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Abstract
All existing lookup algorithms in structured peer-

to-peer (P2P) systems assume that all peers are uni-
form in resources (e.g., network bandwidth, storage
and CPU). Messages are routed on the overlay net-
work without considering the differences of capabilities
among participating peers. However, the heterogene-
ity observed in deployed P2P systems is quite extreme
(e.g., with up to 3 orders of magnitude difference in
bandwidth). The bottleneck caused by very limited
capabilities of some peers therefore could lead to inef-
ficiency of existing lookup algorithms. In this paper we
propose a super-peer based lookup algorithm and eval-
uate it using a detailed simulation. We show that our
technique not only greatly improves the performance
of processing queries but also significantly reduces ag-
gregate bandwidth consumption and processing cost
of each query.

1 Introduction

Structured P2P systems, such as Pastry [1], Chord
[2], Tapestry [3] and CAN [4], offers applications with
a distributed hash table (DHT) abstraction. In such
structured systems, each object that is stored into the
DHT has a unique key. Thus, these systems provide
a DHT interface of put(key,object), which stores the
object with the key, and get(key) which retrieves the
object corresponding to the key.
One of the key problems in structured P2P sys-

tems is to provide an efficient location and routing
(lookup) algorithm. All of these existing lookup algo-
rithms in structured P2P systems, make an explicit or
implicit assumption that all peers are uniform in re-
sources (e.g., network bandwidth, storage and CPU).
Messages are routed on the overlay network without
considering the differences of capabilities among par-
ticipating peers. However, Measurement studies such
as [5] have shown that the heterogeneity in deployed
P2P systems is quite extreme (e.g., with up to 3 orders

of magnitude difference in bandwidth). The bottle-
neck caused by very limited capabilities of some peers
could lead to the inefficiency of these existing lookup
algorithms. Therefore, it is possible to improve the
performance of these existing lookup algorithms by
taking into account the heterogeneity nature of P2P
systems.
In this paper, we present a super-peer based lookup

algorithm designed to enhance the performance of ex-
isting lookup algorithms in structured P2P systems.
A super-peer based lookup algorithm is one which ex-
ploits the heterogeneity (in network bandwidth, stor-
age capacity, and processing power) among participat-
ing peers, by assigning greater responsibility to those
super-peers who have high network bandwidth, large
storage capacity and significant processing power. The
super-peer based lookup algorithm can coexist with
existing lookup algorithms through a hybrid approach:
first try the super-peer based lookup algorithm, then
follow with the existing lookup algorithm if needed.
We then use a detailed simulation to explore the be-
havior of this super-peer based lookup algorithm on
a uniform distribution of files. Simulations show that
our super-peer based algorithm finds files faster and
consumes less bandwidth and processing power than
the existing lookup algorithm.
The remainder of this paper is organized as fol-

lows. Section 2 presents our super-peer based lookup
algorithm. Section 3 describes our simulation envi-
ronment, and Section 4 describes our experimental re-
sults. Section 5 gives an overview of related work. We
finally conclude in Section 6.

2 Super-Peer Based Lookup

The basic idea behind the super-peer based lookup
is to take advantage of the heterogeneity of capabili-
ties (in network bandwidth, storage capacity, and pro-
cessing power) among participating peers, by assigning
greater responsibility to those super-peers. A super-



peer acts as a centralized server to a subset of clients,
and clients submit search queries to their super-peer
and receive results from it. The goal of the super-peer
based lookup is to reduce the resulting pathlength of
a query message and the aggregate load generated by
the query across the network. Our super-peer based
lookup does not intend to replace the current lookup
algorithm used in the system. Instead, it acts as a
complement to the current lookup algorithm. If the
super-peer based lookup fails to route a query mes-
sage, it has to resort to the existing lookup algorithm.
Therefore, the super-peer based lookup and the exist-
ing lookup can coexist in the system.

2.1 Existing Lookup Algorithms

In this section, we review the existing lookup algo-
rithms used in structured P2P systems. The lookup
algorithms, though different in design considerations,
have more commonality than differences. All of them,
given a DHT key, route a message to a destination
node who is responsible for that DHT key. Each node
is associated with an identifier. The keys and nodes’
identifiers are pseudorandom, fixed-length bit strings.
Each node maintains a routing table consisting of a
small subset of nodes in the system (e.g., O(logN)).
When a node receives a query message with a key for
which it is not responsible, the node routes the mes-
sage to a neighbor node who is closer to the key than
its own identifier. In worst case, a lookup operation re-
quires O(logN) sequential network messages to search
a P2P system of N peers.
Due to space constraints, we here do not further

describe the lookup algorithms. Please see [1, 2, 3, 4]
for more detail.

2.2 Super-Peer Overlay Network

A super-peer overlay network is a secondary overlay
constructed on super-peers. It is similar to the over-
lay constructed in structured P2P systems (we refer
to it as the original overlay) in [1, 2, 3, 4], except that
it is completely composed of super-peers. A super-
peer has multiple roles: (1) It is a peer on the original
overlay. (2) It is a peer on the secondary overlay. (3)
It is a centralized sever to a subset of clients (weak
peers on the original overlay). Clients submit queries
to their super-peer and receive results from it. We re-
fer to a super-peer and its clients as a cluster. Figure 1
illustrates what the topology of a super-peer overlay
network might look like.
As a result, each super-peer has two node IDs. One

is for the original overlay and the other is for the super-

Figure 1: Illustration of a Super-Peer Overlay Net-
work. Black nodes represent super-peers, while white
nodes represent clients. A cluster is composed of a
super-peer and its clients.

peer overlay. Moreover, each super-peer maintains a
routing table for each of these two overlays.
A super-peer maintains an index over its own

clients’ data. This index, for example, can be com-
posed of tuples < fileId, C > (where the client C
owns the file specified by the fileId). Then, each tu-
ple is published by the super-peer S over the super-
peer overlay in the form of a triple < fileId, S, C >.
Figure 2 depicts the index maintained in the super-
peer node and on the super-peer overlay. The over-
head of maintaining such an index at the super-peer
is expected to be small in comparison to the savings
in query costs the centralized index introduces. For
instance, given a query, if the query source node and
query destination node of a query are located in the
same cluster, the current lookup algorithm in P2P sys-
tems however cannot realize it, and the query message
might be routed across multiple autonomous systems
(AS) before reaching the destination. Some of these
overlay hops might even involve transcontinental links
since the peers in P2P systems could be geographically
distributed, resulting in high latency. In contrast, the
centralized index allows the super-peer to directly for-
ward the query to the destination within the cluster
and avoid routing the query across multiple ASs, thus
minimizing both latency and network hops as well as
reducing network traffic.
When a client C joins the system, it will first as-

sociate itself to a nearby super-peer S. It will then
send the tuples over its data collection to its super-
peer S, and the super-peer will add the tuples into
its index and publish all the triples corresponding to
these tuples over the super-peer overlay. Specifically,
If a client inserts a file (identified by the fileId), it
will send the tuple < fileId, C > to its super-peer,
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Figure 2: Illustration of a Super-Peer Overlay Net-
work with Files Published. A, B, C, and D repre-
sent super-peers, while a1, a2 and a3 represent A’s
clients. A maintains an index over the files f1, f2, and
f3, which are stored at a1, a2, and a3 respectively. A
then publishes these tuples < f1, a1 >, < f2, a2 >,
and < f3, a3 > into the super-peer overlay network,
in the form of < f1, A, a1 >, < f2, A, a2 >, and
< f3, A, a3 > respectively.

which will add this tuple into its index and then pub-
lish the triple < fileId, S, C > over the super-peer
overlay. If a client deletes a file, it will send the tu-
ple < fileId, C > to its super-peer, which will remove
this tuple from its index and then withdraw the triple
< fileId, S, C > from the super-peer overlay. When
a client leaves, its super-peer will remove the tuples
owned by this client from its index and withdraw all
the corresponding triples from the super-peer overlay.
Note that a super-peer itself also publishes/withdraws
its data indexes to/from the super-peer overlay.

2.3 Super-peer Selection and Election

As described earlier, a super-peer takes greater
responsibilities by impersonating both a centralized
sever to a set of clients, and a pure peer in a super-
peer overlay. Therefore a super-peer candidate must
meet the following requirements:

• It has significant processing power in order to
route a large amount of overlay traffic on a over-
lay network of super-peers and process the search
queries for its clients.

• It has high bandwidth and fast access to the In-
ternet (e.g. with minimal number of IP hops
to the wide-area network). For instance, gate-
way routers or machines are attractive candi-
dates. Queries across the wide-area can be

quickly routed to the destination node by tak-
ing advantage of the highly connected network
infrastructure among super-peers.

• It has high availability. If super-peers tend to
be unavailable frequently, this will have signif-
icant impact on the effectiveness of the super-
peer based lookup algorithm.

• It has large memory and storage capacity. Unlike
clients, a super-peer needs to have extra mem-
ory and storage to keep the index of files within
its cluster and triples published by other super-
peers on the super-peer overlay. Moreover, if it
has extra storage space to cache files, this will
greatly improve the performance of the super-
peer based lookup algorithm.

In the case of the crash or leave of a super-peer,
another super-peer can be elected. Due to space
constraints, we here do not discuss the detail of
super-peer election.

2.4 Super-Peer Based Lookup Algorithm

In this section we describe our super-peer based
lookup algorithm.
When a client wishes to deliver a query (specified

by a fileId) to the network, it first sends the query to
its super-peer. The super-peer then submits the query
to the super-peer overlay as if it were its own query.
The query is therefore routed to a super-peer who is
responsible for the fileId of this query.
Upon receiving this query, the destination super-

peer can do an efficient lookup via hashtable to find
the triple < fileId, S, C >. If the super-peer S is
available, the query is forwarded to this super-peer,
which will contact the client C and return the query
result. Otherwise, the query is forwarded directly to
the client C.
During each lookup operation, the triple can be

cached along the way on the super-peer overlay. This
operation could reduce the overlay hops and network
traffic of each query across the super-peer overlay,
greatly improving the lookup performance.
In summary, the super-peer based lookup acts as a

complement instead of a replacement to the existing
lookup algorithms. If the lookup of a query couldn’t
continue on the super-peer overlay due to the failure of
super-peers, the query will leave the super-peer overlay
(the highway) and take the original overlay (the local
way) at some point. The existing location and routing
algorithm then takes care of the query and routes it
to the destination node through the original overlay.



3 Simulation Experiments

3.1 Metrics

In order to evaluate the effectiveness of our super-
peer based lookup algorithm, we must first define some
metrics.

• Relative Hop Penalty (RHP). We refer to the ra-
tio of the actual IP hops to route a query on the
overlay network versus the ideal IP hops on the
underlying IP network to the query destination
node.

• Relative Delay Penalty (RDP). We refer to the
ratio of the actual time to route a query on the
overlay network versus the ideal network latency
on the underlying IP network to the query des-
tination node.

• Aggregate Bandwidth Cost (ABC). We refer to
the aggregate bandwidth consumed (in bytes) by
each query.

• Aggregate Processing Cost (APC). We refer to
the aggregate processing power consumed (in
CPU cycles) by each query.

3.2 Simulation Environment

We constructed our simulator over a physical net-
work topology, produced by GT-ITM [6]. The transit-
stub graphs used in our simulations are generated with
6 transit domains of 10 nodes each. Each transit node
is connected to 7 stub domains and each stub domain
owns 22 nodes on the average, thereby yielding a to-
tal of 9,300 nodes per graph. Given these parameters,
we generated seven graphs, and conducted our experi-
ments on these seven graphs to ensure that our results
are independent of the particularities of any one graph.
On top of this physical network, we built the Pastry
overlay and chose 60 peers as the super-peers on which
we constructed the secondary Pastry overlay.

3.3 Experiment Descriptions

In all these experiments, we published 9,300 unique
fileIds to the Pastry overlay network uniformly, so
that each peer is responsible for a unique fileId.
For each cluster, all the fileIds within the cluster
are indexed as a tuple < fileId, C > at the super-
peer, which then publishes all these tuples into the
secondary overlay network in the form of triple <
fileId, S, C >. We chose a sample of query source

peers, and then arranged for each query source peer
to initiate queries of these fileIds we have published.
In the RHP experiments, we measure the RHP of

the super-peer based lookup algorithm and Pastry on
these queries, assuming that both inter-domain links
and intra-domain links count as one hop. To account
for the fact that inter-domain links incur higher la-
tency than intra-domain links, we further measure the
weighted RHP of the super-peer based lookup algo-
rithm and Pastry, where each inter-domain hop counts
as 3 hop units.
In the RDP experiments, we measure the RDP

of the super-peer based lookup and Pastry on these
queries, by assigning link latencies of 20 ms for transit-
transit links, 5 ms for stub-transit links and 2 ms for
intra-stub domain links.
In the ABC experiments, we calculate the aggre-

gate bandwidth consumed under the super-peer based
lookup and Pastry on these queries. We first need to
estimate the size of a query message. We based our
calculation of the query message size on the Gnutella
network protocol [7]. In particular, a query message in
Gnutella consists of a Gnutella header, a query string,
and a field of 2 bytes to describe the minimum band-
width (in kb/second) that should be provided by any
responding node of this message. A Gnutella header
is 22 bytes, and a TCP/IP and Ethernet header is
58 bytes. The query string in Gnutella is a variable
string, and we here instead assume that it only con-
tains a fileId, which is a 160-bit string in Pastry. To-
tal query message size is therefore 102 bytes. We then
calculate the aggregate bandwidth cost of the super-
peer lookup and Pastry, given this query message size.
For APC experiments, we first have to estimate the

processing cost of processing a 102-byte query in one
node. We employ the method used in [8] and yield
2280 CPU cycles for processing such a query on a
930 MHz processor (Pentium III, running Linux Ker-
nel Version 2.2). Given this processing cost, we then
calculate the aggregate processing cost of the super-
peer based lookup and Pastry.

4 Results

In this section, we utilize our experiment results to
justify the claims we made in the introduction: that
the super-peer based lookup algorithm finds files faster
and consumes less bandwidth and processing power
than the existing lookup algorithm.
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Figure 4: RHP vs. Ideal IP Hops. The RHP for the
super-peer based lookup is measured under 60 and 240
super-peers respectively.

4.1 RHP

Figure 3 shows the RHP of our super-peer based
algorithm and original Pastry as a function of the
query source’s distance from the queried document.
Note that the super-peer based lookup has signifi-
cant improvements over original Pastry, achieving a
much lower RHP and reducing the routing overhead
by about 34-81%.
Figure 4 shows the RHP for the super-peer based

lookup algorithm with 60 and 240 super-peers on the
secondary overlay network. Note that the super-peer
based lookup with 60 super-peers has big improve-
ments over the super-peer based lookup with 240
super-peers. Hence, the fewer the super-peers on the
secondary overlay, the less routing overhead on the sec-
ondary overlay in locating super-peers for query desti-
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Figure 5: RDP vs. Ideal Latency.

nations there will be and the more performance gains
the super-peer based lookup can achieve.

4.2 RDP

Figure 5 plots the RDP of the super-peer based al-
gorithm and original Pastry as a function of the query
source’s distance from the queried document. Note
that the super-peer based lookup achieves improve-
ments in RDP by about 10-43%.

4.3 ABC and APC

Due to space constraints, we here do not present
the figures about ABC and APC. But the results show
that the super-peer based lookup reduces both ABC
and APC by 40-50%.
.

5 Related Work

Structured P2P systems ([1, 2, 3, 4]) assumes that
all peers are uniform in resources. However, ignoring
the heterogeneity in peer capabilities could lead to in-
efficiency of existing lookup algorithm. To account for
the heterogeneity nature of P2P systems, Zhao et al.[9]
present the initial architecture of a brocade secondary
overlay on top of a Tapestry network to improve rout-
ing performance. CFS [10] also proposes to hosting a
number of virtual servers on a physical sever, to ac-
count for varying resource capabilities among nodes.
The lookup algorithm of structured P2P systems

performs less optimally as the queries document lies
closer to the query source. To tackle this problem,
[11] proposes a new, probabilistic location and routing
by using an attenuated Bloom Filter, to improve the
lookup performance. Recent work [12, 8, 13] strives
to improve search efficiency in unstructured P2P net-
works. Moreover, Yang et al. [14] conduct some re-



search on a super-peer network, presenting us practical
guidelines and a general procedure for the design of an
efficient super-peer network.

6 Conclusions

In this paper we have presented and evaluated a
super-peer based lookup algorithm in structured P2P
systems. Compared to existing lookup algorithms in
such systems, the super-peer based lookup algorithm
not only greatly improves the performance of process-
ing queries, but also significantly reduces aggregate
bandwidth consumption and processing cost of each
query. Furthermore, the super-peer based lookup al-
gorithm can coexist with the existing lookup algorithm
rather than replacing it. Due to the fact that the het-
erogeneity in P2P populations is quite extreme, we be-
lieve our super-peer based lookup algorithm can have
a positive impact on current structured P2P systems.
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