FairTrust: Toward Secure and High Performance P2P Networks

Haiying (Helen) Shen

Dept. of Computer Science and Engineering
University of Arkansas, Fayetteville, AR 72701

hshen@uark.edu

Abstract

Peer-to-Peer (P2P) networks are becoming increas-
ingly popular and are an exciting new class of innova-
tive, internet-based resource sharing systems. In a P2P
network, a reputation system is essential to evaluate the
trustworthiness of participating peers and to combat the
selfish, dishonest, and malicious peer behaviors. The
system collects locally-generated peer feedbacks and
aggregates them to yield the global reputation values
to represent peer trustworthiness. Reputation system
guides peers in choosing a server for services/resources.
Most of the approaches for peers to exploit reputation
metrics are to select the one with the highest reputation
value as a providing server. However, it may lead to
unexpectedly low efficiency for high-reputed peers, and
prevents P2P networks from taking full advantage of all
resources for high performance. Other approaches re-
strict a peer to select a server in the same or lower
reputation values. However, these approaches prevent
P2P networks from achieving their goal of widely re-
source sharing and service exchanges. In this paper, we
introduce a trust-based fairness-oriented server selec-
tion policy, FairTrust, for a peer to choose anther peer
to interact. FairTrust takes into account both reputa-
tion and capacity factors in server selection. It helps to
create a secure P2P communication environment, and
meanwhile to take full advantage of system resources
for high performance by fair load distribution. Simula-
tion results show the superiority of the FairTrust policy
in achieving both high security and high performance in
P2P networks in comparison with other related policies.

1 Introduction

Over the last a few year, the immense popularity
of P2P networks has produced a significant stimulus

978-1-4244-1890-9/07/$25.00 ©2007 IEEE

Yingwu Zhu

Dept. of Computer Science & Software Engineering

Seattle University, Seattle, WA 98122
zhuy @seattleu.edu

to the tremendous advance of distributed P2P applica-
tions, such as data sharing, computational grids, nav-
igation systems, multi-party video conferencing, mul-
timedia and telecommunications. P2P networks inter-
connect computers, clusters, storage systems to make
possible the sharing of existing resources, such as CPU
time, storage, network bandwidth, equipment, data, soft-
ware applications. Currently, among over 1 billion doc-
umented Internet global users [14], the average simul-
taneous users of P2P resource sharing application is al-
ready over 9 million [1]. P2P resource sharing applica-
tions have evolved to the major traffic sources, approx-
imately 80%, in the Internet [13]. The BitTorrent dis-
tributed file sharing system [2] alone constitutes roughly
35% of all traffic on the Internet. The eDonkey2000 P2P
file sharing system [4] and its derivatives [3, 5] are caus-
ing high amounts of traffic volume [7].

In spite of their scalability and reliability, ubiquitous
users in the system have posed a challenge of security
to P2P networks, where many diverse, autonomous par-
ties without preexisting trust relationships wish to pool
their resources. Many technologies have been proposed
to prevent, detect and combat malicious attacks. One
technology is reputation system. A reputation system
collects, distributes, and aggregates feedback about par-
ticipants’ past behavior to help peers decide whom to
trust, encourage trustworthy behavior, and deter partic-
ipation by those who are unskilled or dishonest. Some
reputation systems use a centralized authority to main-
tain and distribute node reputation values, while others
operate in a fully distributed manner for high scalabil-
ity [6, 8, 11, 17, 23, 24, 27, 28, 30] . In P2P networks,
the reputation systems provide incentive to nodes to con-
tribute their resources, and help nodes to communicate
to others in a secure manner. In a P2P system, a node
needs to choose a node (server) from a candidate pool
for a service such as forwarding a query or providing a
file. In a reputation system, a straightforward approach
for nodes to exploit the reputation metrics is to select
the node with the highest reputation value as a providing

server. Biasing high-reputed nodes may overload them
and lead to poor system performance. Efficiency should
be an important factor to consider in the server selection
process given the fact that P2P file downloading consti-
tutes the major traffic source of Internet. An effective
server selection policy needs to avoid generating bottle-
necks for efficient file downloading. In addition, biasing
policy prevents a P2P system from taking advantage of
all resources in the system to achieve system-wide high
performance.

Current researches on reputation system mainly fo-
cus on accurate reflection of node trustworthiness, and
high scalability of reputation system. However, even
the accurate calculation of reputation values offered by
high scalable reputation system may not be adequate as
a mechanism to provide the right incentives for nodes
to choose servers, and to improve the achievable effi-
ciency of P2P systems. Reputation system needs to be
complemented by an unbiased trust-based node selec-
tion policy for secure and efficient node communication.
To address this problem, Ranganathan [21] proposed to
restrict nodes to download files only from others with
lower or equal reputation levels, and Papaioannou [25]
proposed to restrict nodes to communicate with other
nodes at the same reputation levels. Restricting the eli-
gibility of a node to interact with others prevents nodes
from sharing resources freely, which is one ultimate goal
of P2P resource sharing systems. In this paper, we pro-
pose FairTrust, a trust-based fairness-oriented server se-
lection policy to guide nodes in choosing trustworthy
nodes while avoiding bottlenecks. FairTrust policy takes
into account both reputation and capacity factors in node
selection. It helps to create an secure P2P communica-
tion environment, and meanwhile provides flexibility in
resource sharing between nodes. Furthermore, it facili-
tates to take full advantage of system resources for high
performance of P2P systems.

The remainder of this paper is structured as follows.
Section 2 presents a concise review of related work. Sec-
tion 3 introduced the FairTrust server selection policy.
Section 4 analyzes the performance of FairTrust policy
with comparison of other related policies using a variety
of metrics. Section 5 concludes this paper with remarks
on possible future work.

2 Related Work

Because of the openness and decentralization fea-
tures of P2P networks, it is usually not desirable to con-
strain the membership of the nodes in the system. As
a result, P2P distributed applications are faced with se-
vere threats such as denial-of-service, masquerading and
tampering. In the past a few years, a variety of repu-

tation systems with different characteristics have been
proposed in order to provide a secure environment for
the P2P applications. Most work on reputation systems
can be categorized into two groups: those for scalability
without central control [6, 8, 16, 27, 30] and those for ac-
curate reflection of node trustworthiness [8, 16, 26, 27].
Aberer and Despotovic [6] presented scalable data struc-
tures and algorithms that require no central control for
high scalability reputation system. Exclusively rely-
ing on a node’s direct observations cannot make use of
all the information available. To address the problem,
Buchegger and Boudec [8] proposed a fully distributed
reputation system that can cope with falsely dissemi-
nated information. Kamvar ef al. [16] presented a dis-
tributed and secure method to compute global trust val-
ues based on Power iteration. Xiong and Liu [27] pre-
sented a reputation-based trust supporting framework,
PeerTrust. It includes a coherent adaptive trust model for
quantifying and comparing the trustworthiness of nodes
based on a transaction-based feedback system, and a de-
centralized implementation of such a model over a struc-
tured P2P network. Papaioannou and Jsang [20, 15]
studied the effect of reputation system in trading mar-
ket environment, while Dingledine et al. [10] stud-
ied reputation system in decentralized anonymity sys-
tems. These studies all confirmed the benefits brought
about by reputation systems. Gupta et al. [12] inves-
tigated the design of a reputation system for decentral-
ized unstructured P2P networks like Gnutella. Zhou and
Hwang [30] proposed PowerTrust, a robust and scalable
reputation system for trusted P2P. PowerTrust signifi-
cantly improves global reputation accuracy and aggre-
gation speed by using look-ahead random walk strategy
and leveraging the power nodes. It is also adaptable
to dynamics in peer joining and leaving and robust to
disturbance by malicious peers. Zhang et al. [29] de-
veloped a trust-incentive resource management (TIM)
framework in CROWN Grid for dynamic resource man-
agement. TIM integrates values of prices, trust, and in-
centive and integrates weighted voting scheme to secure
the grid system by declining the join request from mali-
cious nodes. Wang and Vassileva [26] pointed out that
trust is multi-faceted, and nodes need to develop differ-
entiated trust in different aspects of other peers’ capabil-
ity. They proposed a flexible method to present differ-
entiated trust and to combine different aspects of trust.
These works help to achieve accuracy of reputation val-
ues and higher scalability of reputation systems. How
to effectively use reputation values is also very critical
to security. Most of the approaches for nodes to exploit
reputation metrics are to select the one with the highest
reputation as a providing peer. However, it may lead to
unexpectedly low efficiency of high-reputed nodes and

prevents P2P systems from making full use of system re-
sources. To address this problem, “peer-approved” pol-
icy was proposed in [21] in which nodes can download
files only from others with lower or equal rating. This
policy encourages a node to provide high quality service
in order to improve its reputation. However, a node’s re-
ceived quality is questionable, as it may select services
from lower reputed-nodes. To handle this problem, Pa-
paioannou [25] proposed “comparable reputation” pol-
icy aiming to restrict nodes to communicate with others
at the same reputation level. Restricting the eligibility of
a node to interact with others prevents node from shar-
ing resources freely, which is a main goal of P2P sys-
tems. We develop FairTrust server selection policy that
not only enables nodes to share resources freely, but also
ensures secure resource allocation. It avoids overload-
ing high-reputed nodes and takes full advantages of all
resources in the system.

3 FairTrust: Trust-based Fairness-
oriented Node Selection Policy

The overall performance of P2P systems depends on
the performance of the individual nodes in service. Rep-
utation system is a widely used means to get a quan-
tifiable measure of each node’s trustworthiness based on
the evaluation from others about its performance. Each
node’s trustworthiness is evaluated by the reputation
value gained based on its performance since joining the
system. In a P2P system, a node needs to choose a node
from a candidate pool for a service such as forwarding
a query or providing a file. With a reputation system, a
straightforward approach for nodes to exploit the repu-
tation metrics is to select the one with the highest rep-
utation value as a providing server. Such an approach
may give rise to unexpected problems. First, biasing
high-reputed nodes may overload them and cause inef-
ficiency. Second, some high-reputed but non-highest-
reputed nodes are excluded from service offering. Con-
sequently, their resources cannot be fully utilized, and
they are deprived of the opportunities to earn their rep-
utation. Eventually, it will result in gradual decom-
position of the nodes in the system. On one hand,
some nodes are high overloaded, and may even not have
enough capacity to handle the requests timely. On the
other hand, some nodes are idle, while they also can
offer high-quality services. Therefore, even the accu-
rate calculation of reputation values by itself may not
be adequate as a mechanism to improve the achievable
efficiency of high-performing nodes, and to provide the
right incentives for nodes to choose servers for services
of high quality. The reputation values have to be com-
plemented by an unbiased trust-based policy that helps a

node to decide a candidate for service with consideration
of both security and efficiency.

To avoid overloading high-reputed nodes, Ran-
ganathan [21] proposed “peer-approved” policy in
which nodes can download files only from others with
lower or equal rating. This policy encourages a node to
offer high-quality service in order to improve its repu-
tation. However, a node’s received quality is question-
able, because it may select services from lower reputed-
nodes. To handle this problem, “comparable reputa-
tion” policy was proposed in [25] aiming to restrict
nodes communicate with other nodes at the same rep-
utation level. The policy results in layered communi-
ties. That is, services of similar quality are exchanged
among nodes of the same layer. The quality of of-
fered services is high in the top layer, while in the bot-
tom layer, the services offered are in most cases use-
less or even harmful for other nodes. The policy helps
high-reputed nodes in avoiding low-reputed nodes, but
it has a number of drawbacks. First, newly-joint nodes
will be in a hazard environment surrounded by low-
reputed nodes or even malicious nodes for communica-
tion. Second, newly-joint nodes are provided few op-
portunities to increase their reputation. Third, the pol-
icy deprives middle-reputed nodes of the accesses to
services provided by high-reputed nodes, and also de-
prives high-reputed nodes of the accesses to services
provided by middle-reputed and low-reputed nodes. It
prevents P2P systems from achieving an ultimate goal
of widely resource sharing. To address the problem,
we introduce a trust-based fairness-oriented node selec-
tion policy called FairTrust. FairTrust takes into account
node capacity and reputation simultaneously to choose a
providing node from a candidate pool. The policy con-
tributes not only to the security of the system but also
the overall high performance by making full utilization
of all node resources and avoiding flooding high-reputed
nodes.

In the following, we will introduce the details of
FairTrust. We assume the existence of a reputation sys-
tem in a P2P system that is scalable and can accurately
calculate the trustworthiness for each node. As the meth-
ods for scalability and trustworthiness accuracy of rep-
utation systems are beyond the scope of this paper, we
will not discuss the topics in the paper. Please refer to
the papers [8, 16, 26, 27] for accurate reflection of node
trustworthiness, and papers [6, 8, 16, 27, 30] for scal-
ability improvement. We note that different tasks and
information have different security requirements. For
example, a node needs to choose very high trustwor-
thy nodes for forwarding confidential information, but
does not necessarily depend on such nodes for public
news. On the other hand, a node may prefer to down-

load a file from a high-reputed node rather than from the
highest-reputed node in order to avoid request flux in
the highest-reputed node. Based on this observation, we
propose FairTrust to trade surplus security for efficiency
by mapping tasks of different desired security levels to
nodes with corresponding trustworthiness levels. The
FairTrust policy enhances system efficiency by distribut-
ing load among trustworthy nodes based on their avail-
able capacities. Specifically, when node 7 needs to
choose a server from a number of candidates, it firstly
determines reputation value r based on its desired secu-
rity level. It then acquires the reputation value of each
candidate, and filters out candidates whose reputation
values are below r. The rest of candidates include both
the highest-reputed nodes and nodes that are trustworthy
enough based on the requester’s desired security level.
The question remaining is how to choose a server from
the rest of the candidates. Efficiency is an indispens-
able factor to consider in the server choosing process for
high performance of P2P systems. It is important for a
selection policy to ensure that no node becomes a bot-
tleneck for data downloading. A straightforward way is
to select the server with the highest available capacity
among the trustworthy servers. However, checking each
server’s load status is not efficient. To reduce the over-
head, instead of probing all of the neighbors to find the
best candidate, FairTrust restricts the search scope to a
small set of size b. That is, firstly b servers are randomly
chosen and then the nodes in the set are probed sequen-
tially, until a node with the highest available capacity
is found. Probing all b servers is still a costly process.
How to find a good candidate from b servers at a rel-
atively low cost? The server selection problem can be
regarded as load scheduling among a number of servers
in order to achieve a fair load distribution without over-
loading any server. In [22], we proved the equivalence
between the load scheduling and supermarket customer
service model [18], and theoretically and experimentally
proved that 2-way randomized probing could achieve a
more balanced load distribution with faster speed over
one-way probing, but d(> 2)-way probing may not re-
sult in much additional improvement. Based on the the-
orem, FairTrust adopts the 2-way randomized probing.
That is, two servers are randomly probed at a time, and
the server with higher available capacity is selected.

To cope with the problem mentioned above that high
reputation nodes may get low quality service if they
choose low reputation nodes for service, FairTrust pol-
icy uses fair trading method. That is, a client pays a
server for the service it requested, and a server prices
its services based on its reputation and service qual-
ity. We define that only cash payment method is used
in the market, and the cash is measured by credit unit.

Algorithm 1 Pseudo-code for FairTrust policy.

: get a pool of service provider S = {s1,52...}
: determine r based on required security level
: probe reputation system for each server’s reputation value
: remove the servers whose reputation value is < r from S
: /Muse 2-way randomized probing
: randomly choose two nodes s, and sp from S
: probe s, and s, for available capacities
: if s, and s; are all overloaded servers then
select the server with less congestion
: else
if s, and s, are all light servers then
use fair trading method
end if
: else
select the light server
: end if

CENo LR BN o

I
AN S >l =

Nodes earn credits by offering services to others. Secu-
rity aside, efficiency can also be controlled by the fair
trading method. For example, servers can adaptively
raise their service prices to discourage clients to ask ser-
vice from them when being overloaded, and offer dis-
counts in the case of being lightly loaded. The adaptive
load control not only prevents servers from being over-
loaded, but also helps to take full advantage of server
capacities. To address the newly joined node problem
mentioned above, we define that each node will be given
a certain amount of credits once it joins in the system,
which can be used for transactions to increase its repu-
tation. The method makes all service accessible to all
nodes and provides freedom in service requesting and
offering, and meanwhile uses barter exchange to pro-
tect from malicious nodes and leech nodes. Algorithm 1
shows the pseudocode of the FairTrust policy. We define
congestion of node i as g; = L;/C;, where L; represents
the load of node 7 and C; represents the capacity of node
1. We refer to the node whose actual load is larger than
its capacity (i.e. L; > C;) as a overloaded node; other-
wise a light node.

4 Performance Evaluation

This section demonstrates the distinguished proper-
ties of FairTrust. We conducted experiments on a Cy-
cloid network. For comparison, we also include the re-
sults of the “comparable reputation” policy in [25] de-
noted by sameTrust, and Random and MaxTrust poli-
cies. Given a number of nodes, Random chooses a node
randomly and MaxTrust chooses the node with the high-
est reputation. Simulation results verified the superiority
of FairTrust policy in comparison with the other policies
toward achieving security goal and high performance at

Table 1. Simulated environment and algo-
rithm parameters.

Environment Parameter Default value

Cycloid dimension d 8

Number of nodes n Fixed at 2048

Node capacity ¢ Bounded Pareto: shape 2
lower bound: 500

upper bound: 50000
Number of reputation levels 5

Request processing latency in
a light/overloaded server

0.2/1 second

the same time. In the simulation, the file requests are
consecutively generated according to a Poisson process
at a rate of one per second, with a random source node
and a random target key. We assume that a client has
five servers in a candidate pool for its file request, and
the client can locate the five servers successfully. Ta-
ble 1 lists the parameters of the simulation and their de-
fault values. We assumed a bounded Pareto distribution
for the capacity of nodes. This distribution reflects real
world situations where machines’ capacities vary by dif-
ferent orders of magnitude.

We define node ¢ can handle ¢; = |0.54+aC; | queries
at one time, where C; is the capacity of node ¢ and
a=11- ché in this experiment. We define node ¢’s
load as the number of requests in its request processing
queue. If node ¢ has more than c¢; queries in its queue,
it is overloaded. We assume there are five levels of rep-
utation, with the probability of successfully providing
service ranging from 0.2 to 1, with 0.2 increase in each
level. Each node is randomly assigned one of the five
reputation levels.

We evaluate the effectiveness of the server selection
policies in the following metrics:

e Success rate. After a request arrives at a server, the
possibility that a request can be resolved depends
on the server’s reputation. For example, 0.2 repu-
tation server will have 20% probability to provide
file. The success rate is the successfully resolved
service requests over the total requests. The metric
shows the security performance on getting success-
ful service from servers.

o Congestion. Ideally, congestion is no more 1,
which means that the node is not overloaded. The
higher the congestion is above 1, the worse effi-
ciency performance. We get the maximum con-
gestion of each node during the experiment pro-
cess, and use the the average and the 99th percentile

L3 A —
%g%—/jﬁ—% 1
0.8 4
/
o ¢
0.6 4

Success rate

_ -
0.4 4 - —o-Random
—#- SameTrust
02 o fMa.xTrust
_— —%-FairTrust/1

e —x FairTrust/desired
0 T T |

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Desired security level

Figure 1. Success rate of service requests
of different server selection policies.

of these maximum congestions to show the perfor-
mance.

e Number of overloaded servers chosen. This met-
ric shows the effectiveness of a policy in reducing
overloaded nodes in server selection in order to re-
duce request processing latency.

e Request processing time. The metric represents the
efficiency of server selection policies in avoiding
overloaded nodes to achieve fair load distribution,
and ultimately speeding up service provision.

An efficient server selection policy should distribute
the different amount of load among the servers with the
consideration of security and efficiency. In this exper-
iment, we study the effect of FairTrust in security and
efficiency compared to other related policies. In the ex-
periment, 1000 different files were requested and each
file was requested 10 times. We varied the desired secu-
rity level in FairTrust from 0.2 to 1, with 0.2 increase in
each step. We also take this rate as the reputation level
of requesters in SameTrust. We compare the success rate
between FairTrust, Random, MaxTrust, FairTrust/1, and
FairTrust/desired. FairTrust/1 represents FairTrust pol-
icy with the highest reputation level 1 as desired security
level, and FairTrust/desired is the policy with different
desired security levels as set in the experiment. Figure 1
shows that the success rates of FairTrust/1 and MaxTrust
are the highest compared with others, and the rates close
to 1. The rate of FairTrust/desired is marginally lower
than their rates and it increases as the desired security
level increases. The results imply that FairTrust and
MaxTrust achieve high security performance. We ex-
pected that the curve of FairTrust/desired is y=x. It is
surprising to see that FairTrust/desired achieves much
higher success rate than expected. This is because
FairTrust/desired guarantees the desired security level
first, and then seeks for higher security level combined

0.45

0.4 4
c
S 0.35 4

ol

o
w

ERandom
SameTrust

O MaxTrust

[FairTrust/1
FairTrust/desired

0.25 -

0.15

Average max. node utilizati
o
N

°

0.05

0.2 0.4 0.6 0.8 1
Desired security level

ERandom
SameTrust

O MaxTrust

[FairTrust/1
FairTrust/desired

Max. node utilization

0.2 0.4 0.6 0.8 1
Desired security level

(a) The average of max. congestions

(b) The 99.9th percentile max. congestion

Figure 2. Node congestions of different server selection policies.

with efficiency consideration. Random does not con-
sider reputation in node selection, so it has lower suc-
cess rate. Unlike others, the success rate of SameTrust
increases dramatically fast with the desire security level.
Recall that SameTrust restricts communication between
nodes in the same reputation level. Therefore, in addi-
tion to the server reputation, whether or not there ex-
ists a server with the same reputation level as the re-
quester also determines the successfulness of a request.
For example, if a requester has reputation level 0.2, but
there’s no server of the requested file having reputation
level 0.2, the requester has nowhere to request the file.
If there is such a server, the probability of successfully
file provision is only 0.2. Consequently, the success rate
increases with the requester reputation level increases,
and it is much lower than others due to the constraint
of same level communication. The experiment results
show the effectiveness of FairTrust in security perfor-
mance in comparison with other related policies. Next,
let’s see the performance of each policy in efficiency per-
formance.

We measured each node’s maximum congestion dur-
ing all test cases and calculated the average and 99th per-
centile of the maximum node congestions. Figure 2(a)
shows the average of maximum congestion rate ver-
sus desired security level. We can see that MaxTrust
and SameTrust generate the highest rates. It is within
expectation because MaxTrust and SameTrust strongly
bias on highest-reputed or same reputation level nodes
for serve provision and those nodes may turn out to
be overloaded. The results indicate that MaxTrust and
SameTrust have poor efficiency performance although
MaxTrust has high security performance as illustrated in
Figure 1. In contrast, FairTrust/1 and FairTrust/desired
have much less rates. One question is that FairTrust/1
has the highest reputation level 1 as its desired security
level, why it can get lower congestion rate than Max-
Trust? It is because using 2-way randomized probing,
FairTrust/1 distributes load between nodes among the

highest-reputed nodes rather than biasing on a single
node. On the other hand, with lower desired security
level, FairTrust/desired expands server candidate pool,
and achieves more balanced load distribution, and then
higher efficiency.

Figure 2(b) shows the 99th percentile maximum con-
gestion of each policy based on the average rates. We
can observe that the rates of MaxTrust and SameTrust
are significantly higher than others, and FairTrust/1 has
lower rates than them due to the same reason of the
observations of Figure 2(a). Random keeps the rate
around 1. It confirms that Random achieves relatively
balanced load distribution among servers by random
selection. FairTrust/desired still keeps low congestion
and it slightly increases as the desired security level in-
creases. This is because FairTrust/desired expands the
server candidates to the servers above the desired rep-
utation level rather than biasing on the highest-reputed
node, which increases the possibility of getting a light
server. The results confirm the high efficiency perfor-
mance of FairTrust.

We tested the service request processing efficiency
in different server selection policies. Figure 3(a) and
(b) show the number of overloaded servers chosen and
service request processing time versus desired security
level, respectively. The figures show that the MaxTrust
and SameTrust have significantly higher results than
others. It is due to the side-effect of high security perfor-
mance by biasing the highest-reputed or same reputation
level nodes. Biasing policy overburdens those nodes,
and hence generates more overloaded nodes, resulting
in longer request processing time. In contrast, FairTrust
and Random have much less overloaded servers and pro-
cessing time, and FairTrust/1 has slightly higher results
than Random. This is because FairTrust/1 has a candi-
date pool only consisting of the highest-reputed nodes,
and randomized selection can achieve relatively bal-
anced load distribution among all servers. The figures
also illustrate that FairTrust/desired has less results than

A———— A & 4

4
51600 % % 5
5

—4—Random

o
151
31000 —%-SameTrust —
o
5 800 fMa‘xTrust L
3 —><FairTrust/1
5 600 -B- FairTru ired —
]
3 4
£ 400 _n
E

2007 . - —e

0 - - -
0.2 0.4 0.6 0.8 1

Desired security level

(a) Number of overloaded servers chosen

4000
3500 = % 4 —

3000 -

g

3

2

o

£

22500 — — g — = —
£ — —
¢ . . —
g 2000 =2 * =

=

B 1500 —e—Random H
> —><SameTrust

£ 1000 —A—MaxTrust H
£ -#-FairTrust/1

= 500 —- FairTrust/desired [

=)

o
N

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Desired security level

(b) Service request processing time

Figure 3. Request processing efficiency of different server selection policies.

Random and FairTrust/1, and it has O overloaded servers
chosen in most cases. FairTrust/desired trades surplus
security for efficiency by mapping tasks of different de-
sired security levels to nodes with corresponding trust-
worthiness levels. The results imply the efficiency of
FairTrust in avoiding overloaded nodes and speeding up
service request processing.

The simulation results show that MaxTrust and
SameTrust are good at achieving high security, but have
difficulty in improving efficiency. Random is good at
achieving high efficiency, but does not consider security.
FairTrust is superior to them by achieving high perfor-
mance in both security and efficiency.

5 Conclusions

Tremendous advances in P2P systems enable differ-
ent distributed P2P applications take advantage of re-
sources and enhance collaborations world-wide. Due
to lack of central management, P2P systems need se-
curity technologies to protect their operations. Today’s
advanced reputation system enhance system trustworthi-
ness. However, current approaches for nodes to exploit
the reputation metrics degrade the system performance.
This paper presents a reputation-based fairness-oriented
server selection and service exchange policy, FairTrust,
that treats both security and efficiency as a first class en-
tity in order to meet the high trustworthiness and high
performance of a diversified wealth of distributed P2P
applications. Simulation results show the superiority of
the FairTrust policy compared with other related poli-
cies in P2P systems. FairTrust helps to guarantee the
high successful rate of service requests, to achieve fair
load balance, to improve request processing efficiency,
and to make full use of each node’s capacity while con-
trol each node’s load below its capacity, leading to high
system performance.

Anonymity approaches to hide the identification of

nodes are also very important for secure environment
in P2P public networks. However, P2P performance
is compromised while exploring anonymity technolo-
gies for distributed P2P applications. For example,
Freenet [9] and Mute [19] achieve anonymity by requir-
ing all data to be forwarded back hop-by-hop from a
data provider to a requester rather than direct commu-
nication, which introduces high communication over-
head and results in low performance. We plan to explore
anonymity approaches with little performance compro-
mise.

Acknowledgments

This research was supported in part by U.S. Acxiom
Corporation.

References

[1] Average simultaneous global P2P
http://www.slyck.com/misc/p2p-history_sep-
06_average.xls.

users.

[2] Bittorrent. http://en.wikipedia.org/wiki/Bittorrent.

[3] eMule Project Team Web Site. http://www.emule-
project.net/.

[4] Meta Search Inc.- eDonkey2000 Home Page.
http://www.edonkey2000.com/.

[5] mlDonkey Web Site. http://mldonkey.org/.

[6] K. Aberer and Z. Despotovic. Managing trust in a
peer-2-peer information system. In Proc. of CIKM,
pages 310-317, 2001.

[7] N. Azzouna and F. Guillemin. Analysis of ADSL
traffic on an IP backbone link. In Proc. of IEEE
GLOBECOM, 2003.

[8] S.Buchegger andJ. L. Boudec. A robust reputation
system for p2p and mobile ad-hoc networks. In
Proc. of P2PECON, 2004.

[9] L Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information
storage and retrieval system. In Proc. International
Workshop on Design Issues in Anonymity and Un-
observability, pages 46—66, 2001.

[10] R. Dingledine, N. Mathewson, and P. Syverson.
Reputation in p2p anonymity systems. In Proc. of
P2PECON, 2003.

[11] D. Dutta, A. Goel, R. Govindan, and H. Zhang.
The design of a distributed rating scheme for peer-
to-peer systems. In Proc. of P2PECON, 2003.

[12] M. Gupta, P. Judge, and M. Ammar. A reputa-
tion system for peer-to-peer networks. In Proc. of
NOSSDAV, 2003.

[13] R. Hartani and J. Neil. P2p optimized traffic con-
trol. Technical report, Caspian Networks, 2005.

[14] Internet world
http://www.internetworldstats.com/.

stats.

[15] A. Josang, S. Hird, and E. Faccer. Simulating the
effect of reputation systems on e-markets. In Proc.
of iTrust, 2003.

[16] S. D. Kamvar, M. T. Schlosser, and H. Garcia-
Molina. The eigentrust algorithm for reputation
management in P2P networks. In Proc. of WWW,
2003.

[17] S.Marti and H. Garcia-Molina. Limited reputation
sharing in P2P systems. In Proc. of Conf. Elec-
tronic Commerce, 2004.

[18] M. Mitzenmacher. On the analysis of randomized
load balancing schemes. In Proc. of SPAA, pages
292-301, 1997.

[19] The mute file sharing systems.
net.sourceforge.net/.

http://mute-

[20] T. G. Papaioannou and G. D. Stamoulis. En-
forcing credible reporting in peer-to-peer environ-
ments. Working paper, AUEB, 2004. Available at
http://nes.aueb.gr.

[21] K. Ranganathan, M. Ripeanu, A. Sarin, and I. Fos-
ter. fo share or not to share4n analysis of incentives
to contribute in collaborative file sharing environ-
ments. In Proc. of P2PECON, June 2003.

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

H. Shen and C. Xu. Locality-aware and churn-
resilient load balancing algorithms in structured
peer-to-peer networks. IEEE Transactions on Par-
allel and Distributed Systems, 2007.

A. Singh and L. Liu. Trustme: Anonymous man-
agement of trust relationships in decentralized p2p
systems. In Proc. of P2P Computing, 2003.

M. Srivatsa, L. Xiong, and L. Liu. Trustguard:
Countering vulnerabilities in reputation manage-
ment for decentralized overlay networks. In Proc.
of WWW, 2005.

G. P. Thanasis and D. S. George. Effective use of
reputation in peer-to-peer environments. In Proc.
of GP2PC, 2004.

Y. Wang and J. Vassileva. Trust and reputation
model in peer-to-peer networks. In Proc. of P2P,
2003.

L. Xiong and L. Liu. Peertrust: Supporting
reputation-based trust for peer-to-peer electronic
communities. TKDE, 16(7):843-857, 2004.

M. Yang, Y. Dai, and X. Li. Bring reputation sys-
tem to social network in the maze P2P file-sharing
system. In Proc. of CTS, 2006.

Y. Zhang, J. Huai, Y. Liu, L. Lin, and B. Yang.
A Framework to Provide Trust and Incentive in
CROWN Grid for Dynamic Resource Manage-
ment. In Proc. of ICCCN, 2006.

R. Zhou and K. Hwang. Powertrust: A robust and
scalable reputation system for trusted peer-to-peer
computing. TPDS. To appear.

