
An Efficient and Secure Peer-to-Peer Overlay Network

Honghao Wang, Yingwu Zhu and Yiming Hu
Department of Electrical & Computer Engineering and Computer Science

University of Cincinnati
{wanghong, zhuy, yhu}@ececs.uc.edu

Abstract

Most of structured P2P overlays exploit Distributed
Hash Table (DHT) to achieve an administration-free, fault
tolerant overlay network and guarantee to deliver a mes-
sage to the destination within

� � � � �
 �
hops. While elegant

from a theoretical perspective, those systems face diffi-
culties under an open environment. Not only frequently
joining and leaving of nodes generate enormous mainte-
nance overhead, but also various behaviors and resources
of peers compromise overlay performance and secu-
rity.
Instead of building P2P overlay from the theoretical

view, this paper builds the overlay network from the per-
spective of the physical network. By combining different
network topology-aware techniques, a distinctive overlay
network that closely matches the Internet topology is con-
structed. The P2P system based on this structure is not
only highly efficient for routing, but also keeps maintenance
overhead very low even under highly dynamic environment.
Moreover, the system provides a new aspect to solve many
security issues.

1. Introduction

Structured peer-to-peer (P2P) overlays, such as
Chord [17], CAN [8], Tapestry [20] and Pastry [14],
are based on Distributed Hash Tables (DHT) to or-
ganize all nodes in the system into node ID ring to
achieve an administration-free, fault-tolerant overly net-
work and guarantee to deliver a message to the destina-
tion within

� � � � �
 �
hops, where

is the number of

peers in the system. While elegant from a theoretical per-
spective, DHT-based systems face difficulties in an open
Internet deployment.
Due to various behaviors and resources of peers in the

real world, the basic operation, the key lookup, of current
P2P overlay is far from efficient and hard to be improved.
Although DHT designs guarantee to solve a query within

� � � � �
 �
hops, a single hop may across two nodes con-

nected via a high speed LAN, or two separated by a low-
bandwidth, long-latency link across half the world, which
will cause significant latency. Proximity Neighbor Selec-
tion (PNS) were widely used to optimize overlay routing.
However, latest research [4] has pointed out that the la-
tency of last few hops in a PNS based routing still approxi-
mated 1.5 times the average round trip time in the underly-
ing network. In order to handle system churn, frequently
joining and leaving of nodes, overlays should repeatedly
fresh their routing tables, which generate enormous mainte-
nance traffic. Based on the default maintenance periods for
Bamboo [13, 12], a latest designed DHT system, the total
maintenance traffic is about 7.5 times larger than the same
Gnutella system [15].

Moreover, P2P overlays face serious security attackers
from malicious nodes, though they have mechanisms to tol-
erate fault nodes.Many researches [1, 5, 16] have been done
on different aspects of P2P overlay networks, such as se-
cure routing and object storage/retrieval. However, due to
the complexity of the P2P environment, some solutions are
not satisfied, and others are still open.

As Castro et al. mentioned in [1], the secure routing of
a P2P overlay network requires the solution of three prob-
lems: securely assigning node IDs to nodes, securely main-
taining the routing tables, and securely forwarding mes-
sages. Although certified node IDs can prevent nodes to
compromise the integrity of the overlay by choosing IDs by
themselves, an attacker may swap certificates among nodes
it controls to increase the fraction of attacker’s nodes in tar-
get nodes’ routing tables. Also, an attacker may obtain a
large number of legitimate node IDs, which is called a Sybil
attack [5]. For securely maintaining routing table entries,
while imposing strong constrains on node IDs in the rout-
ing table can limit the effect of hostile nodes, it trades off
the performance of overlays. Since fault nodes may drop the
message passing by, routing themessage to the wrong place,
or pretending to be the root of the message, failure test and
redundant routing are normally used. However, those meth-
ods are either hard to be implemented or involve significant

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

overhead.
This paper, from a different angle, proposes a new P2P

overlay structure. Unlike current P2P designs, which focus
on construct an elegant system overlays, such as node ID
ring, our approach focuses on the physical network, and
builds system overlay based on it. Thus, the physical net-
work characteristics, such as network locality among nodes,
network administration among Internet Autonomous Sys-
tems and asymmetric throughput of major network connec-
tions, can be fully exploited. Not only is the overlay highly
efficient in message routing and maintenance, but also it
provide novel methods to solve security problems.
The rest of this paper is structured as follows. Section 2

describes briefly how to construct a overlay network closely
matches the Internet topology and how to build an high effi-
ciency and low maintenance system on it, the details of the
overlay network can be found in another paper [18]. Based
on this novel overlay network, Section 3 discusses in de-
tail how to exploit the overlay structure to solve security is-
sues faced by P2P overlay networks. In section 4, we evalu-
ate our approach using simulation. Section 5 concludes the
paper.

Figure 1. Building the system overlay closely
matches the Internet topology

2. Overlay Design

In this section, overlay design will be briefly discussed.
We will firstly discuss how to construct an overlay closely
approximates the Internet topology, and then based on that
overlay to build a P2P system with efficient lookup, low
maintenance overhead and high availability.
The essential behind the overlay structure is to organize

nodes by their physical network locality in the Internet. As

Figure 1 illustrates, based on the Internet AS-level topol-
ogy provided by [2, 7], all nodes can be divided into groups
by their Autonomous Systems (AS) locus. Since the Inter-
net is made up of ASes and each AS is a network under
a single administration authority, it provides a good border
for P2P nodes. Like the AS in the Internet, the group is the
basic unit for routing and organizing nodes in the overlay.
However, to partition nodes only by nodes’ AS residences
may be too coarse in many cases. A landmarks based vec-
tor technique [9] is used to further divide network physi-
cal nearby nodes into teams within an AS. The landmarks
could be the default routers of previous joined nodes.

2.1. Peer-to-Peer Overlay Network

In order to support DHT-like ID lookup operation, sim-
ilar ID mechanism is employed in the overlay. Like cur-
rent DHT designs, each object in the overlay is assigned
a 128bits ID. Instead of mapping a small range of ob-
jects to each node like current overlays, a two-level map-
ping mechanism is used. As mentioned early, our overlay is
built up with AS-like groups. The first level is among those
groups, and the second level is among teams. The number of
nodes within a team is variable to facilitate clustering phys-
ical nearby nodes and increasing stabilization under system
churn. Normally a team includes 10 to 50 nodes. Each team
will choose a leader with decent network bandwidth and
availability. Also, a 32bits team ID is assigned to each team.
Those IDs are assigned to every group and their teams ran-
domly as they first appear in the overlay. The first 64bits
of the object ID is separated into two parts. The first 32bits
is used to map group ID, and the second 32bits is for team
ID. Each group charges the objects with the ID between it-
self and the next group, and so is the team, which is similar
to Chord [17].
The team is the basic unit to store objects. Two copies of

objects will be kept within one team for improved reliabil-
ity and availability. One copy is kept in the leader to respond
queries for all other peers. The other one will be striped into
blocks by erasure code technique and stored among team-
mates. Sincemost peers are connectedwith asymmetric net-
work connections, such as DSL and cable modem, to read
from many nearby peers will be evidently faster than from
one. This characteristic is very helpful to quickly rebuild a
new leader when the old one fails.

2.1.1. Routing Instead of involving many unstable nodes
into system routing, only selected nodes, which have de-
cent bandwidth and availability, will become the agents
to route for the overlay. Normally, 3 agents can pro-
vide enough availability and performance without impact-
ing their hosting machines. A detailed analysis is discussed
in section 2.4.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Since our overlay closely matches the Internet topology,
the routing mechanism is actually simple compared with
current DHT designs. Since a two-level mapping mecha-
nism is used in the overlay, the routing table is made up
of two parts. One records the ID and agents information of
each group within the overlay, called routing table. This ta-
ble is maintained in each agent and leader to route messages
for normal nodes. The other one is only kept in agents. It
records the ID and leaders information of all teams within
a group, called delivering table. Given an object ID, the re-
sponsible group and its agent can be located by the routing
table. Instead of approaching the destination hop by hop, a
message will go directly to an agent with the target group.
When the message reaches that agent, it is simply forwarded
to the response team leader by the delivering table. Finally,
the leader resolves and replies the query.

2.2. Node Joining and Leaving

The procedure of nodes’ joining and leaving is sim-
ple. When a new node joins the overlay, it’s AS locus can
be determined by its IP address. The bootstrap protocol is
straightforward. Through any node within the overlay, the
joining request will be forwarded to an agent of that AS.
After measuring its landmark vector, the node will join one
team according to the network locality. If a team is too pop-
ulous, it will split into two teams based on nodes’ network
locality. If the joining node is the first one in the AS, the
join request will be forwarded to a physical nearby group.
Instead of forming a new group, the node will initially be-
come a teammate within the group, called mother group.
When nodes within that AS are enough for three teams,
agents will be selected and an individual new group is born.
For the normal node, its leaving or failure is automati-

cally tolerated by the team. If a leader or agent leave, a new
one will be selected, and it information will quickly spread
by a piggyback mechanism, which will be discussed later.

2.3. Maintenance

Under the P2P environment, not only each peer’s leav-
ing and failure is unpredictable, but also the whole overlay
is highly dynamic, since every node can arbitrarily join and
leave the overlay. This is really a challenge for all P2P over-
lay networks.
Although agents and leaders are considered to be more

available than normal one, they are not well-maintained
servers. A ring protocol is used here to monitor them. For
example, all leaders will form a ring as their ID relation-
ship, and every second each node sends a keep-alive mes-
sage to its successor and predecessor. Although this proto-
col is simple, it is enough to detect one or more leaders’
failure. The same method is also used among agents. Nor-

mally, the leader of a team can monitor teammates’ chang-
ing through their query messages. However, in order to ac-
curately distinguish each node’s behavior for candidates of
leaders and agents, each node is designed to send either a
query or a keep-alive message to its leader every 30 sec-
onds.
Since leaders cache the routing table from group agents,

some method is needed to keep them consistence. For small
groups, which have tens of teams like the AS6 in Figure 1,
leaders can directly exchange information with a nearby
agent. However, if a group is very large, which has hundreds
of teams like the AS200 in the figure, such simple schedule
will not be scalability. Fortunately, all nodes within a group
in our system are under the same network administration,
i.e. AS. Thus, Administratively Scoped IP Multicast [10],
which is widely supported by current routers, can be ex-
ploited to efficiently deliver latest agents information. For
the AS without multicast protocol supported, dissemination
trees with agents as the root will be used to multicast the in-
formation to all leaders, as the structure of AS200 in Fig-
ure 1 demonstrates. When the group is even larger, it will
be partitioned into two or more ones.
As mentioned early, each agent maintains a routing table

which records all agents’ information. To keep those rout-
ing tables up to date is critically important to the correctness
of lookups. Also the overhead of such maintenance should
be low, otherwise, both system performance and scalability
will be impacted. Thus, our overlay is designed to integrate
this maintenance work into common operations, lookups.
When the leaders send out or answer messages, latest infor-
mation about changed agents, which is just 4 bytes for one
agent, will be appended to the messages reach an agent of
the destination group, and then spread to all leaders. Again,
that information will be sent out to more groups, and fi-
nally reaches every group. Our experiments reveal that in
an overlay with 20,000 nodes distributed in 200 ASes and
a median session time of 5 minutes for each agent, the suc-
cess rate of first attempt with such piggyback technique is
98.7%.

2.4. Scalability Analysis

Currently, hosts of real world systems are distributed in
4 to 5.5 thousands ASes, the total number is from 200,000
to 1,000,000, and the density of hosts within each AS varies
from several to thousands [15]. Since each team can accom-
modate 10 to 50 nodes, the number of teams within a group
will be no more than hundreds. Thus, the size of routing ta-
ble with 5000 groups and their agents’ information will oc-
cupy 60KB memory, and size of delivering table with 300
teams is 3KB. Also, the network bandwidth of this over-
lay network is highly efficient.
Considering a overlay similar to the real world one,

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

System Agents (Bps) Leaders (Bps) Nodes (Bps)
Functions Downlink Uplink Downlink Uplink Downlink Uplink
Lookups 666.67 666.67 200 200 10 10

Ring Protocol 20 20 26.67 20 0 0.33
Dissem Trees 44 264 44 220 0 0
Piggyback 400 0 0 120 0 0
Total 1131 (0.38%*) 951 (2.48%*) 271 (0.09%*) 560 (1.46%*) 10 10.33

Table 1: All traffic generated by different roles and system operations. * is the ratio to DSL or calble mo-
dem connections with 3Mb downlink and 384kb uplink

which has 1,000,000 nodes distributed in 5,000 ASes, 3
agents with 15 minutes each median session time in each
group, average 20 nodes a team, query rate of 0.5 per
node/second and 20 bytes per message, Table 2.3 breaks
down consumed bandwidths of all roles and all operations,
including lookup, piggyback, ring protocol and multicast
within the group. The agent changing rate is 11 per second,
which is calculated by the formula in [13, 6]. All groups are
assumed to use dissemination trees and 5 fanouts for agents
and leaders. It is obvious that our system can scale to the
upper bound of real world P2P systems with little effect of
hosting machines of agents and leaders.

3. Security

In this section, we will discuss in detail how to exploit
the overlay structure to solve security problems faced by
P2P overlay networks.

3.1. A Better Identifier

To identify each principal (node) from others is an essen-
tial issue for the security of P2P overlay networks. However,
this is a really challenge under the P2P environment. Previ-
ous research [1] has pointed out that the Sybil attack and
the collusion among malicious nodes are almost unavoid-
able, even the assignment of node IDs is delegated to a cen-
tral, trusted authority. Current P2P overlay networks nor-
mally identify nodes by their IP addresses. However, due
to different network configurations and connection tech-
niques, more than 40% nodes do not have true IP addresses
or change their IP addresses from time to time [19]. Al-
though other solutions have been proposed to securely as-
sign node IDs, such as paying money for certificate and
binding node IDs to real-world identities, none of them is
practical under the P2P environment.

Instead of just using mutable IP address as the identi-
fier of each node, we propose to identify each node by its
accurate network physical characteristic, called net-print,
which is a set of information that can be used to accu-
rately locate node’s position and network device. Two rea-
sons make it practical and efficient. As mentioned early, the
nodes are organized by their AS locus and the AS is un-
der single network administration, thus the machines within
one AS are under same network configuration and policies,
such as DHCP, NAT and firewall policy. The other reason is
that many powerful protocols, such as ICMP, which are nor-
mally prohibited by network administrators for outside ac-
cessing due to security considerations, can be directly used,
and the overhead is small since traffic is between physical
nearby nodes.

Before a node joins a team, it will measure the RTTs
to several routers within the AS to form its landmark vec-
tor. Instead of directly using the vector claimed by the
node, a net-print vector is formed by the RTTs measured
by randomly selected node within the sub-network of those
routers. By comparing the two vectors, the cheating can be
easily detected. Also, this method can pretend the collu-
sion of malicious nodes from forging the net-print vector.
Moreover, since all those nodes are within the same AS,
the IP of node’s default router can be further found by In-
ternet Control Message Protocol (ICMP) with the IP Record
Route [11]. Also, the Media Access Control (MAC) address
can be used as part of net-print, and be further identified by
other peers under the same sub-network. Thus, a net-print,
which includes the node’s default router IP, MAC and land-
mark vector, is an accurate and trustable identifier for each
node, even under the environment that IP addresses of nodes
are allowed to change dynamically.

Actually, the net-print itself is a self-certifying data,
which can be directly verified by other nodes. For exam-
ple, one node � wants to pretend to be another node � ,

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

and even know the net-print of � , however, other nodes can
easily verify � by comparing the claimed net-print and di-
rectly measured one. As a result, the collusion among ma-
licious nodes will be almost impossible. Although a ma-
licious node may pretend to be different nodes under the
same sub-network for Sybil attack, the net-print technique
can efficaciously limit it within a small network scope. By
challenging those nodes with a unique computational puz-
zle concurrently, the malicious node can be identified.

3.2. Secure Routing

Based on the better identifier, net-print, we will discuss
about other security issues of this design. The overlay net-
work runs on a set of

�
nodes that form an overlay us-

ing the protocol descried in the previous section. We as-
sume a bound � (0< � <0.5) on the fraction of nodes for ev-
ery roles, such as agents and leaders, that may be faulty. De-
spite of different protocols, routing is still the core operation
for structured P2P overlays. Thus, to make our routing se-
cure is principal. Previous research [1] has pointed out the
three key problems to implement secure routing primitive:
securely assigning node IDs to nodes, securely maintaining
the routing tables, and securely forwarding messages.
Firstly, it is for securely assign node IDs to nodes. Due to

the self-certifying net-print of each node, collusion and the
Sybil attack are almost impossible in our overlay network.
The effect of regular malicious node is very little, since it
only stores part of objects and its failure is tolerated by era-
sure code. Although previous research [1] has pointed out
to give the P2P overlay a public key infrastructure is im-
portant for the overlay security, to assign each node a cer-
tificate is obviously not necessary in our overlay. Instead,
only the agents will be granted certificate by a trusted cer-
tification authority (CA), which binds a public key to its
net-print. Beside the normal net-print properties mentioned
early, the net-print for agents also includes its current in-
terior IP and exterior IP and port for routing service, since
the nodes may under ISPs using DHCP and NAT. Those
public keys will be known by all agents, and altered with
changes of them. The Leader’s certificate can be granted by
any agent within the group, it includes interior, exterior IP
and team ID in addition.
Secondly, we discuss how to securely maintaining the

routing table. As mentioned early, the maintenance of rout-
ing tables within agents is based on the piggybacked infor-
mation within the messages. In order to make this procedure
secure, we combine using redundancy and electric signature
techniques. The detailed procedure is following. When the
agent � � filtrates out an updating information from an in-
coming message, it will check the signature and then share
the information with the other two agents by the ring proto-
col. Since the update information about one agent can be re-

ported from different groups to different agents, the results
will be inconsistent if some node forges it. When there is no
conflict, this update will be accepted by all agents and de-
livered to leaders with signature of � � . Also, this signed
update information will be piggybacked on outgoing mes-
sages by the leaders to other groups.
Thirdly, based on above discussion, the procedure to for-

ward message securely in our system is straightforward.
When a node requires its leader to route a message, it
will first check the leader’s certificate and then drop the
message. Then, the leader will randomly choose one agent
within the destination group to forward the message with
its certificate. As that agent receives the message, it will
check the IP and port number within the certificate to make
sure it come from the expected leader. After that, it will
sign the message and sent to the responsible leader. Finally,
that leader will send back the result with its certificate. Nor-
mally, it is reassuring for the node to use that information.
If the result is found out to be incorrect, the node can pro-
vide the message including all certificates of involved nodes
to an agent, by tracking back the message, the fault node
can be found out. Since the leader for the required result
may itself be faulty. Replica will be reached by the key gen-
erated by the hash function initialized with another seed,
which is similar with CFS [3]. Instead of just tolerating the
faulty node, that node will be impeached. A node can re-
port the suspect leaders and agents to its agent with the ev-
idence of redundant routing results. If that node is continu-
ally impeached by different nodes, the agent will consider
it faulty and keep it in a black list.

3.3. Dealing with Faulty Leaders and Agents

Although malicious nodes do not have much chance to
interfere the overlay under the security routing, we still need
to prevent the accumulation of malicious nodes for agents
and leaders. Since malicious nodes may have more power-
ful CPU and longer session time, they may be good candi-
dates for leaders and agents. The solution is to limit the term
of every leader and agent. The maximum period of leaders
and agents will be no more than 24 hours. Since a leader’s
certificate may just be issued by an expiring agent, the pub-
lic key for each agent will be kept for another 24 hours as
grace period. After that, the public key will be deleted. A
previous agent may be selected to be agent again and be is-
sued a new certificate, however, reappointment is forbidden.
In addition to limit the maximum term of leaders

and agents, our overlay can actively eject the misbehav-
ing nodes. As mentioned early, agents will keep a black list
for malicious agents and leaders. If a malicious agent or
leader is the black lists of two or more agents of one group,
they may accuse that node jointly. They will send an ap-
peal with their signatures to an agent in that group. Then,

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

the term of that node will be reduced. The more appeals re-
ceived, the more quickly the node will be ejected. Finally,
a new leader or agent will selected to replace the mali-
cious one, and its certificate will be revoked. As the result,
that node will be isolated by stopping sending it mes-
sages and ignoring ones from it.

4. Experiments and Results

In this section, we evaluate our approach using simula-
tions with the real Internet AS-level topology and compare
it with current P2P designs.

4.1. Experiments Setups

The AS-level topology graph used in our experiments
was from CIDR [2] Report in Oct. 2003. In the graph,
there are more than 15,800 ASes and 65,000 links. In order
to compare with other P2P systems, we use FreePastry1.3
from Rice University and latest Chord simulator from UC
Berkeley. An event-driven simulator of our overlay is devel-
oped under Java 1.4.2. For Pastry and Chord, all nodes and
objects are set to have a 32bits ID. Since the default leaf set
of FreePastry1.3 is 24 and the routing table size for 32 bits
ID is 128, Chord simulator is also set to have 24 successors
and 128 fingers. All experiments were performed in a Dell
Dimension PC, which has one 2.8GHz Pentium IV proces-
sor and 1.2GB RAM, running Linux. Since our overlay is
based on network topology, as fair, all that information is
revealed to other two DHT designs. We modified FreePas-
try1.3 to build network proximity overlay based on AS path
length. The Chord simulator is also adapted to support net-
work proximity routing.
The density and distribution of hosts are important pa-

rameters in our experiments. Recent research [15] has
showed that the average nodes for KaZaA and Gnutella
were about 1 million and 200 thousands respectively.
All nodes distributed in about 5000 ASes, and the aver-
age node density for one AS was 200 and 60 for KaZaA
and Gnutella respectively. Also, the host density, con-
nectivity and traffic volume of P2P systems are highly
skewed and exhibited heavy tails, which can be approxi-
mated by Zipf’s distribution. Since the detailed distribution
of nodes in each AS is unknown, we use the Zipf distri-
bution as approximation in our experiments. The average
node density used in our experiments is 100 nodes per AS,
which is between the ones of KaZaA and Gnutella. The sys-
tem is modeled to have 20,000 nodes, which spread over
200 ASes under the Zipf distribution. All ASes are ran-
domly selected in the AS-level topology graph, and
topology within the AS is ignored. Every result in our ex-
periments is the average of ten times repetitions. For the
Zipf distribution, the largest AS has 2,000 nodes and

the smallest one has 29 nodes. Since our routing sched-
ule directly uses the Internet routing itself, the latency
stretch is not a major consideration. Our experiments fo-
cus on the impact of various parameters of system environ-
ment, such as system churn rate, different node quest rate
and size of group or team.

0

0.5

1

1.5

2

2.5

3

3.5

4

Unifrom Zipf
Chord ChordProx Pastry PastryProx NBDesign

Figure 2. Stretch comparison between
network-based overlay and other struc-
tured ones for 1,000,000 queries under differ-
ent distributions.

4.2. Experiments and Results

In the first experiment, we compare three systems, Pas-
try, Chord and our network-based system, with 20,000
nodes under uniform and Zipf distribution in 200 ASs. The
system overlay is built firstly, and then 1,000,000 queries
are performed, no node joining or leaving during that pe-
riod. Figure 2 shows the result of stretches among three
systems under the different distributions and systems. Net-
work proximity systems for Pastry and Chord perform bet-
ter than original ones. Also, the distribution of nodes has
little impact on systems. The performance under uniform is
slightly better than Zipf ones. This is because uniform dis-
tribution of nodes gives averagely more benefit to each node
than skewed one. However, the stretches of all DHT sys-
tems are still more than 2.5. On the contrary, the stretch of
our network-based system is equal to one under all distribu-
tions.
In our following experiments, we test the system un-

der highly dynamic environment. All 20,000 nodes are dis-
tributed in 200 ASes under Zipf distribution. We firstly
bring up all nodes within one group to make it active, then
other nodes are brought up, one every 1 second, each with a
randomly assigned group agent. We then churn nodes until

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

the system performance levels out, this phase normally lasts
about 10 minutes. Nodes’ joining and leaving are timed by
a Poisson process and therefore uncorrelated and bursty.
In our experiments, we use churn rates from 200 per sec-
ond to 10 per second, equal to median session times from
1.15 minutes to 1 hour. All nodes are chosen randomly. Al-
though leaders and agents are considered to have longer ses-
sion time than normal nodes, the algorithm used for select-
ing them is based on network bandwidth. Each group has
three nodes with highest bandwidth as the agents. In or-
der to examine the exact impact under churn, the statistic
starts 30 minutes after churn. This is to make sure that ev-
ery node has joined or left the system once and all original
data structures within nodes are expired. In this set of ex-
periments, we focus on the impact of leaving and failure
of agents. The leaving of leader is ignored, because nodes
within one team are physically nearby, as we mentioned be-
fore, a nearby node may replace it even before the old one’s
completely leaving. In each message of query and answer,
the information about latest three changed agents will be ap-
pended.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60

P
e
r
c
e
n
t
a
g
e

o
f

F
a
i
l
u
r
e

Median Session Time(min)

1st Fail(query rate 0.1/s)
2nd Fail(query rate 0.1/s)
1st Fail(query rate 0.5/s)

2nd Fail(query rate 0.5/s)

Figure 3. Network-based system under
churn. Shown is the percentage of fail-
ure lookups under increasing levels of churn
and different request rate. Churn rate in-
creases to the left. Each point is the average
rate during 30 minutes.

Figure 3 shows that our system has very high success
rate even under extremely dynamic environment. For the
query rate of 0.1 queries per node per second and median
session time of 5.75 minutes, the success rate of the first
query is 98.7%. The success rate for the second query is
above 99.99%. The results of other P2P overlays have been
reported by Rhea et al in [13]. In their experiments, within
a 1000 nodes system under modest churn rate, the median

session time of each node was 23 minutes, a Pastry sys-
tem (FreePastry) failed to complete 70% requests. They ex-
plained the failure as that nodes waited so long on lookup
requests to time out that nodes frequently left the network
with several requests still in their queues. Although almost
all lookups in a Chord network were completed, however,
the lookup latency increased more than 20 times. Com-
pared with their results, our overlay is significantly better in
both successful rate and lookup latency. Moreover, due to
the piggyback, higher workload can help update routing ta-
bles between agents. For example, under the query rate of
0.5 queries per node per second and median session time
of 2.8 minutes, the first success rate is above 99%. That is
to say, more frequent queries will have higher success rate
than less ones. Since the leaving of any node is independent
of each other, the median session time for each node in the
system is also that time for leaders and agents. Thus, most
of nodes will be suitable for agents, and some algorithm can
be designed to make each suitable node agent. The most im-
portant thing is that most of those updates/maintenance are
done during common lookup operation and do not involve
any addition message.

5. Conclusions

Being aware of the difficulties faced by structure P2P
overlays under an open Internet environment, from a dif-
ferent angle, this paper proposes a new approach to build
P2P overlay network. In contrast to current designs, which
focus on their own system overlays, our approach focuses
on the physical network, and builds the overlay network
following it. The physical network characteristics are nat-
urally exploited to build an efficient and secure P2P over-
lay network. Based on node’s physical network properties,
the net-print provides a practical and self-certifying identi-
fier for nodes under the open Internet environment. Com-
bined with the straightforward overlay routing mechanism,
the routing procedure is secure and can be audited. More-
over, the overlay network has the ability to repair itself by
ejecting the malicious nodes.
This paper is the first step towards building large-scale

peer-to-peer infrastructures based on Internet physical over-
lay. Many difficulties faced by current systems are smoothly
solved in our design. We believe that to build system over-
lay following the physical network is a promotion way to-
ward P2P and other large-scale distributed applications.

References

[1] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer over-
lay networks. In Proceedings of 5th Symposium on Operat-
ing Systems Design and Implementation (OSDI’02), Boston,
MA, Dec 2002.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

[2] CIDR-Report. The CIDR Report. http://www.cidr-
report.org.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
cia. Wide-area Cooperative Storage with CFS. In Proceed-
ings of ACM SOSP’01, Oct. 2001.

[4] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and
R. Morris. Designing a DHT for low latency and high
throughput. In USENIX First Symposium on Nerworked Sys-
tems Design and Implementation(NSDI’04), Mar. 2004.

[5] J. R. Douceur. The Sybil Attack. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems (IPTPS ’02),
Cambridge, MA, 2002.

[6] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis
of the Evolution of Peer-to-Peer Systems. In Proceedings of
ACM PODC, July 2002.

[7] M. Network. Internet Routing Registry. http://www.irr.net.
[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
Proceedings of the 2001 conference on applications, tech-
nologies, architectures, and protocols for computer commu-
nications (SIGCOMM), San Diego, CA, 2001.

[9] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server selec-
tion. In Proceedings of the 21st Annual Joint Confer-
ence of the IEEE Computer and Communications Society
(INFOCOM-02), 6 2002.

[10] RFC2365. Administratively Scoped IP Multicast.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2365.html.

[11] RFC791. Internet Protocol DARPA Internet Program
Protocol Specification. http://www.cis.ohio-state.edu/cgi-
bin/rfc/rfc0791.html.

[12] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a dht. Technical Report UCB//CSD-03-1299, Uni-
versity of California, Berkeley, December 2003.

[13] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
Churn in a DHT. In Proceedings of the USENIX Annual
Technical Conference, 2004.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decentraized
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware),
Heidelberg, Germany, Nov. 2001.

[15] S. Sen and J. Wang. Analyzing Peer-to-Peer Traffic Across
Large Networks. In In Proc. ACM SIGCOMM Internet Mea-
surement Workshop, Marseille, France, Nov. 2002., 2002.

[16] E. Sit and R. Morris. Security Considerations for Peer-to-
Peer Distributed Hash Tables. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems (IPTPS ’02),
Cambridge, MA, 2002.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the 2001 confer-
ence on applications, technologies, architectures, and proto-
cols for computer communications (SIGCOMM), pages 149–
160, San Diego, CA, 2001.

[18] H. Wang, Y. Zhu, and Y. Hu. To Unify Structured and
Unstructured P2P Systems. In Proceeding of the 19th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS05), Denver, Colorado, April 2005.

[19] M. Yang, Z. Zhang, X. Li, and Y. Dai. An Empirical Study of
Free-Riding Behavior in the Maze P2P File-Sharing System.
In Proceedings of the 2nd International Workshop on Peer-
to-Peer Systems (IPTPS’05), 2005.

[20] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, UC Berke-
ley, Apr. 2001.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

