Semantic Search in Peer-to-Peer Systems

Yingwu Zhu and Yiming Hu
Contents

1 Semantic Search in Peer-to-Peer Systems 1

1.1 Introduction .. 1

1.2 Search in Unstructured P2P Systems 3

1.2.1 Random Walks .. 4

1.2.2 Guided Search .. 4

1.2.3 Similar Content Group-based Search 4

1.3 Search in Structured P2P Systems 6

1.3.1 Keyword Search 8

1.3.2 Semantic Search 9

1.4 VSM and Locality Sensitive Hashing 11

1.4.1 VSM .. 11

1.4.2 Locality Sensitive Hashing (LSH) 12

1.5 Case Study on Unstructured P2P Systems 13

1.5.1 Overview .. 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.2 Node Vectors</td>
<td>14</td>
</tr>
<tr>
<td>1.5.3 Topology Adaptation Algorithm</td>
<td>15</td>
</tr>
<tr>
<td>1.5.4 Selective One-hop Node Vector Replication</td>
<td>18</td>
</tr>
<tr>
<td>1.5.5 Search Protocol</td>
<td>19</td>
</tr>
<tr>
<td>1.5.6 Experimental Results</td>
<td>21</td>
</tr>
<tr>
<td>1.6 Case Study on Structured P2P Systems</td>
<td>23</td>
</tr>
<tr>
<td>1.6.1 Overview</td>
<td>24</td>
</tr>
<tr>
<td>1.6.2 LSH-based Semantic Indexing</td>
<td>27</td>
</tr>
<tr>
<td>1.6.3 LSH-based Semantic Locating</td>
<td>29</td>
</tr>
<tr>
<td>1.6.4 Experimental Results</td>
<td>31</td>
</tr>
<tr>
<td>1.6.5 Top Term Optimization</td>
<td>32</td>
</tr>
<tr>
<td>1.7 Summary</td>
<td>33</td>
</tr>
</tbody>
</table>
Chapter 1

Semantic Search in Peer-to-Peer Systems

Yingwu Zhu and Yiming Hu

Department of Electrical & Computer Engineering and Computer Science
University of Cincinnati
Cincinnati, OH 45221-0030
e-mail: {zhuy,yhu}@ececs.uc.edu

1.1 Introduction

A recent report [18] has shown that, 93% of information produced worldwide is in digital form. The volume of data added each year is estimated to be more than one terabyte (i.e., 10^{18} bytes) and is expected to grow exponentially. This trend calls for a scalable infrastructure capable of indexing and searching rich content such as HTML, music, and image files [28].
One solution is to build a search engine like Google. Such a solution, however, needs to maintain an enormous centralized database about all the online information. Also, for such search engines to appear to be “scalable”, they need a very large and expensive infrastructure to support their operations (e.g., Google uses tens of thousands of computers). The costs of hardware and software, as well as maintenance and utilities, are very high [2]. The centralized database approach also poses a single point of failure problem. Moreover, newly created or modified information often is not indexed into the search database for weeks. Similarly, search results often contain stalled links to files which have been removed recently.

One the other hand, as P2P systems gain more interests from both user and research communities, building a search system on top of P2P networks is becoming to be an attractive and promising alternative for the following reasons.

- **High availability.** Centralized search systems are vulnerable to distributed denial of service attacks. However, P2P search tends to be more robust than centralized search as the demise of a single node or some nodes is unlikely to paralyze the entire search system. Furthermore, it is not easy for an attacker to bring down a significant fraction of geographically distributed P2P nodes. Recent work (e.g., [9]) has shown that the failure of a reasonable portion of P2P nodes will not prevent a P2P system from functioning as a whole.

- **Low cost and easy of deployment.** As discussed above, a centralized search engine requires a huge amount of investment in both hardware and software, as well as in maintenance. A P2P search system, however, is virtually free by pooling together slack resources in P2P nodes and can be deployed incrementally as new nodes join the system.

- **Data freshness.** In centralized search systems, it usually takes weeks for newly updated data to enter the data center which hosts the search database, due to the fact that it takes time for robots or crawlers to collect such information into the search database as well as the bandwidth constraints between the data center and the Internet. Therefore, there is no freshness guarantee on the index maintained in the centralized database, i.e., weeks delay. On the other hand, P2P nodes can publish their documents immediately once they appear, and the publishing traffic goes to geographically distributed nodes,
thereby avoiding the bandwidth constraints posed by centralized search systems.

• Good scalability. A recent study [13] has shown that no search engine indexed more than 16% of the indexable Web. The exponentially growing data added each year would be beyond the capability of any search engine. However, the self-organizing and scalable nature of P2P systems raises a hope to build a search engine with very good scalability.

The purpose of this chapter is to give an overview of P2P search techniques and present two semantic search systems built on top of the P2P networks. The remainder of this chapter is structured as follows. We review the search systems built on top of unstructured P2P networks in Chapter 1.2. Chapter 1.3 provides a survey of the search systems built on top of structured P2P networks. Chapter 1.4 provides necessary background. We present two representative search systems in Chapter 1.5 and 1.6, respectively. Finally we conclude in Chapter 1.7.

1.2 Search in Unstructured P2P Systems

In unstructured P2P systems such as Gnutella, the unstructured overlay organizes nodes into a random graph and uses flooding on the graph to retrieve relevant documents for a query. Given a query, each visited node evaluates the query locally on its own content and then forwards the query to all of its neighbors. Arbitrarily complex queries therefore can be easily supported on such systems. Although this approach is simple and robust, it has the drawback of the enormous cost of flooding the network every time a query is issued.

Improvements to Gnutella’s flooding mechanism have been studied along three dimensions: random walks, guided search, and organizing nodes into similar content segments or groups.
1.2.1 Random Walks

Random walks represent the recommended search technique proposed by Lv et al. [15]. It is used to address the scalability issue posed by flooding on unstructured P2P systems like Gnutella. Given a query, a random walk is essentially a blind search in that at each step the query is forwarded to randomly chosen node without considering any hint of how likely the next node will have answers for the query. Two techniques have been proposed to terminate random walks: TTL (time-to-live) and “checking”. TTL means that, similar to flooding, each random walk terminates after a certain number of hops, while “checking” means a walker periodically check with the query originator before walking to the next node [15].

1.2.2 Guided Search

Guided search represents the search techniques (e.g., [8]) which allow nodes to forward queries to neighbors that are more likely to have answers, rather than forward queries to randomly chosen neighbors or flood the network by forwarding queries to all neighbors.

Crespo et al. [8] introduced the concept of Routing Indices (RIs) which give a promising “direction” towards the answers for queries. They presents three RI schemes: the compound, the hop-count and the exponentially routing indices. The basic idea behind guided search is that a distributed-index mechanism maintains indices at each node. These distributed indices are small (i.e., compact summary) and they give a “direction” towards the document, rather than its actual location. Given a query, The RI allows a node to select the “best” neighbors to send a query to. A RI is a data structure (and associated algorithms) that, given a query, returns a list of neighbors, ranked according to their goodness for the query. The notion of goodness generally reflects the number of relevant documents in “nearby” nodes.

1.2.3 Similar Content Group-based Search

The basic idea of similar content group-based search [31, 3, 7, 25] is to organize P2P nodes into similar content groups on top of unstructured P2P systems like Gnutella. The intuition
behind this search technique is that nodes within a group tend to be relevant to the same queries. As a result, this search technique will guide the queries to nodes that are more likely to have answers to the queries, thereby avoiding a significant amount of flooding.

The search in SETS [3] uses a topic-driven query routing protocol on a topic-segmented overlay built from Gnutella-like P2P systems. The topic-segmented overly is constructed by performing node clustering\(^1\) at a single designated node, and each cluster corresponds to a topic segment. Therefore, SETS partitions nodes into topic segments such that nodes with similar documents belong to the same segment. Given a query, SETS first computes \(R\) topic segments which are most relevant to the query and then routes the query to these segments for relevant documents. However, the designated node is potentially a single point of failure and performance bottleneck.

Motivated by research in data mining, Cohen et al. [7] introduced the concept of associative overlays into Gnutella-like P2P systems. They use guide rules to organize nodes satisfying some predicates into associative overlays, and each guide rule constitutes an associative overlay. A guide rule is a set of nodes that satisfy some predicate; each node can participate in a number of guide rules, and for each guide rule it participates in it maintains a small list of other nodes belonging to the same guide rule. The key idea of guide rules is that nodes belonging to some guide rule contain similar data items. As a result, guided search restricts the propagation of queries to be within some specified guide-rules, i.e., some associative overlays, instead of flooding or blind search.

Sripanidkulchai et al. [25] propose a content location approach in which nodes are organized into an interest-based overlay on top of Gnutella by following the principle of interest-based locality. The principle of interest-based locality is that, if a node has a piece of content that one is interested in, then it is likely that it will have other pieces of content that one is also interested in. Therefore, nodes that share similar interests create shortcuts to one another, and interest-based shortcuts form the interest-based overlay on top of Gnutella’s unstructured overlay. Given a query, the interest-based overlay serves as a performance enhance layer by forwarding the query along shortcuts. When shortcuts fail, nodes resort to the underlying Gnutella overlay.

\(^{1}\)the node is represented by a node vector which summarizes a node’s documents.
ESS [31] is another example for efficient search on Gnutella-like P2P system, by leveraging the state-of-the-art information retrieval (IR) algorithms. The key idea is that ESS employs a distributed, content-based, and capacity-aware topology adaptation algorithm to organize nodes into semantic groups. Thereby, nodes with similar content belong to the same semantic group. Given a query, ESS uses a capacity-aware, content-based search protocol based on semantic groups and selective one-hop node vector replication, to direct the query to the most relevant nodes which are responsible for the query, thereby achieving high recall with probing only a small fraction of nodes. We defer the detailed discussion of ESS to Chapter 1.5.

1.3 Search in Structured P2P Systems

Following the first generation P2P systems such as Gnutella and KaZaA, structured (or DHT-based) P2P systems [26, 22, 19, 30], generally called the second generation P2P systems, have been proposed to provide scalable replacement for unscalable Gnutella-like P2P systems.

Such DHT-based systems are adept at exact-match lookups: given a key, the system can locate the corresponding document with only $O(\log N)$ hops (N is the number of nodes in system). In structured P2P systems, replication (and caching) has been exploited to improve data availability and search efficiency. Rhea et al. [21] proposed a probabilistic location algorithm to improve the location latency of existing DHT’s deterministic lookups, if the replica of a requested document exists close to query sources. Their approach is based on attenuated bloom filters, a lossy distributed index structure constructed on each node.

However, supporting complex queries such as keyword search and semantic/content search on top of DHTs is a non-trivial task. In the following sections, we will provide a survey of keyword search and semantic search on top of DHTs.
Figure 1.1: Three indexing structures on top of DHTs. (1) Global indexing. (2) Hybrid indexing. (3) Optimized hybrid indexing. a, b, and c are terms. D, E, and F are documents. Forward list $D \rightarrow a, c$ indicates that document D contains terms a and c. Inverted list $a \rightarrow D, F$ means that term a appears in documents D and F.
1.3.1 Keyword Search

In keyword search, a query contains one or more keywords (or terms), e.g., \(Q = K_1 \text{ AND } K_2 \text{ AND } K_3 \) (where \(Q \) is a query, which contains three unique keywords \(K_1, K_2, \) and \(K_3. \)), and the search system returns a set of documents containing all of the requested keywords for the query. Basically, three indexing structures have been proposed to support keyword search in structured P2P systems: \textit{global indexing} \cite{20, 14}, \textit{hybrid indexing} \cite{27}, and \textit{optimized hybrid indexing} \cite{27}. Figure 1.1 illustrates these three indexing structures, each of which distributes metadata for three documents (\(D, E, \) and \(F \)) containing terms from a small vocabulary (\(a, b, \) and \(c \)) to three nodes.

In global indexing (as shown in Figure 1.1 (1)), the system as a whole maintains an inverted index which maps each potential term to a set of documents that contains that term. Each P2P node stores the complete \textit{inverted list} of those terms that are mapped into its responsible DHT identifier region. An inverted list \(a \rightarrow D, F \) indicates that term \(a \) appears in documents \(D \) and \(F \). To answer a query containing multiple terms (e.g., \(a \) and \(b \)), the query is routed to nodes responsible for those terms (e.g., nodes 1 and 2). Then, their inverted lists are intersected to identify documents that consist of all requested terms. Although global indexing involves only a small number of nodes for a query (i.e., proportional to the number of terms in the query), it has the drawback of requiring communication in the intersection operation for multiple term conjunctive queries. The communication cost grows proportionally with the length of the inverted lists.

In hybrid indexing (as shown in Figure 1.1 (2)), each P2P node maintains the complete inverted list of those terms mapped into its responsible DHT identifier region. In addition, for each document (say, \(D \)) in the inverted list for some term \(t \), the node also maintains the complete forward list for document \(D \) (a forward list \(D \rightarrow a, c \) indicates document \(D \) contains terms \(a \) and \(c \)). Given a multiple keyword query, the query is routed to nodes responsible for those terms. Each of these nodes then does a local search without contacting others, since they have the complete forward list for each document in their respective inverted lists. This hybrid indexing achieves search efficiency at the cost of publishing more metadata, requiring more communication and storage.
To address the associated cost in hybrid indexing, Tang et al. [27] proposed an optimized hybrid indexing scheme (as shown in Figure 1.1 (3)). The basic idea behind the optimized hybrid indexing is that the metadata for a document is published under the document’s top terms, rather than all of its terms. Figure 1.1 (3) illustrates such an optimization. For example, document D containing terms a and c publishes its forward list only at node 3 (responsible for term c) due to the fact that only term c is a top term in D. Given a query containing terms a and c, node 3 can still determine that document D is the answer since it stores complete forward lists for documents in its inverted lists. However, the search results may be degraded because optimized hybrid indexing only publishes the metadata for a document under its top terms. Tang et al. proposed to adopt automatic query expansion techniques [16] to address this problem. More details can be found in [27].

1.3.2 Semantic Search

Semantic search is a content-based full-text search, where queries are expressed in natural language instead of simple keyword match. When a query is issued by a user, a query representative is first derived from its full text, abstract, or title, and then presented to the information retrieval system. For example, when a user issues a query such as “find files similar to file F”, a query representative is derived from its full text. Then the query representative is presented to the information retrieval system for those files that are similar to F. Semantic search presents a challenging problem for structured P2P systems: given a query, the system either has to search a large number of nodes or miss some relevant documents. Some semantic search systems [28, 32] have been proposed on top of structured P2P systems. One important feature of such search systems is to extend the state-of-the-art information retrieval (IR) algorithms such as Vector Space Model (VSM) and Latent Semantic Indexing (LSI) [4], in the P2P environment.

pSearch [28] introduces the concept of semantic overlay on top of a DHT (i.e., CAN) to implement semantic search. The semantic overlay is a logical network in which documents

2Top terms are defined as those terms central to a document. In the IR algorithms such as vector space model (VSM), terms central to a document are automatically identified by a heavy weight.
are organized under their semantic vectors \(^3\) such that the distance (e.g., routing hops) between two documents is proportional to their dissimilarity in semantic vectors.

Two basic operations are involved in pSearch: *indexing* and *searching*. Whenever a document \(D\) enters the system, pSearch performs the indexing operations as follows:

1. Use LSI to derive \(D\)’s semantic vector \(V_d\).
2. Use rolling-index to generate a number \(p\) of DHT keys \((k_i, i = 0, ..., p - 1)\) from \(V_d\).
3. Index \(D\) into the underlying DHT by using these DHT keys.

Whenever a query \(Q\) is issued, pSearch performs the search operations as follows:

1. Use LSI to derive \(Q\)’s semantic vector \(V_q\).
2. Use rolling-index to generate a number \(p\) of DHT keys \((k_i, i = 0, ..., p - 1)\) from \(V_q\).
3. Route \(Q\) to the destination nodes which are responsible for these DHT keys.
4. Upon reaching the destination, \(Q\) is either flooded to nodes within a radius \(r\) or forwarded to nodes by using content-directed search.
5. All nodes which receive the query do a local search using LSI and return the matched documents to the query originator node.

More details of pSearch can be found in [28], and we leave the discussion of [32] in Chapter 1.6.

\(^3\)A semantic vector is a vector of terms. VSM or LSI represents documents and queries as semantic vectors.
We provide an overview of VSM [4]. In VSM each document/query is represented by a vector of terms. The terms are stemmed words which occur within the document. In addition, stop words \(^4\) and highly frequent words \(^5\) are removed from the term vector. Each term in the vector is assigned a weight. Terms with a relatively heavy weight are generally deemed to be central to a document. To evaluate whether a document is relevant to a query, the model measures the relevance between the query vector and the document vector. Typically, VSM computes the relevance between a document \(D\) and a query \(Q\) as (suppose the term vectors of \(D\) and \(Q\) have been already normalized)

\[
REL(D, Q) = \sum_{t \in D, Q} d_t \cdot q_t
\]

(1.1)

Where \(t\) is a term appearing in both \(D\) and \(Q\), \(q_t\) is term \(t\)’s weight in query \(Q\), and \(d_t\) is term \(t\)’s weight in document \(D\). Documents with high relevance score are identified as search results for a query.

A number of term weighting schemes have been proposed for VSM, among which \(tf-idf\) is a scheme in which the weight of a term is assigned a high numeric values if the term is frequent in the document but infrequent in other documents. The main drawback of \(tf-idf\) is that it requires global information (i.e., \(df\), the document frequency, which represents the number of documents where a term occurs) to compute a term’s weight. To avoid such global information requirement, “dampened” \(tf\) scheme is proposed, where each term is assigned a weight in the form of \(1 + \log d_t\) (\(d_t\) is the term frequency in a document). Previous work [24] has shown that this scheme not only does not require global information but also produces higher quality document clusters.

\(^4\)Stop words are those words that are considered non-informative, like function words (of, the, etc.), and are often ignored.

\(^5\)Words appear in a document very frequently, but are not useful to distinguish the document from other documents. For example, if a term \(t\) appears in a document very frequently, it should not be included in its term vector. Generally, stop words and high frequency words are removed by using a stop list of words.
1.4.2 Locality Sensitive Hashing (LSH)

From [6, 11], a family of hash functions \(\mathcal{F} \) is said to be a locality sensitive hash function family corresponding to similarity function \(\text{sim}(A, B) \) if for all \(h \in \mathcal{F} \) operating on two sets \(A \) and \(B \), we have:

\[
\Pr_{h \in \mathcal{F}}[h(A) = h(B)] = \text{sim}(A, B).
\]

Where \(\Pr \) is the probability, and \(\text{sim}(A, B) \in [0, 1] \) is some similarity function.

Min-wise Independent Permutations

Min-wise independent permutations [5] provide an elegant construction of such a locality sensitive hash function family with the Jaccard set similarity measure \(\text{sim}(A, B) = \frac{|A \cap B|}{|A \cup B|} \), where sets \(A \) and \(B \) each represents a set of integers.

Let \(\pi \) represent a random permutation on the integer’s universe \(U \), \(A = \{a_1, a_2, ..., a_n\} \subseteq U \), and \(B = \{b_1, b_2, ..., b_n\} \subseteq U \). The hash function \(h_{\pi} \) is defined as \(h_{\pi}(A) = \min\{\pi(a_1), \pi(a_2), ..., \pi(a_n)\} \) (that is, the hash function \(h_{\pi}(A) \) applies the permutation \(\pi \) on each integer component in \(A \) and then takes the minimum of the resulting elements). Then for two sets \(A \) and \(B \), we have \(x = h_{\pi}(A) = h_{\pi}(B) \) if and only if \(\pi^{-1}(x) \in A \cap B \). That is, the minimum element after permuting \(A \) and \(B \) matches only when the inverse of the element lies in both \(A \) and \(B \). In this case, we also have \(x = h_{\pi}(A \cup B) \). Since \(\pi \) is a random permutation, each integer component in \(A \cup B \) is equally likely to become the minimum element of \(\pi(A \cup B) \). Hence we conclude that \(\min\{\pi(A)\} = \min\{\pi(B)\} \) (or \(h_{\pi}(A) = h_{\pi}(B) \)) with probability \(p = \text{sim}(A, B) = \frac{|A \cap B|}{|A \cup B|} \). We refer readers to [5, 10] for more details.
1.5 Case Study on Unstructured P2P Systems

We present ESS [31], an architecture for efficient semantic search on unstructured P2P systems, leveraging the state-of-the-art IR algorithms like VSM and relevance ranking algorithms.

1.5.1 Overview

The design goal of ESS is to improve the quality of search (e.g., high recall6) while minimizing the associated cost (e.g., the number of nodes visited for a query). The design philosophy of ESS is that we improve search efficiency and effectiveness while retaining simple, robust, and fully decentralized nature of Gnutella.

In ESS, each node has a node vector, a compact summary of its content (as will be shown in Chapter 1.5.2). And each node may have two types of links/connections, namely random links and semantic links. Random links connect irrelevant nodes while semantic links organize relevant nodes7 into semantic groups. Topology adaptation algorithm (as will be discussed in Chapter 1.5.3) is first performed to connect a node to the rest of the network through either random links, or semantic links or both8. The goal of the topology adaptation is to ensure that: (1) relevant nodes are organized into semantic groups through semantic links, and (2) high capacity nodes have high degree and low capacity nodes are within short reach of higher capacity nodes.

Given a query, ESS’s search protocol (as will be discussed in Chapter 1.5.5) quickly locates a relevant semantic group for the query, relying on selective one-hop node vector replication (as will be shown in Chapter 1.5.4) as well as its capacity-aware mechanism. Once locating the semantic group, ESS floods the query within the semantic group to retrieve relevant documents. The intuition behind the flooding within a semantic group is that semantically associated nodes tend to be relevant to the same query.

6Recall is defined as the number of retrieved relevant documents divided by the number of relevant document.

7Nodes with similar contents are considered to be relevant.

8If a node cannot find a relevant node, it connects itself to the rest of the network only through random links.
The main contributions of ESS are:

- We propose a distributed, dynamic, and capacity-aware topology adaptation algorithm to organize nodes into semantic groups for efficient search.

- We propose a capacity-aware, content-based search protocol based on semantic groups and selective one-hop node vector replication, to direct queries towards the most relevant nodes which are responsible for the queries, thereby achieving high recall at very low cost.

- Our Findings suggest that an appropriate size of node vectors is a very good design choice in both search efficiency and effectiveness, and justify that a good node vector size plays a very important role in system design.

- We introduce automatic query expansion into our system to further improve the quality of search results in both recall and precision. To the best of our knowledge, this is the first work to employ the automatic query expansion technique on Gnutella-like P2P systems.

- We show that ESS’s capacity-aware abilities can exploit heterogeneity to make search further more efficient.

1.5.2 Node Vectors

A node vector is a representation of the summary of a node’s content. It is derived from a node’s locally stored documents as follows. First, each document is represented as a term vector using VSM. The terms in a term vector are the stemmed words which occur within the document. Stop words and highly frequent words are also removed from the term vector. Each term t in the term vector is assigned a weight d_t, the term frequency. Then all term vectors of a node’s documents are summed up and we get a new vector, in which each term component t has a weight d'_t. For each term vector t, we replace its weight d'_t with $1 + \log d'_t$. Finally we normalize the new vector, and the normalized vector is called the node vector.
As described above, node vectors characterize a node’s content. They are used to determine the relevance of two nodes (say X and Y) according to the Equation 1.2.

\[REL(X, Y) = \sum_{t \in X, Y} w_{X,t} \cdot w_{Y,t} \] (1.2)

Where \(t \) is a term appearing in both X and Y, \(w_{X,t} \) is term \(t \)'s weight in X, and \(w_{Y,t} \) is term \(t \)'s weight in Y. If the relevance score is less than certain relevance threshold, nodes X and Y are deemed to be irrelevant. Otherwise, they are deemed to be relevant.

Node vectors are also used to determine the relevance of the node X and a query vector (say Q) according to Equation 1.3, as will be shown later in biased walks during search.

\[REL(X, Q) = \sum_{t \in X, Q} w_{X,t} \cdot w_{Q,t} \] (1.3)

Note that in IR community a number of term weighting schemes have been proposed. The motivations of why ESS uses the “dampened” \(tf \) scheme instead of \(1 + \log tf \) in its design are as follows. First and most importantly, unlike other schemes like \(idf \), this term weighting scheme does not require global information such as \(df \). A term weighting scheme requiring global information contradicts its design philosophy that we retain the simple, robust and fully decentralized nature of Gnutella. Secondly, it has been shown by [24] that such a term weighting scheme works very well and can produce higher quality clusters.

1.5.3 Topology Adaptation Algorithm

The topology adaptation algorithm is a core component which connects a node to the rest of the network, and more importantly, connects the node to a semantic group (if it can find one) through semantic links.

When a node joins the system, it first uses a bootstrapping mechanism in Gnutella to connect to the rest of the network. But, it may not have any information about other
nodes’ content (i.e., node vectors) as well as semantic groups. Its attempt to gain such information is performed through random walks. A random walk is a well-known technique in which a query message is forwarded to a randomly chosen neighbor at each step until sufficient responses are found. In ESS, the duration of a random walk is also bound by a TTL (time-to-live).

A random walk query message contains a node’s node vector, a relevance threshold $REL_{\text{THRESHOLD}}$, the maximum number of responses $MAX_{\text{RESPONSES}}$, and TTL. The random walk returns a set of nodes. In ESS’s implementation, a node actually periodically issues two queries, one requesting nodes whose relevance is lower than $REL_{\text{THRESHOLD}}$, and the other requesting nodes whose relevance is higher than or equal to $REL_{\text{THRESHOLD}}$. Note that the relevance score is computed using the Equation 1.2.

The returned nodes are added to the query initiator node’s two host caches: random host cache and semantic host cache, respectively, according to their relevance scores. Each entry of host caches consists of a node’s IP address, port number, node capacity, node degree, node vector, and relevance score. These two caches are maintained throughout the lifetime of the node. Each cache has a size constraint and uses FIFO as replacement strategy.

The goal of topology adaptation is to ensure that, on the one hand, a node is connected to the most relevant nodes through semantic links (thereby forming semantic groups), and on the other hand, its capacity-aware mechanism makes a node connected to higher capacity nodes through random links. To achieve this goal, each node periodically checks its two caches for random and semantic neighbor addition/replacement.

To add a new semantic neighbor (a neighbor node connected by a semantic link), a node (say X) chooses a node from its semantic cache that is not dead and not already a neighbor and with the highest relevance score. Node X then uses a three-way handshake protocol to connect to the chosen neighbor candidate, say Y. During handshake, each node decides independently whether or not to accept the other node as a new semantic neighbor based upon its own $MAX_{\text{SEM_LINKS}}$ (the maximum number of semantic neighbors), SEM_{LINKS}.

9The semantic host cache does not contain node vectors.

10We assume a node’s capacity is a quantity that represents its CPU speed, bandwidth, disk space, etc.
(the number of current semantic neighbors), and the new node (i.e., the relevance score). If SEM_LINKS is less than MAX_SEM_LINKS, the node automatically accepts this new connection. Otherwise, the node must check if it can find an appropriate semantic neighbor to drop and replace with the new neighbor candidate. X always accepts Y and drops an existing semantic neighbor if Y’s relevance score is higher than all of X’s current semantic neighbors. Otherwise, it makes a decision whether to accept Y or not as follows. From all of X’s semantic neighbors whose relevance scores are lower than that of Y and which are not poorly connected 11, X chooses the neighbor Z which has the lowest relevance score. Then it drops Z and add Y into its semantic neighbors.

To add a new random neighbor (a neighbor node connected by a random link), node X chooses a node from its random cache which is not dead and not already a neighbor and has a capacity greater than its own capacity (e.g., the highest capacity node is preferred). If no such candidate node exists, X randomly chooses a node. X then initiates a three-way handshake to the chosen random neighbor candidate, say Y. During the handshake, each node independently decides whether or not to accept the other node as a new random neighbor upon the capacities and degrees of its existing random neighbors and the new node. If X’s RND_LINKS (the number of random neighbors) is less than MAX_RND_LINKS (the maximum number of random neighbors, and it dynamically changes as the SEM_LINKS changes), the node automatically accept this new node as a random neighbor. Otherwise, the node must check if it can find an appropriate random neighbor to drop and replace with the new node. X always drops an existing random neighbor in favor of Y if Y has capacity higher than all of X’s existing random neighbors. Otherwise, it decides whether to accept Y as follows. From all of X’s random neighbors that have capacity less than or equal to that of Y, X chooses the neighbor Z which has the highest degree. Z will be dropped and replaced with Y only if Y has lower degree than that of Z. This ensures that ESS does not drop already poorly-connected neighbors and avoid isolating them from the rest of the network.

11Each node has a minimum degree constraint, and a typical value is 3. If a node’s degree is less than or equal to the minimum constraint value, this node is identified as a poorly-connected node.
Discussion

The goal of the topology adaptation is to ensure that: (1) relevant nodes are organized into semantic groups through semantic links, by periodically issuing random walk queries for semantic neighbors and performing semantic neighbor addition, and (2) high capacity nodes have high degree and low capacity nodes are within short reach of higher capacity nodes, by periodically issuing random walk queries for random neighbors and performing random neighbor addition. Note that in ESS a direct semantic link connects two most relevant nodes while in other systems like SETS a local link does not necessarily mean that two connected node are most relevant within a topic segment.

For random walk queries requesting relevant nodes, ESS can actually do an optimization as follows. When a query arrives at a node (say Y) which is deemed to be relevant to the initiator node (say X), Y can first choose other relevant nodes from its semantic host cache for responses with some probability. If the MAX_RESPONSES has been reached, the query reply is routed back to X. Otherwise, Y biased walks the query through one of its semantic links with some probability. Further, relevant nodes within a semantic group can exchange the content of their host caches. Currently, ESS does not adopt such optimizations. Each node also continuously keeps track of the relevance scores of both semantic links and random links. If the relevance score of a semantic link drops below the SEM_THRESHOLD due to dynamically changing documents in either node (and thus changing node vectors), ESS simply drops the semantic link and adds the neighbor information into the random host cache. Similarly, if the relevance score of a random link becomes above the SEM_THRESHOLD, ESS simply drops the random link and add the neighbor information into the semantic host cache. As a result, the topology adaptation process performed thereafter can adapt to dynamically changing node vectors of each node’s existing neighbors.

1.5.4 Selective One-hop Node Vector Replication

To allow ESS to quickly locate the relevant semantic group for a query during biased walks (as will be shown in Chapter 1.5.5), each node maintains the node vectors of all of its ran-
dom neighbors in memory. Note that ESS does not maintain those of its semantic neighbors. This is why we call it selective replication. When a random connection is lost, either because the random neighbor node leaves the system, or due to topology adaptation, the node vector for this neighbor gets flushed from memory. A node periodically checks the replicated node vectors with each random neighbor in case that a neighbor node may add/remove documents. This allows nodes to adapt to dynamically changing node vectors (due to dynamically changing of documents) and keep replicated node vectors up-to-date and consistent.

1.5.5 Search Protocol

The combination of the topology adaptation algorithm (whereby relevant nodes are organized into semantic groups and high capacity nodes have more neighbors, i.e., high degree) and selective one-hop node vector replication (whereby nodes maintain the node vectors of their random neighbors) have paved the way for ESS’s content-based, capacity-aware search protocol.

Given a query, the search protocol is performed as follows. First, ESS uses biased walks, rather than random walks, to forward the query through random links. During biased walks, each node along the route looks up its locally stored documents for those satisfying the query: each document is evaluated using the Equation 1.1 and a relevance score is computed. If the relevance score is higher than or equal to certain relevance threshold, this document is identified as a relevant document for this query. If any such a relevant document is identified, then the node (say X) is called the semantic group target node, where the query terminates biased walks and starts flooding. Otherwise, X selects a neighbor (say Y) from its random neighbors whose node vector is most relevant to the query vector according to the Equation 1.3, and forwards the query to Y. The biased walks are repeated until a semantic group target node is identified.

The target node then floods the query along its semantic links: each semantic neighbor evaluates the query against its documents and then floods the query along its own semantic links. During flooding, we can allow the query to probe all of the nodes within a
semantic group or only a fraction of nodes by imposing a flooding radius constraint from the target node (called controlled flooding). The relevant documents found within the semantic group are directly reported to the target node. Note that each query contains a \textit{MAX_RESPONSES} parameter. The target node aggregates the relevant documents, reports them directly to the query initiator node (which will present highest relevance ranking documents to the user), and decreases \textit{MAX_RESPONSES} by the number of relevant documents. If \textit{MAX_RESPONSES} becomes less than or equal to zero, the query is simply discarded. Otherwise, the query starts biased walks from the target node again and repeats the above search process until sufficient responses are found.

During both biased walks and flooding, ESS uses book-keeping techniques to sidestep redundant paths. In ESS, each query is assigned a unique identifier \textit{GUID} by its initiator node. Each node keeps track of the neighbors to which it has already forwarded the query with the same \textit{GUID}. During biased walks, if a query with the same \textit{GUID} arrives back at a node (say \(X\)), it is forwarded to a different random neighbor with the highest relevance score among those random neighbors to which \(X\) has not forwarded the query yet. This reduces the probability that a query traverses the same link twice. However, to ensure forward progress, if \(X\) has already sent the query to all of its random neighbors, it flushes the book-keeping state and starts reusing its random neighbors. On the other hand, during flooding, if a query with the same \textit{GUID} arrives back at the node, the query is simply discarded. Note that ESS nodes treat query messages with the same \textit{GUIDs} differently during biased walks and flooding.

The search protocol we have discussed so far does not consider node capacity heterogeneity. Now we incorporate the capacity-aware mechanism into the search protocol to make search more efficient in the system where node capacities are heterogeneous. Due to the fact that the topology adaptation algorithm takes into account the heterogeneity of node capacities only in random link construction, the search protocol only needs to adapt the biased walk while retaining the flooding part untouched. During biased walks, each node makes a decision how to forward a query based on \textit{the query vector, its own capacity, the capacities of all of its random neighbors, and the node vectors of all of its random neighbors}. If the node (say \(X\)) is a supernode (whose capacity is higher than certain threshold), it
forwards the query to a random neighbor whose node vector is most relevant to the query vector. Otherwise, X must check all of its random neighbors and chooses the neighbor (say Y) with the highest capacity. If Y is a supernode, X forwards the query to Y, hoping that high capacity nodes can typically provide useful information for the query. Otherwise, X forwards the query to a random neighbor whose node vector is most relevant to the query vector. The biased walks are repeated until a target node if reached.

Discussion

In summary, the query flooding within a semantic group is based on the intuition that semantically associated nodes tend to be relevant to the same queries and can provide useful responses for them. The biased walk, taking advantage of the heterogeneity of node capacities and selective one-hop node vector replication, forwards a query either to a supernode neighbor with the hope that high capacity nodes can typically provide useful information for the query, or to the most relevant random neighbor if no such a supernode exists. Note that biased walks direct a query along one of a node’s random links while flooding forwards the query along all of the node’s semantic links. In ESS, in addition to $MAX前进RESPONSES$ each query is also bound by the TTL parameter. Note that flooding within semantic groups keeps us from exactly keeping track of the TTL. For simplification, in ESS’s implementation, the TTL is decreased by one at each step only during biased walks. Once TTL hits zero, the query message is dropped and no longer forwarded.

1.5.6 Experimental Results

We present part of experimental results here and refer readers to [31] for more results.

The data used in the experiments is $TREC-1,2-AP$ [1]. The TREC corpus is a standard benchmark widely used in the IR community. $TREC-1,2-AP$ contains AP Newswire documents in TREC CDs 1 and 2. The queries used in the experiments are from TREC-3 ad hoc topics (151-200). The query vector was derived from the $title$ field using VSM. These 50 queries each comes with a query relevant judgment file which contains a set of manually
identified relevant documents.

Figure 1.2 plots evaluation results comparing the performance of ESS against SETS and Random12. The vertical axis is the recall, and the horizontal axis is the query processing cost in the fraction of nodes involved for a query.

Several observations can be drawn from this figure. (1) ESS and SETS outperform Random substantially, achieving higher recall at smaller query processing cost. (2) Compared to ESS, SETS achieves higher recall when exploring less than 30% nodes. This is explained by the fact that SETS takes advantage of knowing the global $C (=256)$ topic segments and therefore can quickly and precisely locate the most relevant topic segments to look up relevant documents. ESS, instead has to use biased walks to locate a target node, and then floods the query within the corresponding semantic group for relevant documents. If the target node is not a right one (which actually does not contain relevant documents, though some of its documents have relevance score high enough to be deemed relevant), some irrelevant nodes are unavoidably probed. The overhead of locating a right target node hurts the performance of ESS, especially when probing only a small fraction of nodes. However, ESS still achieves about 71.6% recall by probing only 30% nodes. (3) ESS outperforms SETS when exploring more than 30% of the network. It achieves 89.3% recall by visiting only 40% nodes while SETS achieves 80% recall in this case. We give the following explanations. First,

12Random represents the random walk technique.
1.6. **CASE STUDY ON STRUCTURED P2P SYSTEMS**

the overhead of locating a right target node (and thus the semantic group) is amortized by exploring more nodes. Secondly, the nature of ESS’s topology adaptation connects the *most* relevant nodes through *direct* semantic links, and it ensures a query probes the *most* relevant nodes first along semantic links. However, SETS does not distinguish the relevance between nodes within a topic segment and local links do not necessarily reflect that the *most* relevant nodes have *direct* connections. Therefore some irrelevant nodes within topic segments are unavoidably visited when flooding the query within topic segments. (4) When exploring the whole network, the recall achieved by all three systems is 98.5%. This is because queries are short on average with only 3.5 terms in the experiments. Some relevant documents could not be identified because their relevance scores computed using the Equation 1.1 are 0. During query evaluation, they are mistakenly deemed to be irrelevant due to such a low relevance score. In other words, with such short queries, the maximum recall achieved by a centralized IR system is 98.5%.

<table>
<thead>
<tr>
<th>processing cost (% nodes)</th>
<th>2%</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>≥50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS(1000+heter) : SETS(full)</td>
<td>63.8%</td>
<td>8.3%</td>
<td>16.1%</td>
<td>17.9%</td>
<td>13.3%</td>
<td>18.5%</td>
<td>≤7.4%</td>
</tr>
</tbody>
</table>

Table 1.1: The recall improvements with respect to query processing cost made by ESS(1000+heter) on SETS(full). ESS(1000+heter) represents ESS which uses an appropriate node vector size of 1,000 and considers heterogeneity. “full” represents the full node vector size.

Table 1.1 summarizes the recall improvements made by ESS(1000+heter) on SETS(full) which does not consider capacity heterogeneity in its design. The node capacities are based on a Gnutella-like profile, which was derived from the measured bandwidth distribution for Gnutella [23]. Table 1.1 shows that, with an appropriate node vector size and capacity-aware mechanism, ESS outperforms SETS.

1.6 **Case Study on Structured P2P Systems**

We present an efficient, LSH-based semantic search system [32] built on top of DHTs. Leveraging the state-of-the-art IR algorithms such as VSM, this system aims to provide efficient semantic indexing and retrieval capabilities for structured P2P systems.
CHAPTER 1. SEMANTIC SEARCH IN PEER-TO-PEER SYSTEMS

Figure 1.3: Major components of the system architecture.

1.6.1 Overview

Figure 1.3 illustrates the system architecture. In order to support semantics-based access, we have to add two major components into an existing P2P system: a registry of semantic extractors, and semantic indexing and locating utility.

The functionality of semantic indexing is to index each object automatically according to its semantic vector (SV) whenever an object is created or modified. The functionality of semantic locating is to find similar documents for a given query.

The index-table is fully-distributed. When an object is created or modified, its SV is extracted. The system then hashes the SV to an integer number called semID. The DHT uses this semID as a key to put an index entry (a pointer to the original object) into the P2P system. Note the original locations of documents are not affected. Given a query, the system generates a semID based on the query’s semantic vector. The semantic locating utility then uses the semID to locate the indices of similar documents stored in the P2P systems.

The key here is to make sure that two semantically close documents (which have similar
semantic vectors) will be hashed to the same \textit{semID} so that the underline DHT can locate the indices. However this is not possible in many traditional hashing functions, which try to be uniformly random. As a result, two documents that are similar but slight different (e.g., different versions of the same document) will generate different hash results. Our system, on the contrary, relies on a very special class of hashing functions called Locality-Sensitive Hashing. If two documents are similar, then it is likely that they will generate the same hashing result. Moreover, the higher the similarity between the two files, the higher the probability that the hashing results are the same.

However, LSH cannot guarantee that two similar documents will always have the same hashing result. To increase the probability, we use a group of \(n \) LSH functions to generate \(n \) \textit{semIDs} (\(n \) is a small number, about 5-20). If the probability of generating a matching result from a single LSH function is \(p \), then the probability of generating at least one matching result from \(n \) LSH functions will be \(1 - (1 - p)^n \). The locating utility then uses the resulting \(n \) \textit{semIDs} to search the DHT. Our initial results indicate that with \(n \) set to about 10-20, our system can find almost 100% of semantically close documents. As a result, out system is very efficient: instead of sending the query to tens of thousands of nodes in the system, we only need to send it to \(n \) nodes.

\textbf{Semantic Extractor Registry}

The semantic extractor registry consists of a set of semantic extractors for each known file type. A semantic extractor is an external plug-in module. It is a file-type specific filter that takes as input the content of a document and outputs the corresponding semantic vector (SV) of this document.

A SV is a vector of file-type specific features extracted from the file content. For example, the VSM extracts the term frequency information from text documents, and Welsh et al. [29] derived frequency, amplitude, and tempo feature vectors from music data.

Leveraging the state-of-the-art IR algorithms such as VSM and LSI, the fundamental functionality of the semantic extractor registry is to represent each \textit{document} and \textit{query} as
a semantic vector where each dimension is associated with a distinct term (or keyword).

Semantically close documents/queries are considered to have similar SVs. The similarity between documents/queries can be measured as the cosine of the angle [4] or the Jaccard set similarity measure between their vector representations.

Whenever a user/application on a node \(X \) wants to store a document \(D \) into the system, the semantic extractor registry on \(X \) is responsible for deriving a SV for \(D \). The resulting SV is then used to produce a small number of \(\text{semIDs} \) (semantic identifier) as the DHT keys for \(D \). As a result, the document \(D \) can be indexed into the DHT according to its semantic presentation, i.e., with the resulting \(\text{semIDs} \) as the DHT keys. Note that a document in our system has two kinds of DHT keys: one is \(\text{docID} \), produced by SHA-1 hash of its content or name (which is commonly used in current P2P systems for file storage and retrieval), and the other is \(\text{semID} \), derived from its semantic vector (which is used for semantic indexing, as will be discussed later).

Semantic Indexing and Locating Utility

The semantic indexing and locating utility provides semantics-based indexing and retrieval capabilities. The functionality of semantic indexing is to index each document/query automatically according to its semantic vector whenever a document/query is created or modified. The functionality of semantic locating is to locate semantically close documents for a given query.

Given a document, the semantic indexing and locating utility hashes its SV into a small number of \(\text{semIDs} \) by using locality sensitive hashing functions (LSH). By having these \(\text{semIDs} \) as the DHT keys and \(\text{docID} \) and \(\text{SV} \) as the object in the DHT’s interface of \(\text{put(key, object)} \), it indexes the document into the underlying DHT in the form of tuples of \(< \text{semID}, \text{docID}, \text{SV} > \).

When locating semantically close files for a given query, the semantic indexing and locating utility first hashes the query’s SV into a set of \(\text{semIDs} \). It then interacts with the DHT to
retrieve the indices of those files that satisfy the query, by having these \textit{semIDs} as the DHT \textit{keys} in the DHT’s interface of \textit{get(key)}. The result of a successful query will return a list of \textit{docIDs} that satisfy the query.

The semantic indexing and locating utility also generate materialized views of query results, and allows users to reuse these materialized views as regular objects to save the expensive processing cost of popular queries. We refer reader to [32] for more detail.

1.6.2 LSH-based Semantic Indexing

The objective of semantic indexing is to cluster the indices of semantically close files/queries to the same peer nodes with high probability. Without loss of generality, our focus here is on documents, since queries can also apply the same indexing procedure.

Given a document’s semantic vector \(A \), semantic indexing hashes \(A \) into a small number of \textit{semIDs} by using LSH. This process can be described as follows:

1. For each vector component \(t \) of \(A \), convert it into a 64-bit integer \(^{13}\) by taking the first 64 bits of \(t \)’s SHA-1 hash. Therefore, \(A \) is converted into \(A' \), which is a set of 64-bit integers.

2. Using a group of \(m \) min-wise independent permutation hash functions, we derive a 64-bit \textit{semID} from \(A' \). Therefore, applying \(n \) such groups of hash functions on \(A' \) can yield \(n \) \textit{semIDs} (as shown in Algorithm 1).

Note that for two SVs \(A \) and \(B \), their similarity is \(p = \text{sim}(A, B) = \text{sim}(A', B') \). This is because that the SHA-1 hash function is supposed to be collision-resistant and the above process would not change the similarity \(p \).

Let \(A \) denote the SV of a document with a \textit{docID}, as shown in Algorithm 1, a \textit{semID} is produced by XORing \(m \) 64-bit integers which are produced by applying a group of \(m \) hash functions on \(A' \). Thus, applying \(n \) such groups of hash functions on \(A' \) yields \(n \) \textit{semIDs}. By

\(^{13}\)Since we evaluate our system on the Pastry simulator of 64-bit identifier space, we here convert \(t \) into a 64-bit integer.
Algorithm 1 Semantic indexing procedure using n groups of m LSH functions

| Require: $g[1..n]$, each of which has m hash functions $h[1..m]$ |
| 1. Convert A into A', which is a set of integers |
| 2. for $j = 1$ to n do |
| 3. \hspace{1em} $semID[j] = 0$ |
| 4. \hspace{1em} for each $h[i] \in g[j]$ do |
| 5. \hspace{2em} $semID[j] \wedge = h[i](A')$ /* \wedge is a XOR operation */ |
| 6. \hspace{2em} end for |
| 7. \hspace{1em} end for |
| 8. for each $semID[j]$ do |
| 9. \hspace{1em} insert the index $<semID[j], docID, A>$ into the DHT by having $semID[j]$ as the DHT key |
| 10. end for |

having the resulting $semIDs$ as the DHT keys, the file is indexed into the DHT in the form of $<semID, docID, A>$. We expect that such semantic indexing could have the indices of semantically close files hashed to the same peer nodes with high probability.

Probability Analyses. What is the probability achieved by the procedure as shown in Algorithm 1? We here offer probability analyses. Consider a group of $g = \{h_1, h_2, ..., h_m\}$ of m hash functions chosen uniformly at random from a family of locality sensitive hash functions. Then the probability that two SVs A and B are hashed to the same 64-bit integer for all m hash functions, i.e., $\Pr[g(A) = g(B)] = p^m$ (where $p = \text{sim}(A, B) = \text{sim}(A', B')$). Now, for n such groups $g_1, g_2, ..., g_n$ of hash functions, the probability that A and B cannot produce the same integer for all m hash functions $\in g_i$ is $1 - p^m$. And the probability that this happen for all n groups is $(1 - p^m)^n$. So the probability that A and B can produce the same integer for all m hash functions of at least one of n groups is $1 - (1 - p^m)^n$. In other words, the probability that A and B can produce the same $semID$ for at least one of n groups is $1 - (1 - p^m)^n$.

For example, if two SVs A and B have a similarity $p = 0.7$, the probability of hashing these two SVs to at least one same $semID$ is 0.975 ($m = 5, n = 20$). Semantically close file are considered to have similar SVs. We ensure that the indices of semantically close files could be hashed to the same $semIDs$ with very high probability (nearly 100%) by carefully choosing the value of m and n.

Note that each node in a P2P system is responsible for a portion of the DHT’s identifier.
space. Close identifiers could be mapped into the same node. So even if two SVs A and B
cannot be hashed to one same identifier semID by applying n such groups of hash functions,
it is still possible that the semantic indices of these two corresponding files might be hashed
to the same node if both SVs are hashed into some semIDs which are close together in the
identifier space. This implies that the probability of hashing these two SVs to at least one
same node is $\geq 1 - (1 - p^m)^n$.

As a result, we can improve the performance of our probabilistic approach by adjusting
the parameters n and m. Ideally we would like the probability $1 - (1 - p^m)^n$ to approach
100%. By assuming that semantically close files have a relatively high similarity value (e.g.,
≥ 0.7), the probability is now dependent on n and m. Recall that the probability is 97.5%
when p, n and m are chosen to be 0.7, 20 and 5 respectively. If we increase n to 30 while
keeping p and m fixed, the probability is 99.6%; if we reduce m to 1 while keeping p and n
fixed, the probability is nearly 100%. Therefore, either a relatively big n or a relatively small
m would dramatically improve the performance of our probabilistic approach. However, a
big n would increase the load of indexing and querying as well as storage cost, and a small
m might cluster the indices of those files that are not very semantically close (with low
similarity) to the same nodes with non-negligible probability. Another interesting fact is that
we could use a small m if in a system those files with a relatively low similarity ($p \leq 0.5$)
are also regarded as semantically close files. For example, the probability is nearly 100%
if p, n and m are 0.3, 20 and 1 respectively. In summary, all these problems need further
exploration in our future work.

1.6.3 LSH-based Semantic Locating

We now discuss the issue of how to locate semantically close documents that satisfy a query,
given the fact that all documents in the system are automatically indexed according to
their SVs in response to operations such as document creation or modification. The goal of
semantic locating is to answer a query by consulting only a small number of nodes which
are most responsible for the query.
Given the semantic indexing scheme described earlier, we show that this goal can be easily achieved. For example, let V_q be a query Q’s semantic vector. Suppose Q wants to locate those documents whose SVs are similar to A (with certain similarity degree). The semantic locating procedure (as shown in Algorithm 2) produces n semIDs from V_q for Q using the same set of hash functions (used in the semantic indexing procedure). So if a document D satisfies such a query Q, it will be retrieved by Q with very high probability. Note that the SVs of document D and query Q could be hashed to the same semIDs with high probability (i.e., $1 - (1 - p^m)^n$). Thus, by having these semIDs as the DHT keys in the DHT’s interface of $get(key)$, Q is able to retrieve semantically close documents from the peer nodes which are responsible for these semIDs. n is very small (e.g., 20) in the system, which implies that a query can be answered by consulting only a small number n of nodes.

Algorithm 2 Semantic locating procedure using n groups of m LSH functions.

```latex
\textbf{Require:} \quad g[1..n], each of which has $m$ hash functions $h[1..m]$

1. Convert $V_q$ into $V_q'$, which is a set of integers
2. for $j = 1$ to $n$ do
3. \hspace{1em} semID$[j] = 0$
4. \hspace{1em} for each $h[i] \in g[j]$ do
5. \hspace{2em} semID$[j] \land = h[i](V_q')$ \hspace{1em} /* \land is a XOR operation */
6. \hspace{1em} end for
7. end for
8. for each semID$[j]$ do
9. \hspace{1em} Send the request to the destination node which is responsible for semID$[j]$
10. end for
11. Get replies from all the destination nodes
12. Merge the docIDs that satisfy the query from all replies
13. Create a materialized view of the query result asynchronously
14. Index the query according to its semantic vector asynchronously
```

As shown in Algorithm 2, upon a request, each destination peer (at most n) locally checks the list of tuples $< \text{semID}, \text{docID}, SV >$ and finds the docIDs such that their associated SVs are similar to the query’s SV with certain similarity threshold, and sends the list of docIDs to the requesting node. Then, the requesting node merges the replies from all destination peers, generates a materialized view of the query result and indexes the query according to its SV.

Actually, each destination peer can organize its own tuples in such a way that these tuples are clustered locally according to their SVs by using data clustering techniques such as k-
means clustering\cite{12}. It should be pointed out that we do not use LSH to perform local matching because LSH could hash the indices of dissimilar files into the same semIDs with some probability. Each destination peer uses k-means to cluster the tuples into collections according to the semantic vector until the variance inside a collection falls below certain threshold. Managing the tuples in the unit of collections allows each peer to narrow the search range (within a single collection instead of the whole indices) upon a request, thereby making the search efficient and fast.

1.6.4 Experimental Results

We present part of experiment results here and refer readers to \cite{32} for more details.

The results reported here is based on a P2P file system built on top of Pastry \cite{22}. The data used in the experiments consists of 205 unique C++ program files from a CVS repository. Each of these 205 program files consists of 3 different versions on average. Hence there are 615 files in total (about 10 MB). We divided each single file into a list of variable-sized chunks using the technique suggested in LBFS \cite{17}. As a result, each file can be represented as a list of chunk fingerprints, each of which is a 64-bit integer by taking the first 64 bits of the chunk’s SHA-1 hash \cite{17}. We started the experiment with an empty P2P file system and indexed each file into system by applying the semantic indexing procedure. Then we issued a set of queries to locate different versions for each unique C++ program file, since here we consider different versions of a program file semantically close due to similar fingerprints.

Figure 1.4 (a) shows the recall for different minimum chunk size limits \footnote{When dividing a file into chunks, we impose a minimum chunk size limit like in LBFS \cite{17}.} including 128 Byte, 512 Byte, 1 KB and 2 KB. The x-axis represents the number of group hash functions n used in the semantic indexing and locating procedures, while the y-axis represents the recall. As expected, the recall increases with the number n increasing from 5 to 20. Moreover, as the minimum chunk size varies from 128 byte to 2 KB, the recall decreases. This is because chunks with a smaller minimum chunk size limit are able to identify more similarity between different versions of a file. But even when the minimum chunk size limit
is 128 Byte and \(n \) is 20, our semantic locating was still unable to find all the files. This is because some files are very small, even a minimum chunk size limit of 128 Byte could not make the similarity high enough between different versions of a file. According to \((1 - (1 - p^m)^n)\), if \(p \) is small (say, \(\leq 0.7 \)), our locating approach might fail to find all semantically close files with such a small similarity (because it cannot guarantee a 100% probability). Further, a small \(m \), could dramatically improve the recall according to \((1 - (1 - p^m)^n)\). Figure 1.4 (b) shows the result for a minimum chunk size limit of 128 Byte with \(m = 2 \). When \(n \) is 15, the recall is 100%.

1.6.5 Top Term Optimization

By realizing the fact that in a document a small number (e.g., 30) of top terms are much more important than other terms [31], we propose a top term based optimization for the basic LSH-based semantic indexing and locating approach. The intuition behind this optimization is that, according to the similarity computing equation 1.1, top terms with heavy weight tend to contribute most in similarity score in comparison to those terms with light weight in a document. Therefore, we can represent a document by a *compact* term vector, which consists of only those top terms. We believe this could reduce the cost of both LSH computation in semantic indexing and location and storage (as shown in [32]). Furthermore, top term based optimization might help to identify the most relevant documents for the user’s query, thus
preventing the system from returning too many documents (most of them may be irrelevant) beyond user’s capability to deal with.

1.7 Summary

In this chapter, we addressed the advantages of constructing a P2P search system and reviewed current search systems built on top of both unstructured and structured P2P systems. We also discussed in detail two search systems, which we have built on top of unstructured P2P networks and structured P2P network, respectively.

Structured P2P systems are adept at exact-match lookups: given a key, the system can locate the corresponding document with only $O(\log N)$ hops. However, as we discussed earlier, extending exact-match lookups to support keyword/semantic search [20, 14, 27, 32] on DHTs is non-trivial. The main problem facing these search techniques is the high maintenance cost in both overlay structure and document indices due to node churn in P2P networks. To counter this problem, we expect to construct the search engine using a subset of P2P nodes which are stable and have good connectivity.

Unstructured P2P systems, on the other hand, automatically support arbitrarily complex queries. In addition, node churn causes little problem for them. However, the main problem facing the search systems built on top of unstructured P2P networks, is the search inefficiency — a query might probe a very large fraction of nodes to be answered. As a result, a number of search techniques [7, 31, 8, 15, 3, 25] have been proposed to improve search efficiency on unstructured P2P systems.
References

1.7. SUMMARY

