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Abstract

In this paper, we propose novel techniques to reduce
bandwidth cost in a continuous keyword query processing
system that is based on a distributed hash table. We ar-
gue that query indexing and document announcement are
of significant importance towards this goal. Our detailed
simulations show that our proposed techniques, combined
together, effectively and greatly reduce bandwidth cost.

1. Introduction

Continuous queries, different from instantaneous queries
by which users retrieve matching documents from existing
documents in the system, allows the system to alert “future”
matching documents to users. Continuous queries reverse
the roles of documents and queries in instantaneous query
models. That is, queries are indexed and evaluated against
each new document as it is inserted into the system. One
example of continuous queries is the News Alert feature in
Google News. It allows users to register a keyword search
query by which the user will be notified via emails of any
newly discovered documents matching all the terms in the
query.

A distributed continuous query processing system in-
cludes four major components: query indexing, docu-
ment announcement, query resolution, and document alert.
Query indexing is responsible for indexing continuous
queries registered by users. Document announcement an-
nounces the appearance of a newly inserted document to
nodes which may hold the indexes of relevant continuous
queries. Query resolution determines the final set of queries
relevant to the new document on these nodes. Document
alert notifies users of a newly discovered document match-
ing their interest. Document alert is outside the scope of this
paper and it can be implemented by multicast, via emails,
or with the help of RSS feeds.

In this paper, we leverage a distributed hash table
(DHT) [7, 6, 9] to process continuous queries and focus
our study on simple keyword queries. Continuous keyword
queries are indexed and newly inserted documents are pub-

lished into the underlying DHT. Each DHT node may serve
as a rendezvous between queries and documents in query
resolution.

Our primary design goal is bandwidth efficiency. To this
end, we investigate various query indexing schemes and
propose using multicast techniques to perform document
announcement. In particular, we make the following con-
tributions:

e We propose a simple yet powerful indexing scheme
MHI to index continuous queries. MHI does not rely
on any term statistics and effectively reduces band-
width cost over random indexing by up to 39.3%.

e We further propose a more efficient query indexing
scheme SAP-MHI. SAP-MHI is based on duplicate-
sensitive sampling which is a natural fit for DHTs as
sampled synopses can be propagated over multiple, re-
dundant DHT paths for both reliability and fast conver-
gence. A moderate sample size of 3,000 terms reduces
bandwidth cost over MHI by up to 80.6%.

e We design a multicast-based document announcement
mechanism which is performed through embedded
trees in the underlying DHT without the need of ex-
plicit multicast trees. The document announcement
mechanism also allows for optimization of term pig-
gybacking in announcement messages. We argue that
query indexing and document announcement are of
significant importance in saving bandwidth. We show
that, our query indexing schemes and document an-
nouncement mechanism, combined together, effec-
tively and greatly cut down bandwidth consumption.
To the best of our knowledge, this work is the first to
explore the impact of query indexing and document an-
nouncement on bandwidth cost in DHT-based contin-
uous query processing systems.

The remainder of the paper is structured as follows. Sec-
tion 2 provides an overview of related work. Section 3
presents our system model and notations. We discuss query
indexing, document announcement, and query resolution
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in Section 4, Section 5, and Section 6 respectively. Sec-
tion 7 evaluates our approach against other approaches. We
present an optimization for query indexing as well as ex-
perimental results in Section 8. We conclude the paper in
Section 9.

2. Related Work

Many query systems on DHTs focus on instantaneous
queries: users submit a query and the system returns rel-
evant documents to users. Examples of such systems
include simple keyword search [5, 3] and content-based
search [8, 10].

There are few distributed continuous query systems in
the literature. SmartSeer [2] is the pioneering work to sup-
port rich continuous queries over DHTs. It presents the
basic architecture of the system and identifies several key
issues in query resolution for continuous keyword queries.
Our work differs from SmartSeer in that we focus our study
on query indexing and document announcement instead of
query resolution. We aim to minimize bandwidth cost by
aggressively yet effectively pruning the set of queries for
query resolution. In fact, SmartSeer and our work comple-
ment each other.

Our query indexing scheme through sampling (in Sec-
tion 8) is inspired by duplicate-sensitive aggregation from
reference [4]. Nath et al. presented a duplicate-sensitive
approach to aggregate data in sensor networks. We employ
the duplicate-sensitive aggregation to sample most popular
terms in a DHT and the sample is used to guide query in-
dexing.

3. System Model and Notations

We base our system model on continuous keyword
queries. Given a continuous query () consisting of m
unique terms, i.e., @ = {t1, -+, t;m}, its index is stored
into an inverted list corresponding to some term ¢;€(Q. The
inverted list is maintained by a DHT node which is re-
sponsible for hash of ¢;, i.e., h(t;). Each index entry of
an inverted list includes a query’s terms, subscriber’s in-
formation, alert methods (e.g., via email) and other meta-
data. Upon a new document D consisting of n unique terms
{t1,---,t,}, the system searches all inverted lists corre-
sponding to D’s terms and finds the queries whose terms all
appear in D. If a query’s terms all appear in D, we say that
D matches the query. The system will notify the query’s
subscriber of D via corresponding alert methods.

Notations. DN represents a DHT node that introduces
a new document into the system. A DN could be a doc-
ument insertion node or a node responsible for storing the
document. QN denotes a DHT node that maintains inverted
lists of continuous queries. Given a new document D =
{t1,---,t,}, the DN contacts all QNs that store inverted
lists corresponding to D’s terms for matching queries. Term
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ID represents the hash of a term, i.e., h(t). For ease of ex-
position, we may use term ID to represent ferm in the rest
of the paper.

4. Query Indexing

Given a continuous keyword query Q = {t1, -, t;m}, a
straightforward indexing scheme is random indexing (RI).
By RI, the query is indexed into the DHT under a randomly
chosen term ¢;€Q; a DHT node responsible for the term ID
of ¢; (i.e., h(t;)) adds an index entry for @ into the inverted
list corresponding to ¢;.

Optimal indexing (OI) assumes perfect knowledge of
term statistics (i.e., term frequency) in a document corpus,
and indexes a query under the most selective term, i.e., the
term with the least frequency. Specifically, given a query
@ with the most selective term ¢; among all its terms, OI
stores its index in the inverted list corresponding to ¢; on a
DHT node responsible for A(¢;). The intuition behind OI
is that using the most selective term to index a query allows
us to maximize load balancing and minimize bandwidth and
processing in query resolution. However, Ol is not practical
because that, aggregation and distribution of term statistics
of documents are nontrivial in peer-to-peer networks where
nodes join and leave at will, and where the number of doc-
uments can scale to millions and the document collection
is subject to changes due to document update, addition and
removal.

4.1. Our Approach: MHI

We propose a simple yet powerful indexing scheme
called Minimum Hash Indexing (MHI). Unlike OI, MHI
does not rely on term statistics. Given a query @) =
{t1," -, tm }, MHI chooses a term ¢; such that its term ID
is minimal among all terms, and stores (J’s index into the
inverted list corresponding to ¢; on the node responsible for
h(t;). For ease of exposition, we assume that in the rest of
the paper an inverted list corresponding to ¢; can be iden-
tified by both ¢; and its term ID h(¢;) in MHI. Each index
entry of an inverted list includes pairs of (term, termlID),
sorted in increasing order of term IDs.

The intuition behind MHI is that only a query that con-
tains a term which appears in the document and whose term
ID is minimal among the query’s term IDs will be consid-
ered in query resolution. Suppose that a query (Q has m
unique terms, k (0<k<m) of which appear in a document
D. Let P be the probability of that () is processed in query
resolution. Note that P for RI and MHI is: % and %
respectively.

Consequently, MHI can filter out many irrelevant queries
which otherwise may be considered in query resolution in
RI, thereby saving bandwidth and processing in query res-
olution. As shown in Figure 1, queries @)1, @2, and Q3 are
filtered out by MHI upon announcement of document D,
due to the fact that the term with the minimum term ID in



each of the three queries does not appear in D. However, the
three queries are very likely (i.e., with probability of 67%)
to be considered in query resolution if we use RI.

D = {tg, ty, t5, t6}

| | | | | | |
t [2) t3 ty ts te tr

Figure 1. Terms are sorted in increasing order of term IDs.
That is, h(t;) < h(t;) for i < j. There are three queries Q1 =
{ti.t2,ta}, Q2 = {t3,t4,t5}, and Q3 = {t3,t5,%6}.

5. Document Announcement

Consider a newly inserted document D = {¢1,- -, ¢,}.
The DN notifies a set of QNs responsible for h(t;), where
1<i<n. There are two challenges for document announce-
ment: (1) How does the DN locate all the corresponding
QNs of the document? (2) How does the DN intelligently
collapse redundant announcement messages to a QN if mul-
tiple term IDs fall into the same QN’s responsible region '?

In real-world applications, a document consists of tens or
hundreds of unique terms. For instance, the TREC [1] docu-
ments in our experiments had on average 178 unique terms,
and the CiteSeer documents used in SmartSeer had on aver-
age 2000 unique terms. In a DHT consisting of hundreds or
thousands of nodes, the number of QNs could be large, e.g.,
proportional to the number of document terms. As a result,
we base document announcement on multicast techniques.
In particular, we exploit embedded trees in the underlying
DHT to multicast document announcement messages.

5.1. Using Embedded Trees in DHTs

A DHT like Chord embeds many trees formed by DHT
links, more specifically, by neighbor links (i.e., the links to
successor nodes and finger nodes). The embedded trees are
maintained by periodically performed routing table main-
tenance messages in the presence of node churn. Consider
a DN R and a set of QNs Z;, 1<i<k in Chord. The rout-
ing paths from R to each Z; form a tree rooted at R. For
a newly inserted document, R uses this embedded tree to
notify each QN Z; of the document.

We here take a document D = {t¢1,-- -, ¢, } as an exam-
ple to discuss how R, as a DN, multicasts the announcement
messages to relevant QNs Z; through the embedded tree.
Before multicasting, R groups D’s term IDs according to
its neighbor. As illustrated in Algorithm 1, term IDs falling
into R’s responsible region are grouped together (lines 5-
7) because R is also a QN for the document in this case.
Term IDs falling into a successor node’s responsible region
are grouped at this successor (lines 9-11); term IDs equal
to or immediately following a neighbor’s ID are grouped
at this neighbor which is either the last successor node or

Tn DHTs like Chord, each node is responsible for a chunk of the DHT
identifier space, which we call responsible region.
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a finger node (lines 12-16). This is based on the observa-
tion that messages with these term IDs as a key are routed
through this neighbor in Chord. The routing paths from R
to these term IDs naturally guarantee the location of the cor-
responding QN responsible for these term IDs. Moreover,
this manner of grouping allows message aggregation and
thus minimizes the number of messages. As shown in right
component of Figure 5.1, term IDs are grouped according
to R’s neighbors.

Algorithm 1 R.group_termIDs(Document D)

1: vector<ID> id_set[1..k] //stores term IDs with respect to k neighbor
nodes

2: vector<ID> local_set //stores term IDs that fall into R’s responsible
region

3: for each t;€D do

4:  ID x = h(t;) //h() is the consistent hash used in Chord

5: if x lies in between R’s predecessor ID and R’s ID then

6: local _set.push_back(z) /add x into set

7 continue

8: endi . . .

9:  find a R’s successor node whose ID is equal to or immediately fol-

lows ©

10:  if such a successor node exists then

11: J «— the successor node’s index entry in R’s routing table
12:  else

13: find a R’s neighbor node whose ID is equal to or immediately

precedes x among all of R’s neighbors

14: j «— the neighbor node’s index entry in R’s routing table
15:  endif

16:  id_set[j].push_back(z)

17: end for

Grouped

Neighbors
Term IDs

Figure 2. Document announcement from a DN R. s; and sg
are R’s successor nodes; f1 and fo are R’s finger nodes. p is R’s
predecessor node. Let D = {t1,---,t6} and z; = h(t;).

After grouping of D’s term IDs, R uses multicast()
(as shown in Algorithm 2) to send announcement messages
each containing a list of term IDs to its neighbor nodes.
As shown in Figure 5.1, the message to f; encapsulates
a list of x9 and z3; the message to fo encapsulates a list
of x3, x4, and z5. Upon receiving the message, Z (here
as f1 or fo) extracts the term ID list, and regroups the list
into local_set and ¢d_set as shown in Algorithm 3. Z then
calls multicast() which delivers local_set for local pro-
cessing and id_set[t] to its i-th neighbor node. This process
is repeated recursively along the paths of the embedded tree
rooted at R, until all term IDs reach their QNs. We defer
discussion of local set processing to Section 5.2.

Document announcement, as discussed above, has many
advantages: (1) It does not impose overhead of mutli-



Algorithm 2 Y .multicast (vector<ID> id_set[1..k], vector<ID>
local_set)

1: if local_set is not empty then
deliver local_set to Y for local processing
end if
:fori=1tok do
if id_set[] is not empty then
Message M «— R.ip+id_set[i] //+ is a concatenation operator
send M to i-th neighbor node Z which calls regroup(M)
end if
end for

R ISR AR S

5.3. Optimization: Piggybacking Successor Term IDs

One argument we make in this paper is that we design
MHI and document announcement, combined together, to
aggressively prune the set of queries for query resolution,
thereby saving bandwidth and processing. In this section,
we present an optimization in document announcement by
piggybacking to aggressively prune the set of queries for
query resolution.

Algorithm 3 Z.regroup (Message M)

Algorithm 4z .prune_invertlist (ID z, vector<ID> succ_ids)

1: vector<ID> id_set[1..k]

2: vector<ID> local_set
3: vector<ID> recv_set < extract the term IDs from M

4: for each x € recv_set do

5:  if z lies in between Z’s predecessor ID and Z’s ID then

6: local _set.push_back(z)

7: continue

8: endif . . .

9:  find a Z’s successor node whose ID is equal to or immediately fol-
lows x

10:  if such a successor node exists then . .

11: 7 «— the successor node’s index entry in Z’s routing table

12:  else

13: find a Z’s neighbor node whose ID is equal to or immediately

precedes z among all of Z’s neighbors

14: j «— the neighbor node’s index entry in Z’s routing table

15:  endif

16:  id_set[j].push_back(z)

17: end for

18: Z.multicast(id_set, local _set)

cast tree construction and maintenance; (2) It inherits self-
organization and fault-tolerance natures of the underlying
DHT; (3) Announcement messages are aggregated along
the routing paths, thereby minimizing the number of mes-
sages; (4) The Proximity Neighbor Selection (PNS) of DHT
links naturally enables proximity-aware message multicas-
ting. (5) More importantly, document announcement sends
only one message to each QN even if multiple term IDs fall
into the QN’s responsible region.

5.2. Processing of local_set

As discussed earlier, local_set is a set of term IDs
falling into a QN Z’s responsible region. For each term
ID x€local_set, Z searches for the corresponding inverted
list. All the inverted lists provide an initial set of queries for
query resolution between the DN R and the QN Z, as will
be discussed in Section 6.

However, this initial set of queries for query resolution
can be pruned by two simple observations. Observation 1:
For a query (@ in this set, if there is a term in () whose term
ID falls into Z’s responsible region but does not appear in
local_set, then Q) can be excluded from this set (Proof by
contradiction is omitted). Observation 2: If D’s maximum
term ID is included in each unique document announcement
message, then a query () containing a term whose term ID
is larger than the maximum term ID can be excluded from
this set.

1: Z searches for the inverted list corresponding to a term with term ID
of x
if the inverted list exists then

»

3: D max < maximum term ID in succ-ids

4: L < inverted list )

5:  foreach Q = {z,71, 72, -, } in L do

6: // term IDs are sorted in increasing order, x is the term ID of the
indexing term of Q in MHI

7: for each z; lies in between (z, max) do

8: if z; ¢ succ_ids then

9: L=L—-{Q} /fiter out Q

10: break

11: end if

12: end for

13:  end for

14: end if

15: return L

For each term ID z in a document announcement mes-
sage, we piggyback onto the message up to k successor term
IDs which immediately follow z in the document. The pur-
pose is to allow each QN to further prune the set of queries
for query resolution. The intuition is that hashing terms pro-
duces sparse term IDs over the DHT identifier space, and
thus piggybacking a small number of neighboring term IDs
may effectively filter out irrelevant queries.

Algorithm 4 illustrates how a QN Z filters out irrelevant
queries in an inverted list corresponding to x with the help
of piggybacked successor term IDs (i.e., succ_ids). After
optimization, L contains the set of queries for query resolu-
tion with respect to this inverted list.

Recall that document announcement messages are ag-
gregated along the routing paths. The term IDs contained
in each message are actually close together in the Chord
ring space. Consequently, the term IDs in each message
have many overlaps in their successor term IDs (actually
the number of additional term IDs piggybacked is at most
k), making piggybacking overhead a lesser issue. k offers
a tradeoff between piggybacking overhead and bandwidth
cost in query resolution.

6. Query Resolution

Document announcement allows a DN to locate a set of
QNs each of which may present a set of queries requiring
further examination. Note that the set of queries may have
been pruned by the two observations and the optimization
of piggybacking, as discussed in Section 5. Query resolu-
tion identifies the final set of queries satisfied by a document
on each QN. SmartSeer proposes two main techniques for



query resolution: Term Dialogue (TD) and Bloom Filters
(BF). In Term Dialogue, each QN sends a message to the
DN asking about the presence of a set of terms in the docu-
ment, and the DN replies with a bit vector of which each bit
specifies the presence of a term. The query resolution may
involve multiple rounds of communication between a QN
and the DN. In Bloom Filters, the DN sends a bloom filter
over all the terms in the document to each of the QNs; each
QN filters out queries that contain a term corresponding to
a 0 in the bloom filter. By the bloom filter, a QN may prune
the set of queries to a smaller one. Then, the QN and DN
use Term Dialogue to resolve queries. We adopt the two
techniques in our experiments.

7. Evaluation

7.1. Experimental Setup

Table 1. Default parameter values for simula-
tion.

Parameter Default
Network size 1000 nodes
Document set TREC-1,2-AP

Mean of query sizes 5

Number of continuous queries 100,000
Number of documents 10,000
Document announcement w/o piggybacking

Our simulator is built on top of p2psim 3.0 and uses
Chord as the underlying DHT to store queries and docu-
ments. Table 1 shows default parameter values for simula-
tions. We index 100,000 continuous queries into the sys-
tem. Then, each document in the document set is inserted
into the system, which triggers document announcement
and query resolution. The results are collected and aver-
aged over the whole document set. Simulations are based on
a document set TREC-1,2-AP [1]. The document set used
in our experiments consists of 10,000 documents. We use
SMART to extract unique terms from each document. The
extracted terms are stemmed and stop words are removed.
This results in 46, 654 unique terms for the document set.
Each document on average has 178 unique terms.

There are few continuous query workloads available to
us, so we base our simulations on a workload of syntheti-
cally generated queries. Before generating queries, we cal-
culate the term frequency distribution over the document
set. We then generate three categories of queries: Uniform,
Skew, and InverSkew. The number of terms in a query fol-
lows a normal distribution with mean v and standard de-
viation 0.3v. In Uniform, each query chooses its terms
uniformly from the document set, irrespective of term fre-
quency. In Skew, each query chooses its terms according to
the term frequency distribution, i.e., those terms that appear
frequently in documents also appear frequently in queries.
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In InverSkew, each query chooses its terms by inverting the
skew, i.e., those terms that appear frequently in documents
appear infrequently in queries.

Our simulator has three query indexing components,
namely RI, OI, and MHI. The calculated term frequency
over the document set is used by OI to index continuous
queries. Query resolution uses two techniques, namely
Term Dialogue and Bloom Filters. When using Bloom Fil-
ters in query resolution, we use a bloom filter of 1K bits
and five independent hash functions.

We use three metrics for evaluation: (1) Number of
queries per document considered for query resolution
which defines how well a query indexing scheme (and doc-
ument announcement) filters out irrelevant queries before
query resolution. (2) Bandwidth cost per document in query
resolution, which also indicates a query indexing scheme’s
(and document announcement’s) ability of filtering out ir-
relevant queries before query resolution. (3) Load distribu-
tion specifies query index distribution among nodes. Specif-
ically, we use Ist, 50th, and 99th-percentiles of number of
query indexes on nodes.

7.2. Results

In this section, we present experimental results to an-
swer two main questions: (1) How well is MHI able to dis-
card irrelevant queries before query resolution and thus save
bandwidth? (2) How will the three query indexing schemes
perform under different query types and query resolution
techniques?

Table 2. Results for Skew Queries.

Indexing Load dist. # of queries/doc | Bandwidth (Bytes)
TD BF
RI (4,52,706) 11476 282285 | 36853
MHI (0, 18, 1027) 8560 188530 | 30338
Ol (8, 67, 487) 649 12518 20464

Basic comparisons.

Table 2 shows results for Skew queries. Several observa-
tions can be made form this table: (1) OI handles load bal-
ancing best while MHI incurs most load imbalance. This
means some popular terms happen to have minimum term
IDs in continuous queries, thus some nodes are responsi-
ble for long inverted lists corresponding to these popular
terms. (2) MHI filters out 25.4% more irrelevant queries
than RI, thereby reducing bandwidth cost in query resolu-
tion by 33.2% and 17.7% for Term Dialogue and Bloom
Filters respectively. This shows that MHI, while simple,
can effectively save bandwidth for continuous query pro-
cessing. (3) Ol filters out 94.3% more irrelevant queries
than RI, thereby saving bandwidth over RI by 95.6% and
44.5% for Term Dialogue and Bloom Filters respectively.
This confirms our intuition that indexing queries under the
most selective term is most effective in both bandwidth sav-
ing and load balancing.



Due to space constraints, the results for Uniform and
InverSkew queries are omitted here. The results for In-
verSkew are similar to Skew except that MHI saves little
bandwidth over RI for Term Dialogue. This is mainly be-
cause most terms in InverSkew queries are rare across the
documents and there are good indexing term candidates.
Thus, RI performs very well and renders MHI not much
room to improve performance. For Uniform queries, MHI
reduces bandwidth over RI by 14.9% and 39.3% for Term
Dialogue and Bloom Filters respectively.

Impact of Piggybacking Successor Term IDs.

Figure 3 shows bandwidth savings by MHI over RI with re-
spect to the number of piggybacked successor term IDs in
document announcement messages. Note that piggyback-
ing successor term IDs effectively and significantly reduces
bandwidth cost. This is largely because that hashing terms
produces sparse term IDs over the DHT identifier space. As
a result, piggybacking a small number of neighboring term
IDs can effectively filter out irrelevant queries before query
resolution. The piggybacking overhead is small since a term
ID only consumes several bytes, e.g., 8 bytes in our simula-
tions.

Figure 3. Bandwidth saving by MHI over RI with respect to the
number of piggybacked successor term IDs. (a) Bloom Filters. (b)
Term Dialogue.

8. Query Indexing Optimization: SAP-MHI

Previous experimental results suggest that it be wise to
index queries under the most selective terms. MHI neglects
term statistics and thus may incidentally index queries un-
der popular terms, despite great improvement over RI. As
a result, we may improve MHI’s performance by avoiding
indexing queries under popular terms. To this end, we op-
timize MHI by sampling K most popular terms in existing
documents. K offers a tradeoff between bandwidth over-
head and sample size. The basic idea is that we first pro-
duce synopses by sampling K most popular terms of ex-
isting documents, and then each node uses the synopses to
guide query indexing. Sampling only affects query indexing
(and pruning of initial query set upon document announce-
ment messages if successor term IDs are piggybacked in the
announcement messages) as will be discussed later.

96

8.1. Duplicate-Sensitive Sampling

One challenge for the synopsis sampling is to sup-
port duplicate-sensitive aggregates as a synopsis may be
gossiped over multiple DHT overlay paths and the term
document frequency is thus overestimated in aggregates.
Duplicate-sensitive sampling needs to repress duplicated
synopses in aggregates. We borrow the idea of duplicate-
sensitive aggregation from Nath et. al [4].

The goal of duplicate-sensitive sampling is to produce a
synopsis that contains up to K most popular terms without
being inflated. The sampling algorithm is based on the coin
tossing experiment CI(y): toss a fair coin until either the
first head occurs or y coin tosses end up with no head, and
return the number of tosses. In this paper, we set y to be
larger than log N where N is the number of DHT nodes.

Initially, each node produces a synopsis from their lo-
cally stored documents as follows: for each unique term
t in a document, the node produces a value v = CT(y)
for t. Then, the node aggregates terms over the local doc-
uments. Consider a term ¢ with values v, - - -, v,,, in doc-
uments Dy, - - -, D,, respectively, the node produces a pair
(t,max(vy,- -, vy,)) for the term. The synopsis contains
up to K pairs of (¢,v) with highest values. Then, the node
gossip the synopsis to its neighbor nodes.

Upon receiving a synopsis s’, each node aggregates its
own synopsis s with s’. For each unique term ¢ in sUs’,
discard all but the pair (¢,v) with maximum value. Then,
the node uses the K pairs with highest values as the current
synopsis. Periodical gossip messages are used to refresh
each node’s synopsis. The intuition behind the duplicate-
sensitive sampling is that, if a term appears in more docu-
ments then its value produced by C'T'(y) will be larger than
the values of rare terms.

8.2. Adapting MHI to SAP-MHI

MHI needs to adapt its indexing algorithm to exploit the
sampled synopsis which we call SAP-MHI. Algorithm 5 il-
lustrates how a node Z indexes a query () into the sys-
tem using SAP-MHI. The basic idea behind SAP-MHI is
to avoid indexing a query under a popular term. Note that
synopses on each node are not tightly synchronized. This
does not affect the correction of system.

Algorithm 5 Z.SAP_MHI(Query Q)

1: sort terms in @ = {t1, -, tm} such that their term IDs are in in-
creasing order, i.e., h(t;) < h(t;) for 1<i < j<m
S« extract terms from Z.synopsis
idx_term = t1 //the default indexing term in MHI
for i = 1tom do
ift; ¢ S then
idx_term = t;
break
end if
end for
. index @ into a node which is responsible for h(idz_term).

QORI NE DY
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If we piggyback successor term IDs in document an-



nounce messages (in Section 5), we need to adapt algo-
rithm 4 in pruning an inverted list. Because of SAP-MHI,
there are two different presentations of queries in an in-
verted list: regular and special. A regular query is one
whose indexing term is the term with the minimum term
ID, while a special query is one whose indexing term is not
with the minimum term ID. For ease of exposition, we rep-
resent the special query as Q = {x1,---,z;, T, Zj, -, Tm }
where term IDs are sorted in increasing order and x is the
indexing term ID (each term ID is associated with the term).
The regular query is denoted as Q = {z, z1, - - -, T, } Where
term IDs are sorted in increasing order and z is the index-
ing term ID. We handle regular queries as usual but treat
special queries differently. For a special query, SAP-MHI
leaves the resolution of the popular term IDs zq, - - -, x; to
query resolution, as these terms are likely to appear in a
document. Algorithm 6 illustrates how to prune an inverted
list given special and regular queries due to SAP-MHI.

Algorithm 6 Z .prune_invertlist (ID z, vector<ID> succ_ids)

1: Z search for the inverted list corresponding to a term with term ID of
T

2: ID max < maximum term id in succ-ids
3: if the inverted list exists then
4: L « the inverted list
5. for each Q€L do
6: if Q ={z, -, xm } then
7. //regular queries
8: for each x; lies in between (z, maz) do
9: if z; ¢ succ_ids then
10: L =L —{Q} /discard Q
11: break;
12: end if
13: end for
14: end if
15: if Q={x1, -, zi,x,2;, -, Tm} then
16: //special queries
17: for each tide{z;, - - -,z } and tid < maz do
18: if tid ¢ succ_ids then
19: L=L—-{Q}
20: break;
21: end if
22: end for
23: end if
24:  end for
25: end if
26: return L

8.3. Re-indexing Queries

Each node keeps refreshing their synopses through gos-
sips, though the interval could be large. As documents are
inserted or removed, old terms may vanish and new terms
may appear in the current synopsis. Each node can indepen-
dently re-index the queries in their inverted lists to reflect
the flux of popular terms. Currently, we do not incorporate
this idea into our design.

8.4. Experimental Results

In this section, we present experimental results to answer
the following questions: (1) How much does SAP-MHI im-
prove performance over MHI in terms of load balance and
bandwidth saving? (2) Does a small synopsis work well?
(3) What gains are achieved by the combination of SAP-
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MHI and document announcement which piggybacks suc-
cessor term IDs into messages?

In simulations, we first insert a set of 5, 000 documents
into the system. Then, we sample K most popular terms.
For each query, we randomly choose a node to index the
query using SAP-MHI, MHI or RI. After indexing 100, 000
queries, we insert the second set of 5,000 documents into
the system. The results are collected from the second set of
documents.

i'st, soth, and 99th-percentile ——

1000 | e
soo | e
600 e
400 [ e

200 | 4

Number of query indexes

o b 4

o 500 1000 1500 2000 2500 3000

Synopsis size

Figure 4, 1st, 50th, and 99th-percentiles of number of queries
among nodes for Skew queries.

Figure 4 plots the load distribution with respect to the
synopsis size for Skew queries. We omit the figures for
Uniform and InverSkew queries due to space constraints.
We make the following observations: (1) As the synopsis
size increases, SAP-MHI improves load balance greatly on
Skew queries. This is because SAP-MHI avoids indexing
queries under the most popular terms. (2) SAP-MHI shows
little improvement on Uniform and InverSkew queries with
increasing synopsis size. For InverSkew queries that con-
tain rare terms, SAP-MHI exploiting popular terms does not
affect index distribution. For Uniform queries that contain
terms uniformly from a large set of terms (46, 654), even a
synopsis size of 3000 (6.4% of terms) does not affect index
distribution much.

Figure 5 shows percentage of reduction by SAP-MHI
over MHI in the number of queries presented to query reso-
lution and bandwidth cost, with respect to the synopsis size.
Several observations can be made: (1) With a small syn-
opsis size, SAP-MHI significantly prunes queries, resulting
in a much less number of queries to resolve than MHI, i.e.,
up to 78.9% reduction in number of queries over MHI. (2)
SAP-MHI greatly reduces bandwidth cost over MHI due
to a less number of queries processed in query resolution,
i.e., up to 80.6% bandwidth saving over MHI. (3) SAP-
MHI shows an anomaly on Skew and Uniform queries when
Bloom Filters are used in query resolution. For example, a
synopsis of 2, 000 surprisingly shows less bandwidth saving
than a synopsis of 1, 500. This is counter-intuitive because
a lager synopsis size results in less number of queries to re-
solve, as shown in Figure 5(a). However, note that with a
larger synopsis size, SAP-MHI better distributes query in-
dexes. Consequently, a synopsis of 2,000 results in more
QNss than a synopsis of 1, 500. In other words, a DN com-
municates with more QNs for query resolution with a syn-
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Figure 5. % of reduction by SAP-MHI over MHI. (a) # of queries per document for query resolution . (b) Bandwidth cost by Bloom Filters. (c)

Bandwidth cost by Term Dialogue.

opsis of 2, 000, thereby incurring more bloom filters used in
query resolution. Bloom filters are only used to prune the
set of queries on each QN. The overhead in bloom filters
exceeds the gain in pruning the set of queries. Note that a
synopsis of 3, 000 further reduces the number of queries for
resolution on each QN, thus compensating the overhead in
bloom filters to some extent. While counter-intuitive, this
anomaly is encouraging. This is because a small synopsis
(i.e., 1,500, 3.2% of terms) performs very well for Skew
and Uniform queries when using bloom filters in query res-
olution.

B Pigaybacking (10)]
= = 000 |

Figure 6. Breakdown of % of reduction by SAP-MHI w/ pig-
gybacking up to 10 successor term IDs over RI. The synopsis size
is 1000.

Figure 6 shows percentage of reduction by SAP-MHI
with piggybacking over RI, represented by the whole
columns where each component indicates the contribution
by MHI, sampling and piggybacking, respectively. There
are three main observations: (1) By sampling a small syn-
opsis (i.e., 1,000), SAP-MHI significantly reduces the num-
ber of queries for query resolution and bandwidth cost for
all three query categories. (2) MHI shows a little band-
width reduction for InverSkew queries when using Term
Dialogue. This is because query terms are rare terms in
general, rendering little room of improvement for MHI. (3)
Piggybacking a small number (i.e., 10) of successor term
IDs in document announcement messages are more effec-
tive in Uniform and InverSkew queries. In summary, all the
techniques, combined together, significantly reduce band-
width cost in processing continuous queries.
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9. Conclusions

In this paper we present novel query indexing schemes
and document announcement to minimize bandwidth cost
in a continuous keyword query processing system. We dis-
cuss several query indexing schemes and provide a detailed
comparison of these schemes on bandwidth cost and load
balancing. We point out that query indexing and docu-
ment announcement are of significant importance in sav-
ing bandwidth and processing. We show that our proposed
techniques effectively and greatly reduce bandwidth cost in
continuous query processing.
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