’s weight. In our design, we use a “damp-
ened” tf scheme, where each term t is assigned a weight in
the form of dt = 1 + log ft (ft is t’s term frequency in a
document). Previous work [18] has shown that this scheme
can produce high quality document clusters without requir-
ing the global information.

4. System Design

In this section, we provide an overview of GES, describe
its node vectors, discuss its topology adaptation algorithm,
present its selective one-hop node vector replication, and
detail its search protocol.

4.1. Overview

In GES, each node has a node vector, a compact sum-
mary of its documents. A node may have two types of
links/connections, namely random links and semantic links.
Random links connect irrelevant nodes while semantic links

1Stemmed words are the words that provide the root for other related
words. E.g., the stemmed word for words restarted, restarts, and restarting
is restart by removing their suffixes.

2Stop words are those words that are considered non-informative, like
function words of, the, a, etc.

organize relevant nodes into semantic groups. Maintaining
random links on each node helps to efficiently discover dif-
ferent semantic groups. The topology adaptation algorithm
is first performed to connect a node to the rest of the network
through random links and semantic links 3. Given a query,
the search protocol, which is based on semantic groups and
selective one-hop node vector replication, directs the query
through random links by biased walks to the most relevant
semantic groups and then floods the query through semantic
links within the semantic groups to retrieve relevant docu-
ments.

4.2. Node Vectors

To determine whether two nodes are relevant or not, we
introduce the concept of node vector. A node vector char-
acterizes a node’s documents. We derive a node X’s node
vector from its documents as follows. First, each of X’s
documents is represented by a temporary term vector where
each term t’s weight is represented by its term frequency
ft. Second, all temporary term vectors of X’s documents
are summed up and we get a new vector in which each term
component t has a weight f ′

t . For each term t, we replace
its weight f ′

t with 1+ log f ′
t . Finally, we normalize the new

vector and the normalized vector is called X’s node vector.
Given two nodes X and Y , their relevance score is com-

puted as:

REL(X, Y) =
∑

t∈X,Y

wX,t · wY,t (2)

Where t is a term appearing in both X and Y, wX,t is
term t’s weight in X, and wY,t is term t’s weight in Y. If
the relevance score is less than certain relevance threshold,
nodes X and Y are deemed to be irrelevant. Otherwise, they
are deemed to be relevant.

Node vectors are also used to determine the relevance of
a node X and a query Q according to Equation 3, as will be
shown later in biased walks during search.

REL(X, Q) =
∑

t∈X,Q

wX,t · wQ,t (3)

4.3. Topology Adaptation Algorithm

The task of topology adaptation algorithm is to connect
a node to the rest of the network, and more importantly,
to connect a node to a semantic group (if it can find one)
through semantic links. When a node joins the system, it
first uses a bootstrapping mechanism in Gnutella to connect
to the rest of the network. Initially, it may not have any in-
formation about other nodes’ contents (i.e., node vectors) as

3If a node cannot find a relevant node, it connects itself to the rest of
the network only through random links.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

well as semantic groups. Its attempt to gain such informa-
tion is performed through random walks. A random walk
is a well-known technique in which a query message is for-
warded to a randomly chosen neighbor at each step until
sufficient responses are found. In our system, the duration
of a random walk is bound by a TTL (time-to-live).

A random walk query message contains a node’s node
vector, a relevance threshold REL THRESHOLD, the max-
imum number of responses MAX RESPONSES, and TTL.
The random walk returns a set of nodes. In GES, a node ac-
tually periodically issues two queries, one requesting nodes
whose relevance is lower than REL THRESHOLD, and the
other requesting nodes whose relevance is higher than or
equal to REL THRESHOLD. Note that the relevance score
is computed using Equation 2. The returned nodes are
added to the query initiator node’s two host caches: random
host cache and semantic host cache, respectively, according
to their relevance scores. Each entry of host caches consists
of a node’s IP address, port number, node capacity, node
degree, node vector 4, and relevance score (keeping pre-
computed relevance scores in cache avoids recomputing).
These two caches are maintained throughout the lifetime of
the node. Moreover, each cache has a size constraint and
uses FIFO as replacement strategy.

Each node periodically checks its two caches for ran-
dom and semantic neighbor addition/replacement. To add
a new semantic neighbor (a neighbor node connected by a
semantic link), a node (say X) chooses a node from its se-
mantic cache that is not dead and not already a neighbor and
with the highest relevance score. Node X then uses a three-
way handshake protocol to the chosen neighbor candidate,
say Y . During handshake, each node decides independently
whether or not to accept the other node as a new semantic
neighbor based upon its own MAX SEM LINKS (the max-
imum number of semantic neighbors), SEM LINKS (the
number of current semantic neighbors), and the new node
(i.e., the relevance score). If SEM LINKS is less than
MAX SEM LINKS, the node automatically accepts this new
connection. Otherwise, the node must check if it can find an
appropriate semantic neighbor to drop and replace with the
new neighbor candidate. X always accepts Y and drops an
existing semantic neighbor if Y ’s relevance score is higher
than all of X’s current semantic neighbors. Otherwise, it
makes a decision whether to accept Y or not as follows.
From all of X’s semantic neighbors whose relevance scores
are lower than that of Y and which are not poorly con-
nected 5, we choose the neighbor Z which has the lowest
relevance score. Then X drops Z and add Y into its seman-
tic neighbors.

4The semantic host cache does not contain node vectors.
5As will be shown in section 5, each node has a minimum degree con-

straint, and a typical value is 3. If a node’s degree is less than or equal to
the minimum constraint value, this node is identified as a poorly-connected
node.

To add a new random neighbor (a neighbor node con-
nected by a random link), node X chooses a node from its
random cache which is not dead and not already a neigh-
bor and has a capacity greater than its own capacity (e.g.,
the highest capacity node is preferred). If no such candi-
date node exists, X randomly chooses a node. X then ini-
tiates a three-way handshake to the chosen random neigh-
bor candidate, say Y . During the handshake, each node
independently decides whether or not to accept the other
node as a new random neighbor upon the capacities and de-
grees of its existing random neighbors and the new node. If
X’s RND LINKS (the number of random neighbors) is less
than MAX RND LINKS (the maximum number of random
neighbors), the node automatically accepts this new node
as a random neighbor. Otherwise, the node must check if
it can find an appropriate random neighbor to drop and re-
place with the new node. X always drops an existing ran-
dom neighbor in favor of Y if Y has capacity higher than
all of X’s existing random neighbors. Otherwise, it decides
whether to accept Y or not as follows. From all of X’s
random neighbors that have capacity less than or equal to
that of Y , we choose the neighbor Z which has the high-
est degree. Z will be dropped and replaced with Y only if
Y has lower degree than that of Z. This prevents us from
dropping already poorly-connected neighbors and isolating
them from the rest of the network.

Discussion. The goal of the topology adaptation is to
ensure that: (1) relevant nodes are organized into semantic
groups through semantic links, by periodically issuing ran-
dom walk queries for semantic neighbors and performing
semantic neighbor addition/replacement, and (2) high ca-
pacity nodes have high degree and low capacity nodes are
within short reach of higher capacity nodes, by periodically
issuing random walk queries for random neighbors and per-
forming random neighbor addition/replacement. Note that
in GES a direct semantic link connects two most relevant
nodes while in other systems like SETS a local link does
not necessarily mean that two connected node are most rel-
evant within a topic segment.

For random walk queries requesting relevant nodes, we
can actually do optimizations as follows. When a query ar-
rives at a node (say Y) which is deemed to be relevant to
the initiator node (say X), Y can first choose some relevant
nodes from its semantic host cache for responses with some
probability. If the MAX RESPONSES has been reached, the
query reply is routed back to X . Otherwise, Y biased walks
the query through one of its semantic links with some prob-
ability. Further, relevant nodes within a semantic group can
exchange the content of their host caches. Currently GES
does not adopt such optimizations.

Each node also continuously keeps track of the rel-
evance scores of both semantic links and random links.
If the relevance score of a semantic link drops below

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

SEM THRESHOLD due to dynamically changing docu-
ments in either node (and thus changing node vectors),
we simply drop the semantic link and add the neigh-
bor information into the random host cache. Similarly,
if the relevance score of a random link becomes above
SEM THRESHOLD, we simply drop the random link and
add the neighbor information into its semantic host cache.
As a result, the topology adaptation process performed
thereafter can adapt to dynamically changing node vectors
of each node’s existing neighbors.

4.4. Selective One-hop Node Vector Replication

To improve search efficiency, each node maintains the
node vectors of all of its random neighbors in memory.
Note that we do not maintain those of its semantic neigh-
bors. This is why we call it selective replication. When a
random connection is lost, either because the random neigh-
bor node leaves the system, or due to topology adaptation,
the node vector for this neighbor gets flushed from mem-
ory. A node periodically checks the replicated node vectors
through heartbeat messages with each random neighbor in
case that a neighbor node may add/remove documents. This
allows nodes to adapt to dynamically changing node vec-
tors (due to dynamically changing of documents) and keep
replicated node vectors up-to-date and consistent.

4.5. Search Protocol

The combination of topology adaptation algorithm and
selective one-hop node vector replication has paved the way
for our content-based, capacity-aware search protocol. We
first present the search protocol while leaving its capacity-
aware mechanism for discussion later in this section.

Given a query, the search protocol is performed as fol-
lows. First, GES uses biased walks, rather than random
walks, to forward the query through random links. During
biased walks, each node along the route looks up its locally
stored documents for those satisfying the query: each docu-
ment is evaluated using Equation 1 and a relevance score is
computed 6; if the relevance score is higher than or equal to
certain relevance threshold, this document is identified as a
relevant document for the query. If any such a relevant doc-
ument is identified, then the node (say X) is called a seman-
tic group target node, where the query terminates biased
walks and starts flooding. Otherwise, X selects a neighbor
(say Y) from its random neighbors whose node vector is
most relevant to the query vector according to Equation 3,
and forwards the query to Y . The biased walks are repeated
until a semantic group target node is identified.

6We may narrow down the evaluation scope by clustering a node’s doc-
uments first.

The target node then floods the query along all of its se-
mantic links: each semantic neighbor evaluates the query
against its documents and then floods the query along its
own semantic links. During flooding, we can allow the
query to probe all of the nodes within a semantic group
or only a fraction of nodes by imposing a flooding radius
constraint from the target node (called controlled flooding).
The relevant documents found within the semantic group
are directly reported to the target node. Note that each query
contains a MAX RESPONSES parameter. The target
node aggregates the relevant documents, reports them di-
rectly to the query initiator node (which will present high-
est relevance ranking documents to the user), and decreases
MAX RESPONSES by the number of relevant docu-
ments. If MAX RESPONSES becomes less than or
equal to zero, the query is simply discarded. Otherwise,
the query starts biased walks from the target node again and
repeats the above search process until sufficient responses
are found.

During both biased walks and flooding, we use book-
keeping techniques to sidestep redundant paths. In GES,
each query is assigned a unique identifier GUID by its
initiator node. Each node keeps track of the neighbors to
which it has already forwarded the query with the same
GUID. During biased walks, if a query with the same
GUID arrives back at a node (say X), it is forwarded to a
different random neighbor with the highest relevance score
among those random neighbors to which X has not for-
warded the query yet. This reduces the probability that a
query traverses the same link twice. However, to ensure
forward progress, if X has already sent the query to all of
its random neighbors, it flushes the book-keeping state and
starts reusing its random neighbors. On the other hand, dur-
ing flooding, if a query with the same GUID arrives back
at the node, the query is simply discarded. Note that GES
nodes treat query messages with the same GUIDs differ-
ently during biased walks and flooding.

The search protocol we discussed above does not con-
sider node capacity heterogeneity. Now we incorporate the
capacity-aware mechanism into the search protocol to make
search more efficient in a system where node capacities are
heterogeneous. Due to the fact that the topology adaptation
algorithm takes into account the heterogeneity of node ca-
pacities only in random link construction, the search proto-
col only needs to adapt its biased walks while retaining the
flooding part untouched. During biased walks for a query,
each node makes a decision how to forward the query based
on the query vector, its own capacity, the capacities of all of
its random neighbors, and the node vectors of all of its ran-
dom neighbors. If the node (say X) is a supernode (whose
capacity is higher than certain threshold), it forwards the
query to a random neighbor whose node vector is most rel-
evant to the query vector. Otherwise, X must check all of

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

its random neighbors and chooses a neighbor (say Y) with
the highest capacity. If Y is a supernode, X forwards the
query to Y , hoping that high capacity nodes can typically
provide useful information for the query. Otherwise, X for-
wards the query to a random neighbor whose node vector
is most relevant to the query vector. The biased walks are
repeated until a target node is reached.

Discussion. In summary, query flooding within a seman-
tic group is based on the intuition that semantically asso-
ciated nodes tend to be relevant to the same queries and
can provide useful responses for them. The biased walks,
taking advantage of the heterogeneity of node capacities
and selective one-hop node vector replication, forward a
query either to a supernode neighbor with the hope that
high capacity nodes can typically provide useful informa-
tion for the query, or to the most relevant random neighbor
if no such a supernode exists. In our system, in addition
to MAX RESPONSES, each query is also bound by a
TTL parameter. Note that flooding within semantic groups
keeps us from exactly keeping track of the TTL. For sim-
plicity, GES decreases the TTL by one at each step only
during biased walks. Once TTL hits zero, the query mes-
sage is dropped and no longer forwarded.

5. Performance Evaluation

In this section we discuss the design of experiments to
evaluate the effectiveness and efficiency of GES. We start
by giving a brief overview of two other unstructured P2P
search systems. We then discuss performance metrics and
data for our evaluation. Finally, we describe our methodol-
ogy.

5.1. Random and SETS

Random: Search using random walks over Gnutella-
like P2P systems. This represents the recommended search
technique proposed in [11]. It is used to address the scala-
bility problem posed by flooding on Gnutella-like P2P sys-
tems. A random walk is essentially a blind search in that at
each step a query is forwarded to a randomly chosen node
without considering any hint of how likely the next node
will have answers for the query.

SETS: Search using a topic-driven query routing proto-
col on a topic-segmented overlay built from Gnutella-like
P2P systems [2]. A topic segment in SETS is similar to a
semantic group in GES. However, SETS differs from GES
in that the topic-segmented overlay is constructed by per-
forming node clustering at a single designated node, and
each cluster corresponds to a topic segment. Given a query,
SETS first computes R topic segments which are most rele-
vant to the query and then routes the query to these segments
for relevant documents. When a node joins the system, it

first has to contact the designated node for the information
about all the C topic segments and then joins the most rel-
evant segment. Moreover, as nodes join/leave or their doc-
ument collections change, the designated node has to re-
compute topic segments to keep them up-to-date and then
disseminates them throughout the system. This centralized
structure could be a single point of failure and performance
bottleneck.

5.2. Performance Metrics

The metrics we used to express the benefits and cost of
our design are:

• Recall: It is a main metric used to quantify the qual-
ity of search results, and is defined as the number of
retrieved relevant documents divided by the number of
relevant documents.

• Precision@r: It is another metric used to quantify the
quality of search results, and is defined as the number
of retrieved relevant documents divided by the number
r of retrieved documents. We are particularly inter-
ested in high-end precision (e.g., prec@15) because a
recent study [8] has shown that users only view top 10
search results.

• Query Processing Cost: It is defined as the fraction of
nodes in the system which are involved in a query pro-
cessing. A lower query processing cost increases sys-
tem scalability since system resource consumption is
proportional to the number of nodes visited by a query.
In addition, query processing cost measures the qual-
ity of topology adaptation. If the quality of topology
adaptation is poor, a query may probe many irrelevant
nodes, thereby increasing query processing cost.

5.3. Data

The data we used to evaluate our design is TREC-1,2-
AP [1]. The TREC corpus is a standard benchmark widely
used in the IR community. TREC-1,2-AP contains AP
Newswire documents in TREC CDs 1 and 2. We extracted
those documents with text and valid author fields from this
original document collection. We assumed that each author
corresponds to a node and his/her associated documents are
stored on the corresponding node. This resulted in 80, 008
documents distributed over 1880 nodes. The mean, 1th-
percentile and 99th-percentile of the number of documents
per node are 42.5, 1 and 417, respectively. The term vector
of a document was derived from the text field using VSM.
The terms in each document vector were stemmed. We also
used a list of 571 stop words from SMART [4] to remove

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

stop words from each document vector. Each document
vector on average had 179 unique terms.

The queries we used are from TREC-3 ad hoc topics
(151-200). The query vector was derived from the title field
using VSM. The terms in each query vector were stemmed
and stop words were removed as well. Thus, these 50
queries each had on average 3.5 unique terms. Moreover,
the 50 queries each comes with a query relevant judgment
file which contains a set of already identified relevant docu-
ments (by TREC-3 ad hoc query assessors). Since we only
used 80, 008 AP Newswire documents with valid author and
text fields, we removed those documents which do not ap-
pear in this 80, 008 document set from the accompanying
relevant judgment files.

Our preliminary analysis of the TREC data shows that
more than 50% nodes provide relevant documents for two
or more queries (the maximum is 12 queries). We found
that the topics of these queries (151-200) are very different.
We conclude that documents created by an author (and thus
distributed on a node) are not restricted to only one single
topic/area. Hence, the TREC data we used in our evaluation
does not assume a node specializes in one single topic, and
a very large portion of nodes hold diverse documents indeed
(the checking of documents confirmed this).

5.4. Methodology

GES simulations started with a randomly-connected
topology, and then used topology adaptation algorithm to
restructure the initial topology. GES’s topology adaptation
algorithm uses four preconfigured parameters: min links,
max links, α, and node rel threshold. min links is
the minimum number of neighbors per node, and we
used min links = 3 throughout all of our experi-
ments. max links is the maximum number of neigh-
bors per node, we set max links = 8 in the exper-
iments where node capacities are assumed to be uni-
form. In the experiments where node capacities are
heterogeneous, we set max links to 128. However,
there is a constraint on max links, i.e., max links =
min(max links, � C

min unit�), where C is a node’s capac-
ity and min unit represents the finest level of granularity
into which a node’s capacity is split. Our preliminary results
suggested min unit = 4 is a good design choice. α rep-
resents the maximum fraction of max links devoted to se-
mantic links, and our preliminary results suggested α= 0.5
is a good design choice. node rel threshold represents
the node relevance threshold we used to perform topology
adaptation and our preliminary results showed that 0.45 is a
good choice.

For SETS, a designated node performed topic segmen-
tation to reconfigure the initial randomly-connected topol-
ogy. Each node had 4 long-distance links and 4 local links.

The number of topic segments are 256, which represents
the best case for performance compared to 32, 64, and 128
topic segments. For Random, there is no topology adap-
tation, and it used a random graph. Throughout all of our
experiments, we chose uniformly random graphs with an
average degree of 8. The primary purpose of choosing such
uniformly random graphs is to sidestep unnecessarily bias-
ing against SETS and Random.

In most of our experiments, we assumed node capacities
are uniform by default (unless otherwise specified). For the
experiments where node capacities are heterogeneous, node
capacities are assigned based on a Gnutella-like profile [17].
We assigned capacity of 1×, 10×, 102×, 103× and 104× to
nodes with probability of 20%, 45%, 30%, 4.9% and 0.1%,
respectively. Nodes with capacities 103× and 104× were
assumed to be supernodes.

6. Experimental Results

6.1 Performance Comparison

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

R
ec

al
l (

%
)

Processing Cost (% nodes)

SETS
GES

Random

Figure 1. Recall vs. processing cost.

We present evaluation results comparing the perfor-
mance of GES against SETS and Random, as shown in
Figure 1. Several observations can be drawn from this fig-
ure: (1) GES and SETS outperform Random substantially,
achieving higher recall at lower query processing cost. (2)
Compared to GES, SETS achieves higher recall when prob-
ing less than 30% nodes. This is explained by the fact that
SETS takes advantage of knowing the global C (=256) topic
segments and therefore can quickly and precisely locate the
most relevant topic segments to look up relevant documents.
GES, instead has to use biased walks to locate a target node,
and then floods the query within the corresponding seman-
tic group for relevant documents. If the target node is not
a right one (which actually does not contain relevant docu-
ments, though some of its documents have relevance score
high enough to be deemed relevant), some irrelevant nodes
are unavoidably probed. The overhead of locating a right
target node hurts the performance of GES, especially when
probing only a small fraction of nodes. However, GES still
achieves about 71.6% recall by probing only 30% nodes.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
a
ll

(%
)

Processing Cost (% nodes)

full
s=2000
s=1000

s=500
s=100

s=50
s=20

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

C
D

F
 (

%
)

Recall (%)

s=1000
s=100

full

(b)

 0.1

 1

 0 50 100 150 200

N
o
rm

a
liz

e
d
 T

e
rm

 W
e
ig

h
t

Term Rank

(c)

 0.1

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

N
o

rm
a

liz
e

d
 T

e
rm

 W
e

ig
h

t

Term Rank

(d)

Figure 2. (a) The performance of various node vector sizes (s represents the size of node vectors and “full” means using full-size node vectors).
(b) Cumulative distribution of recall. (c) Ranked term weight for the TREC documents, normalized to the biggest term weight in each document. (d)
Ranked term weight for the node vectors (top 8000 terms), normalized to the biggest term weight in each node vector.

(3) GES outperforms SETS when exploring more than 30%
of the network. It achieves 89.3% recall by visiting 40%
nodes while SETS achieves 80% recall in this case. We
give the following explanations. First, the overhead of lo-
cating a right target node (and thus the semantic group)
is amortized by probing more nodes. Secondly, the na-
ture of GES’s topology adaptation connects the most rel-
evant nodes through direct semantic links, and it ensures
a query probes the most relevant nodes first along seman-
tic links. However, SETS does not distinguish the relevance
between nodes within a topic segment and local links do not
necessarily reflect that the most relevant nodes have direct
connections. Therefore some irrelevant nodes within topic
segments are unavoidably visited when flooding the query
within topic segments. (4) When exploring the whole net-
work, the recall achieved by all three systems is 98.5%. This
is because queries are short on average with only 3.5 terms
in our experiments. Some relevant documents could not
be identified because their relevance scores computed using
Equation 1 are 0. During query evaluation, they are mis-
takenly deemed to be irrelevant due to such a low relevance
score. In other words, with such short queries, the maxi-
mum recall achieved by a centralized IR system is 98.5%.

6.2. Effect of Node Vector Sizes

In our experiments the average node vector size is 1776,
the 1th-percentile of the node vector size is 88, and the 99th-
percentile of the node vector size is 8099. In this section,
we explore the effect of node vector sizes by conducting
experiments to provide insight on the following questions:

• What is a good node vector size in GES’s performance,
i.e., recall?

• How could a substantial reduction in node vector size
affect performance, i.e., recall?

To the best of our knowledge, this is the first work to
explore the effect of node vector sizes and SETS uses only
full-size node vectors. Figure 2(a) depicts the recall vs. pro-
cessing cost for various node vector sizes. Several observa-
tions can be drawn from this figure: (1) The node vector
sizes of 1000 and 500 perform the best 7, achieving 81%
recall when probing only 30% nodes. (2) The node vector
size of 100 still works very well, achieving about 68% recall
when probing 30% nodes. (3) The node vector sizes of 20
and 50, representing the substantial reduction in node vec-
tor size, perform surprisingly well, achieving 44-55% and
63-67% recall when probing 20% and 30% nodes, respec-
tively. Figure 2(b) plots the cumulative distribution of recall
for the queries with respect to node vector size when prob-
ing 30% nodes (we observed similar characteristics on other
cases). Note that the node vector size of 1000 outperforms
other node vector sizes significantly.

From the above observations, a question is naturally
raised: why does an appropriate node vector size (e.g.,
1000) perform the best while both a substantially larger
(even full) node vector size and a substantially smaller one
hurt the performance? To answer this question, we now
look at Figure 2(c) and (d). As shown in Figure 2(c), the
weight of the top 50 terms drops very fast. This confirms
our intuition that a small number of terms (e.g.,50) are cen-
tral to a document. They are capable of characterizing a
document like the “Keyword” section of a technical paper.
As shown in Figure 2(d), the weight of the top 100 terms
drops faster than Zipf distribution, and the weight of top
1000 terms also drops very fast. This shows that a rela-
tively small number of terms are capable of characterizing
a node’s contents, due to the fact that a node vector is de-
rived from its documents each of which is characterized by

7The node vector size of 1000 means we use top 1000 terms of a node
vector.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

processing cost (% nodes)
2% 5% 10% 20% 30% 40% ≥50%

GES(1000+heter):SETS 63.8% 8.3% 16.1% 17.9% 13.3% 18.5% ≤7.4%

Table 1. The recall improvements with respect to query processing cost made by GES(1000+heter) on SETS. GES(1000+heter) represents GES
which uses the node vector size of 1000 and considers heterogeneity.

a small number of top terms (with heaviest weight).

Therefore, a substantially reduction in the node vector
size (e.g., 20 or 50) still performs very well since the node
relevance score (according to Equation 2) is mostly deter-
mined by the top terms. However, a substantially small
node vector size also loses many important terms, and this
hurts the quality of topology adaptation which fails to iden-
tify some relevant nodes and thus is unable to put some
actually relevant nodes within a semantic group, thereby
impairing search performance. On the other hand, a sub-
stantially large node vector size (2000, or even full size)
contains too many (tens, and even hundreds of) unimpor-
tant terms which interfere with the computation of the rel-
evance score in Equation 2. Sometimes two nodes may be
irrelevant even if their relevance score is high according to
Equation 2. We illustrate such interference through an ex-
ample. Suppose two node vectors X and Y . They do not
share top terms (say, 100 or 500), but they share many (say,
tens or hundreds of) unimportant terms. According to Equa-
tion 2, their relevance score may be high enough to be mis-
takenly deemed to be relevant. This will negatively affect
the quality of topology adaptation such that topology adap-
tation could cluster irrelevant nodes into a semantic group.
The node vector size of 1000 strikes the balance. On the
one hand, it catches most (or all) of the top terms, and on
the other hand, it reduces the negative impact of tens or even
hundreds of unimportant terms, therefore achieving the best
performance.

An appropriate node vector size (e.g., 1000) outperforms
both a substantially larger (and full) node vector size and a
substantially smaller node vector size. Moreover, compared
to a larger node vector size, it also brings down the costs in
memory consumption (selective one-hop node vector repli-
cation, and random host cache), bandwidth usage (reduced
message size during topology adaptation), and computation
(the relevance score calculation consumes more time for
larger node vector sizes). A significantly small node vector
size (e.g., 50) can further bring down the aforementioned
costs, while still showing pretty good performance. As a re-
sult, the node vector size exhibits a good design tradeoff in
our system. We leave the issue of how to dynamically de-
termine an appropriate node vector size (e.g., through sam-
pling) to our future work.

6.3. Other Results

Due to space constraints, we briefly report some results
in this section. Please refer to our technical report [25] for
details.

Automatic Query Expansion. Automatic query expan-
sion (or automatic relevance feedback) [12] has been shown
to be a very effective technique to improve precision and re-
call in centralized IR systems, especially for short queries.
Given a query, GES first retrieves a small number of most
relevant documents which serve as feedback documents.
GES then chooses certain number of top terms in the feed-
back documents and adds them to the initial query. The new
query is used to retrieve the final set of documents. Our ex-
perimental results show that automatic query expansion im-
proves precision, but not significantly. For example, when
the number of added terms is 30, the improvement on pre-
cision@15 is about 10%. Automatic query expansion also
improves recall by about 26% (the number of added terms
is 30).

Impact of Heterogeneity. Table 1 summarizes the recall
improvements made by GES(1000+heter) on SETS which
does not consider capacity heterogeneity in its design.

7. Conclusions and Future Work

In this paper, we present GES, an architecture for P2P in-
formation retrieval on Gnutella while retaining the simple,
robust, and fully decentralized nature of Gnutella. GES dif-
fers from existing similar content group-based search tech-
niques in some or all of the following aspects: (1) it uses
a fully distributed and dynamic topology adaptation algo-
rithm to form semantic groups; (2) it leverages the state-of-
the-art IR algorithms like VSM and relevance ranking algo-
rithms, thereby improving recall and precision on queries;
(3) its capacity-aware mechanism allows it to exploit node
heterogeneity to further improve performance; (4) it is the
first to show that the node vector size plays a very important
role in system performance; (5) it employs automatic query
expansion to improve the quality of search results. We have
shown that the combination of our proposed techniques re-
sults in a P2P search system which is efficient and even out-
performs the centralized node clustering system like SETS.

Our future work includes studying the issue of how to de-
termine a node’s satisfaction degree in topology adaptation,

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

and obtaining larger data corpus to experiment on GES’s
scalability (involving more nodes) though we believe GES’s
efficient search could make it scalable. We also notice that
documents on a node could be diverse, and we need to dis-
tinguish diverse topics in a node’s documents for better se-
mantic group formation and thus better search performance.
To handle such diverse topics in a node, we could introduce
a notion of “virtual node”. A node with diverse topic doc-
uments could locally cluster its documents using data clus-
tering techniques and each cluster corresponds to a virtual
node. A node could host multiple virtual nodes, each of
which independently participates in GES’s topology adap-
tation and search protocol.

8. Acknowledgments

This work is supported in part by National Science
Foundation under Career Award CCR-9984852 and ACI-
0232647, and the Ohio Board of Regents.

References

[1] Text retrieval conference (trec). http://trec.nist.org.
[2] M. Bawa, G. Manku, and P. Raghavan. SETS: Search en-

hanced by topic segmentation. In Proceedings of The 26th
Annual International ACM SIGIR Conference, pages 306–
313, Toronto, Canada, July 2003.

[3] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector
spaces, and information retrieval. SIAM Review, 41(2):335–
362, 1999.

[4] C. Buckley. Implementation of the smart information re-
trieval system. Technical Report TR85-686, Department of
Computer Science, Cornell University, May 1985.

[5] Y. Chawathe, S. Ratnasamy, L. Breslau, and N. Lanham.
Making Gnutella-like P2P systems scalable. In Proceedings
of ACM SIGCOMM, pages 407–418, Karlsruhe, Germany,
Aug. 2003.

[6] E. Cohen, H. Kaplan, and A. Fiat. Associative search in peer
to peer networks: Harnessing latent semantics. In Proceed-
ings of IEEE INFOCOM, volume 2, pages 1261–1271, San
Francisco, CA, Apr. 2003.

[7] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. In Proceedings of the 22nd IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS), pages 23–32, Vienna, Austria, July 2002.

[8] R. Lempel and S. Moran. Optimizing result prefetching in
web search engines with segmented indices. In Proceedings
of VLDB, 2001.

[9] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger,
and R. Morris. On the feasibility of peer-to-peer web in-
dexing and search. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems(IPTPS), pages 207–215,
Berkeley, CA, Feb. 2003.

[10] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The
case for a hybrid P2P search infrastructure. In Proceed-
ings of 3rd International Workshop on Peer-to-Peer Systems
(IPTPS), San Diego, CA, Feb. 2004.

[11] Q. Lv, P. Cao, and E. Cohen. Search and replication in un-
structured peer-to-peer networks. In Proceedings of 16th
ACM Annual International Conference on Supercomputing
(ICS), pages 84–95, New York, NY, June 2002.

[12] M. Mitra, A. Singhal, and C. Buckley. Improving automatic
query expansion. In Proceedings of ACM SIGIR, pages 206–
214, Melbourne, Australia, 1998.

[13] C. H. Ng and K. C. Sia. Peer clustering and firework query
model. In Proceedings of WWW, 2002.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Shenker.
A scalable content-addressable network. In Proceedings of
ACM SIGCOMM, pages 161–172, San Diego, CA, Aug.
2001.

[15] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword
searching. In Proceedings of ACM/IFIP/USENIX Interna-
tional Middleware Conference (Middleware), pages 21–40,
Rio de Janeiro, Brazil, June 2003.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed System Platforms (Middleware),
pages 329–350, Heidelberg, Germany, Nov. 2001.

[17] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proceed-
ings of Multimedia Computing and Networking(MMCN),
San Jose, CA, Jan. 2002.

[18] H. Schutze and C. Silverstein. A comparison of projections
for efficient document clustering. In Proceedings of ACM
SIGIR, pages 74–81, Philadelphia, PA, July 1997.

[19] K. Spripanidkulchai, B. Maggs, and H. Zhang. Efficient
content location using interest-based locality in peer-to-peer
systems. In Proceedings of IEEE INFOCOM, volume 3,
pages 2166–2176, San Francisco, CA, Mar. 2003.

[20] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM,
pages 149–160, San Diego, CA, Aug. 2001.

[21] C. Tang and S. Dwarkadas. Hybrid global-local indexing for
efficient peer-to-peer information retrieval. In Proceedings
of USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI), Mar. 2004.

[22] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information
retrieval using self-organizing semantic overlay networks.
In Proceedings of ACM SIGCOMM, pages 175–186, Karl-
sruhe, Germany, Aug. 2003.

[23] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerance wide-area location and
routing. Technical Report UCB/CSD-01-1141, Computer
Science Division, University of California, Berkeley, Apr.
2001.

[24] Y. Zhu, H. Wang, and Y. Hu. Integrating semantics-based
access mechanisms with P2P file systems. In Proceedings
of the 3rd International Conference on Peer-to-Peer Com-
puting, pages 118–125, Linkping, Sweden, Sept. 2003.

[25] Y. Zhu, X. Yang, and Y. Hu. Making search efficient
on Gnutella-like P2P systems. Technical Report TR-
270/01/04/ECECS, University of Cincinnati, Jan. 2004.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

